From mboxrd@z Thu Jan 1 00:00:00 1970 Return-Path: Received: from lists.gentoo.org (pigeon.gentoo.org [208.92.234.80]) by finch.gentoo.org (Postfix) with ESMTP id A016B13888F for ; Fri, 3 Apr 2015 10:58:46 +0000 (UTC) Received: from pigeon.gentoo.org (localhost [127.0.0.1]) by pigeon.gentoo.org (Postfix) with SMTP id 59A24E0931; Fri, 3 Apr 2015 10:58:40 +0000 (UTC) Received: from mail-ie0-f182.google.com (mail-ie0-f182.google.com [209.85.223.182]) (using TLSv1.2 with cipher ECDHE-RSA-AES128-GCM-SHA256 (128/128 bits)) (No client certificate requested) by pigeon.gentoo.org (Postfix) with ESMTPS id 5CD6FE0912 for ; Fri, 3 Apr 2015 10:58:39 +0000 (UTC) Received: by ierf6 with SMTP id f6so88650150ier.2 for ; Fri, 03 Apr 2015 03:58:38 -0700 (PDT) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=gmail.com; s=20120113; h=mime-version:sender:in-reply-to:references:date:message-id:subject :from:to:content-type; bh=2RXSQ4bVGTFHpB45keFWMgqMkPbWBQLffvO+3Yss/+E=; b=I4M12Mh6eScdX+Ro+3YLSI2RBeOC1IdYY3lXBsOH53Wu7q+Dxb6EyDUhg5fZonjE9z 1+e1GS8/paeJbnloJXhhPHghWUWZ4kreo8y4kRhJbzsu7RBRWxuZ4ry9pyVzQNnVyNG+ FXLR+gShnuwZ9EywxtErK1kvRTDdHspXCzbGljlsjncq0IdepZCOQxw22DV6WsbbjYtd z8HTSS0uVtifnUw3SC4KmlqD+ErwVAuHknvBUDzObC5AvdQHZZ9px0fo8hg8FzEwQltM uoUwuQfC7A7iRancTc9742BzFqSnhrJParF/CdABAhE2tCHWHKjQAOpQVqF8OQCf7LGy rCOg== Precedence: bulk List-Post: List-Help: List-Unsubscribe: List-Subscribe: List-Id: Gentoo Linux mail X-BeenThere: gentoo-user@lists.gentoo.org Reply-to: gentoo-user@lists.gentoo.org MIME-Version: 1.0 X-Received: by 10.50.57.78 with SMTP id g14mr27063338igq.41.1428058718771; Fri, 03 Apr 2015 03:58:38 -0700 (PDT) Sender: freemanrich@gmail.com Received: by 10.107.48.198 with HTTP; Fri, 3 Apr 2015 03:58:38 -0700 (PDT) In-Reply-To: <20150403053030.61ad1705@hal9000.localdomain> References: <20150403050535.5bbe58bb@hal9000.localdomain> <20150403053030.61ad1705@hal9000.localdomain> Date: Fri, 3 Apr 2015 06:58:38 -0400 X-Google-Sender-Auth: 1vSLXVci8tyFKPdh_7mNrEnVcQQ Message-ID: Subject: Re: [gentoo-user] Question of quantum computer From: Rich Freeman To: gentoo-user@lists.gentoo.org Content-Type: text/plain; charset=UTF-8 X-Archives-Salt: e259925e-db53-4430-9e93-8536ed95045a X-Archives-Hash: 667404f77783a23add20fded6ab3f872 On Thu, Apr 2, 2015 at 11:30 PM, wrote: > wrote: > >> with the movement of particles. It is a phenomenon that results from >> the quantum entanglement of e.g. two electrons and has to do with the >> nonlocality of such phenomenons. When you measure the quantum >> attributes of one of these two electrons you instantaneous influence >> the quantum attributes of the other one, regardless of its distance. > > Correction: I meant photons and not electrons. Sorry for this. > Since others have done a decent job explaining some of the basics here, I'll just point out that quantum affects apply to all matter and energy, not just photons. It just doesn't tend to be noticeable for anything of significant size except in very unusual situations. Electrons are fundamental particles (as best we know) and are very much subject to quantum effects. In particular the wavelike characteristics of photons are responsible for behavior like the UV absorbance of your suntan lotion, or the fact that just about anything that conducts electricity well tends to look metallic/shiny even if it doesn't contain something you'd consider metal. I remember the first time somebody showed me a conductive polymer and marveling that it looked like a little strip of metal-coated plastic that you might find connecting two circuit boards (this was back in the 90s - conductive polyers are a bit more mainstream now). In truth, the wavelike characteristics of electrons are important for virtually all aspects of their behavior since they are so small, but I'm just pointing out some manifestations that are more visible to the naked eye. I agree with the earlier comment that I doubt you'd ever try to run a general-purpose operating system on a quantum computer. If they ever became truly mainstream the most likely configuration would be as a separate module that would be utilized for certain problems, much like a DSP or a GPU or an FPGA often gets used today. They are non-deterministic in nature (or are at least thought to be and might as well be for practical purposes - I'm not convinced that anybody has proven that quantum behavior is truly non-deterministic). Most quantum algorithms would be paired with conventional computers. If a quantum chip tells you that there is a 95% cumulative chance that somebody's private key is one of these 50 candidates, that is probably more than adequate since you can brute force 50 keys in a millisecond and find the right one. They're going to tend to be used for needle in a haystack problems where once you get rid of 99.999999999999% of the haystack the problem is no longer difficult. -- Rich