public inbox for gentoo-commits@lists.gentoo.org
 help / color / mirror / Atom feed
* [gentoo-commits] proj/linux-patches:6.12 commit in: /
@ 2024-11-21 13:12 Mike Pagano
  0 siblings, 0 replies; 2+ messages in thread
From: Mike Pagano @ 2024-11-21 13:12 UTC (permalink / raw
  To: gentoo-commits

commit:     67d76cc6cc2bdc81a481ca7563853da3307b9331
Author:     Mike Pagano <mpagano <AT> gentoo <DOT> org>
AuthorDate: Thu Nov 21 13:11:30 2024 +0000
Commit:     Mike Pagano <mpagano <AT> gentoo <DOT> org>
CommitDate: Thu Nov 21 13:11:30 2024 +0000
URL:        https://gitweb.gentoo.org/proj/linux-patches.git/commit/?id=67d76cc6

BMQ(BitMap Queue) Scheduler. (USE=experimental)

Signed-off-by: Mike Pagano <mpagano <AT> gentoo.org>

 0000_README                                  |     8 +
 5020_BMQ-and-PDS-io-scheduler-v6.12-r0.patch | 11188 +++++++++++++++++++++++++
 5021_BMQ-and-PDS-gentoo-defaults.patch       |    13 +
 3 files changed, 11209 insertions(+)

diff --git a/0000_README b/0000_README
index 79d80432..2f20a332 100644
--- a/0000_README
+++ b/0000_README
@@ -86,3 +86,11 @@ Desc:   Add Gentoo Linux support config settings and defaults.
 Patch:  5010_enable-cpu-optimizations-universal.patch
 From:   https://github.com/graysky2/kernel_compiler_patch
 Desc:   Kernel >= 5.15 patch enables gcc = v11.1+ optimizations for additional CPUs.
+
+Patch:  5020_BMQ-and-PDS-io-scheduler-v6.12-r0.patch
+From:   https://gitlab.com/alfredchen/projectc
+Desc:   BMQ(BitMap Queue) Scheduler. A new CPU scheduler developed from PDS(incld). Inspired by the scheduler in zircon.
+
+Patch:  5021_BMQ-and-PDS-gentoo-defaults.patch
+From:   https://gitweb.gentoo.org/proj/linux-patches.git/
+Desc:   Set defaults for BMQ. default to n

diff --git a/5020_BMQ-and-PDS-io-scheduler-v6.12-r0.patch b/5020_BMQ-and-PDS-io-scheduler-v6.12-r0.patch
new file mode 100644
index 00000000..9eb3139f
--- /dev/null
+++ b/5020_BMQ-and-PDS-io-scheduler-v6.12-r0.patch
@@ -0,0 +1,11188 @@
+diff --git a/Documentation/admin-guide/sysctl/kernel.rst b/Documentation/admin-guide/sysctl/kernel.rst
+index f8bc1630eba0..1b90768a0916 100644
+--- a/Documentation/admin-guide/sysctl/kernel.rst
++++ b/Documentation/admin-guide/sysctl/kernel.rst
+@@ -1673,3 +1673,12 @@ is 10 seconds.
+ 
+ The softlockup threshold is (``2 * watchdog_thresh``). Setting this
+ tunable to zero will disable lockup detection altogether.
++
++yield_type:
++===========
++
++BMQ/PDS CPU scheduler only. This determines what type of yield calls
++to sched_yield() will be performed.
++
++  0 - No yield.
++  1 - Requeue task. (default)
+diff --git a/Documentation/scheduler/sched-BMQ.txt b/Documentation/scheduler/sched-BMQ.txt
+new file mode 100644
+index 000000000000..05c84eec0f31
+--- /dev/null
++++ b/Documentation/scheduler/sched-BMQ.txt
+@@ -0,0 +1,110 @@
++                         BitMap queue CPU Scheduler
++                         --------------------------
++
++CONTENT
++========
++
++ Background
++ Design
++   Overview
++   Task policy
++   Priority management
++   BitMap Queue
++   CPU Assignment and Migration
++
++
++Background
++==========
++
++BitMap Queue CPU scheduler, referred to as BMQ from here on, is an evolution
++of previous Priority and Deadline based Skiplist multiple queue scheduler(PDS),
++and inspired by Zircon scheduler. The goal of it is to keep the scheduler code
++simple, while efficiency and scalable for interactive tasks, such as desktop,
++movie playback and gaming etc.
++
++Design
++======
++
++Overview
++--------
++
++BMQ use per CPU run queue design, each CPU(logical) has it's own run queue,
++each CPU is responsible for scheduling the tasks that are putting into it's
++run queue.
++
++The run queue is a set of priority queues. Note that these queues are fifo
++queue for non-rt tasks or priority queue for rt tasks in data structure. See
++BitMap Queue below for details. BMQ is optimized for non-rt tasks in the fact
++that most applications are non-rt tasks. No matter the queue is fifo or
++priority, In each queue is an ordered list of runnable tasks awaiting execution
++and the data structures are the same. When it is time for a new task to run,
++the scheduler simply looks the lowest numbered queueue that contains a task,
++and runs the first task from the head of that queue. And per CPU idle task is
++also in the run queue, so the scheduler can always find a task to run on from
++its run queue.
++
++Each task will assigned the same timeslice(default 4ms) when it is picked to
++start running. Task will be reinserted at the end of the appropriate priority
++queue when it uses its whole timeslice. When the scheduler selects a new task
++from the priority queue it sets the CPU's preemption timer for the remainder of
++the previous timeslice. When that timer fires the scheduler will stop execution
++on that task, select another task and start over again.
++
++If a task blocks waiting for a shared resource then it's taken out of its
++priority queue and is placed in a wait queue for the shared resource. When it
++is unblocked it will be reinserted in the appropriate priority queue of an
++eligible CPU.
++
++Task policy
++-----------
++
++BMQ supports DEADLINE, FIFO, RR, NORMAL, BATCH and IDLE task policy like the
++mainline CFS scheduler. But BMQ is heavy optimized for non-rt task, that's
++NORMAL/BATCH/IDLE policy tasks. Below is the implementation detail of each
++policy.
++
++DEADLINE
++	It is squashed as priority 0 FIFO task.
++
++FIFO/RR
++	All RT tasks share one single priority queue in BMQ run queue designed. The
++complexity of insert operation is O(n). BMQ is not designed for system runs
++with major rt policy tasks.
++
++NORMAL/BATCH/IDLE
++	BATCH and IDLE tasks are treated as the same policy. They compete CPU with
++NORMAL policy tasks, but they just don't boost. To control the priority of
++NORMAL/BATCH/IDLE tasks, simply use nice level.
++
++ISO
++	ISO policy is not supported in BMQ. Please use nice level -20 NORMAL policy
++task instead.
++
++Priority management
++-------------------
++
++RT tasks have priority from 0-99. For non-rt tasks, there are three different
++factors used to determine the effective priority of a task. The effective
++priority being what is used to determine which queue it will be in.
++
++The first factor is simply the task’s static priority. Which is assigned from
++task's nice level, within [-20, 19] in userland's point of view and [0, 39]
++internally.
++
++The second factor is the priority boost. This is a value bounded between
++[-MAX_PRIORITY_ADJ, MAX_PRIORITY_ADJ] used to offset the base priority, it is
++modified by the following cases:
++
++*When a thread has used up its entire timeslice, always deboost its boost by
++increasing by one.
++*When a thread gives up cpu control(voluntary or non-voluntary) to reschedule,
++and its switch-in time(time after last switch and run) below the thredhold
++based on its priority boost, will boost its boost by decreasing by one buti is
++capped at 0 (won’t go negative).
++
++The intent in this system is to ensure that interactive threads are serviced
++quickly. These are usually the threads that interact directly with the user
++and cause user-perceivable latency. These threads usually do little work and
++spend most of their time blocked awaiting another user event. So they get the
++priority boost from unblocking while background threads that do most of the
++processing receive the priority penalty for using their entire timeslice.
+diff --git a/fs/proc/base.c b/fs/proc/base.c
+index b31283d81c52..e27c5c7b05f6 100644
+--- a/fs/proc/base.c
++++ b/fs/proc/base.c
+@@ -516,7 +516,7 @@ static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
+ 		seq_puts(m, "0 0 0\n");
+ 	else
+ 		seq_printf(m, "%llu %llu %lu\n",
+-		   (unsigned long long)task->se.sum_exec_runtime,
++		   (unsigned long long)tsk_seruntime(task),
+ 		   (unsigned long long)task->sched_info.run_delay,
+ 		   task->sched_info.pcount);
+ 
+diff --git a/include/asm-generic/resource.h b/include/asm-generic/resource.h
+index 8874f681b056..59eb72bf7d5f 100644
+--- a/include/asm-generic/resource.h
++++ b/include/asm-generic/resource.h
+@@ -23,7 +23,7 @@
+ 	[RLIMIT_LOCKS]		= {  RLIM_INFINITY,  RLIM_INFINITY },	\
+ 	[RLIMIT_SIGPENDING]	= { 		0,	       0 },	\
+ 	[RLIMIT_MSGQUEUE]	= {   MQ_BYTES_MAX,   MQ_BYTES_MAX },	\
+-	[RLIMIT_NICE]		= { 0, 0 },				\
++	[RLIMIT_NICE]		= { 30, 30 },				\
+ 	[RLIMIT_RTPRIO]		= { 0, 0 },				\
+ 	[RLIMIT_RTTIME]		= {  RLIM_INFINITY,  RLIM_INFINITY },	\
+ }
+diff --git a/include/linux/sched.h b/include/linux/sched.h
+index bb343136ddd0..212d9204e9aa 100644
+--- a/include/linux/sched.h
++++ b/include/linux/sched.h
+@@ -804,9 +804,13 @@ struct task_struct {
+ 	struct alloc_tag		*alloc_tag;
+ #endif
+ 
+-#ifdef CONFIG_SMP
++#if defined(CONFIG_SMP) || defined(CONFIG_SCHED_ALT)
+ 	int				on_cpu;
++#endif
++
++#ifdef CONFIG_SMP
+ 	struct __call_single_node	wake_entry;
++#ifndef CONFIG_SCHED_ALT
+ 	unsigned int			wakee_flips;
+ 	unsigned long			wakee_flip_decay_ts;
+ 	struct task_struct		*last_wakee;
+@@ -820,6 +824,7 @@ struct task_struct {
+ 	 */
+ 	int				recent_used_cpu;
+ 	int				wake_cpu;
++#endif /* !CONFIG_SCHED_ALT */
+ #endif
+ 	int				on_rq;
+ 
+@@ -828,6 +833,19 @@ struct task_struct {
+ 	int				normal_prio;
+ 	unsigned int			rt_priority;
+ 
++#ifdef CONFIG_SCHED_ALT
++	u64				last_ran;
++	s64				time_slice;
++	struct list_head		sq_node;
++#ifdef CONFIG_SCHED_BMQ
++	int				boost_prio;
++#endif /* CONFIG_SCHED_BMQ */
++#ifdef CONFIG_SCHED_PDS
++	u64				deadline;
++#endif /* CONFIG_SCHED_PDS */
++	/* sched_clock time spent running */
++	u64				sched_time;
++#else /* !CONFIG_SCHED_ALT */
+ 	struct sched_entity		se;
+ 	struct sched_rt_entity		rt;
+ 	struct sched_dl_entity		dl;
+@@ -842,6 +860,7 @@ struct task_struct {
+ 	unsigned long			core_cookie;
+ 	unsigned int			core_occupation;
+ #endif
++#endif /* !CONFIG_SCHED_ALT */
+ 
+ #ifdef CONFIG_CGROUP_SCHED
+ 	struct task_group		*sched_task_group;
+@@ -1609,6 +1628,15 @@ struct task_struct {
+ 	 */
+ };
+ 
++#ifdef CONFIG_SCHED_ALT
++#define tsk_seruntime(t)		((t)->sched_time)
++/* replace the uncertian rt_timeout with 0UL */
++#define tsk_rttimeout(t)		(0UL)
++#else /* CFS */
++#define tsk_seruntime(t)	((t)->se.sum_exec_runtime)
++#define tsk_rttimeout(t)	((t)->rt.timeout)
++#endif /* !CONFIG_SCHED_ALT */
++
+ #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
+ #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
+ 
+@@ -2135,7 +2163,11 @@ static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
+ 
+ static inline bool task_is_runnable(struct task_struct *p)
+ {
++#ifdef CONFIG_SCHED_ALT
++	return p->on_rq;
++#else
+ 	return p->on_rq && !p->se.sched_delayed;
++#endif /* !CONFIG_SCHED_ALT */
+ }
+ 
+ extern bool sched_task_on_rq(struct task_struct *p);
+diff --git a/include/linux/sched/deadline.h b/include/linux/sched/deadline.h
+index 3a912ab42bb5..269a1513a153 100644
+--- a/include/linux/sched/deadline.h
++++ b/include/linux/sched/deadline.h
+@@ -2,6 +2,25 @@
+ #ifndef _LINUX_SCHED_DEADLINE_H
+ #define _LINUX_SCHED_DEADLINE_H
+ 
++#ifdef CONFIG_SCHED_ALT
++
++static inline int dl_task(struct task_struct *p)
++{
++	return 0;
++}
++
++#ifdef CONFIG_SCHED_BMQ
++#define __tsk_deadline(p)	(0UL)
++#endif
++
++#ifdef CONFIG_SCHED_PDS
++#define __tsk_deadline(p)	((((u64) ((p)->prio))<<56) | (p)->deadline)
++#endif
++
++#else
++
++#define __tsk_deadline(p)	((p)->dl.deadline)
++
+ /*
+  * SCHED_DEADLINE tasks has negative priorities, reflecting
+  * the fact that any of them has higher prio than RT and
+@@ -23,6 +42,7 @@ static inline bool dl_task(struct task_struct *p)
+ {
+ 	return dl_prio(p->prio);
+ }
++#endif /* CONFIG_SCHED_ALT */
+ 
+ static inline bool dl_time_before(u64 a, u64 b)
+ {
+diff --git a/include/linux/sched/prio.h b/include/linux/sched/prio.h
+index 6ab43b4f72f9..ef1cff556c5e 100644
+--- a/include/linux/sched/prio.h
++++ b/include/linux/sched/prio.h
+@@ -19,6 +19,28 @@
+ #define MAX_PRIO		(MAX_RT_PRIO + NICE_WIDTH)
+ #define DEFAULT_PRIO		(MAX_RT_PRIO + NICE_WIDTH / 2)
+ 
++#ifdef CONFIG_SCHED_ALT
++
++/* Undefine MAX_PRIO and DEFAULT_PRIO */
++#undef MAX_PRIO
++#undef DEFAULT_PRIO
++
++/* +/- priority levels from the base priority */
++#ifdef CONFIG_SCHED_BMQ
++#define MAX_PRIORITY_ADJ	(12)
++#endif
++
++#ifdef CONFIG_SCHED_PDS
++#define MAX_PRIORITY_ADJ	(0)
++#endif
++
++#define MIN_NORMAL_PRIO		(128)
++#define NORMAL_PRIO_NUM		(64)
++#define MAX_PRIO		(MIN_NORMAL_PRIO + NORMAL_PRIO_NUM)
++#define DEFAULT_PRIO		(MAX_PRIO - MAX_PRIORITY_ADJ - NICE_WIDTH / 2)
++
++#endif /* CONFIG_SCHED_ALT */
++
+ /*
+  * Convert user-nice values [ -20 ... 0 ... 19 ]
+  * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
+diff --git a/include/linux/sched/rt.h b/include/linux/sched/rt.h
+index 4e3338103654..6dfef878fe3b 100644
+--- a/include/linux/sched/rt.h
++++ b/include/linux/sched/rt.h
+@@ -45,8 +45,10 @@ static inline bool rt_or_dl_task_policy(struct task_struct *tsk)
+ 
+ 	if (policy == SCHED_FIFO || policy == SCHED_RR)
+ 		return true;
++#ifndef CONFIG_SCHED_ALT
+ 	if (policy == SCHED_DEADLINE)
+ 		return true;
++#endif
+ 	return false;
+ }
+ 
+diff --git a/include/linux/sched/topology.h b/include/linux/sched/topology.h
+index 4237daa5ac7a..3cebd93c49c8 100644
+--- a/include/linux/sched/topology.h
++++ b/include/linux/sched/topology.h
+@@ -244,7 +244,8 @@ static inline bool cpus_share_resources(int this_cpu, int that_cpu)
+ 
+ #endif	/* !CONFIG_SMP */
+ 
+-#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
++#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) && \
++	!defined(CONFIG_SCHED_ALT)
+ extern void rebuild_sched_domains_energy(void);
+ #else
+ static inline void rebuild_sched_domains_energy(void)
+diff --git a/init/Kconfig b/init/Kconfig
+index c521e1421ad4..131a599fcde2 100644
+--- a/init/Kconfig
++++ b/init/Kconfig
+@@ -652,6 +652,7 @@ config TASK_IO_ACCOUNTING
+ 
+ config PSI
+ 	bool "Pressure stall information tracking"
++	depends on !SCHED_ALT
+ 	select KERNFS
+ 	help
+ 	  Collect metrics that indicate how overcommitted the CPU, memory,
+@@ -817,6 +818,7 @@ menu "Scheduler features"
+ config UCLAMP_TASK
+ 	bool "Enable utilization clamping for RT/FAIR tasks"
+ 	depends on CPU_FREQ_GOV_SCHEDUTIL
++	depends on !SCHED_ALT
+ 	help
+ 	  This feature enables the scheduler to track the clamped utilization
+ 	  of each CPU based on RUNNABLE tasks scheduled on that CPU.
+@@ -863,6 +865,35 @@ config UCLAMP_BUCKETS_COUNT
+ 
+ 	  If in doubt, use the default value.
+ 
++menuconfig SCHED_ALT
++	bool "Alternative CPU Schedulers"
++	default y
++	help
++	  This feature enable alternative CPU scheduler"
++
++if SCHED_ALT
++
++choice
++	prompt "Alternative CPU Scheduler"
++	default SCHED_BMQ
++
++config SCHED_BMQ
++	bool "BMQ CPU scheduler"
++	help
++	  The BitMap Queue CPU scheduler for excellent interactivity and
++	  responsiveness on the desktop and solid scalability on normal
++	  hardware and commodity servers.
++
++config SCHED_PDS
++	bool "PDS CPU scheduler"
++	help
++	  The Priority and Deadline based Skip list multiple queue CPU
++	  Scheduler.
++
++endchoice
++
++endif
++
+ endmenu
+ 
+ #
+@@ -928,6 +959,7 @@ config NUMA_BALANCING
+ 	depends on ARCH_SUPPORTS_NUMA_BALANCING
+ 	depends on !ARCH_WANT_NUMA_VARIABLE_LOCALITY
+ 	depends on SMP && NUMA && MIGRATION && !PREEMPT_RT
++	depends on !SCHED_ALT
+ 	help
+ 	  This option adds support for automatic NUMA aware memory/task placement.
+ 	  The mechanism is quite primitive and is based on migrating memory when
+@@ -1036,6 +1068,7 @@ menuconfig CGROUP_SCHED
+ 	  tasks.
+ 
+ if CGROUP_SCHED
++if !SCHED_ALT
+ config GROUP_SCHED_WEIGHT
+ 	def_bool n
+ 
+@@ -1073,6 +1106,7 @@ config EXT_GROUP_SCHED
+ 	select GROUP_SCHED_WEIGHT
+ 	default y
+ 
++endif #!SCHED_ALT
+ endif #CGROUP_SCHED
+ 
+ config SCHED_MM_CID
+@@ -1334,6 +1368,7 @@ config CHECKPOINT_RESTORE
+ 
+ config SCHED_AUTOGROUP
+ 	bool "Automatic process group scheduling"
++	depends on !SCHED_ALT
+ 	select CGROUPS
+ 	select CGROUP_SCHED
+ 	select FAIR_GROUP_SCHED
+diff --git a/init/init_task.c b/init/init_task.c
+index 136a8231355a..03770079619a 100644
+--- a/init/init_task.c
++++ b/init/init_task.c
+@@ -71,9 +71,16 @@ struct task_struct init_task __aligned(L1_CACHE_BYTES) = {
+ 	.stack		= init_stack,
+ 	.usage		= REFCOUNT_INIT(2),
+ 	.flags		= PF_KTHREAD,
++#ifdef CONFIG_SCHED_ALT
++	.on_cpu		= 1,
++	.prio		= DEFAULT_PRIO,
++	.static_prio	= DEFAULT_PRIO,
++	.normal_prio	= DEFAULT_PRIO,
++#else
+ 	.prio		= MAX_PRIO - 20,
+ 	.static_prio	= MAX_PRIO - 20,
+ 	.normal_prio	= MAX_PRIO - 20,
++#endif
+ 	.policy		= SCHED_NORMAL,
+ 	.cpus_ptr	= &init_task.cpus_mask,
+ 	.user_cpus_ptr	= NULL,
+@@ -86,6 +93,16 @@ struct task_struct init_task __aligned(L1_CACHE_BYTES) = {
+ 	.restart_block	= {
+ 		.fn = do_no_restart_syscall,
+ 	},
++#ifdef CONFIG_SCHED_ALT
++	.sq_node	= LIST_HEAD_INIT(init_task.sq_node),
++#ifdef CONFIG_SCHED_BMQ
++	.boost_prio	= 0,
++#endif
++#ifdef CONFIG_SCHED_PDS
++	.deadline	= 0,
++#endif
++	.time_slice	= HZ,
++#else
+ 	.se		= {
+ 		.group_node 	= LIST_HEAD_INIT(init_task.se.group_node),
+ 	},
+@@ -93,6 +110,7 @@ struct task_struct init_task __aligned(L1_CACHE_BYTES) = {
+ 		.run_list	= LIST_HEAD_INIT(init_task.rt.run_list),
+ 		.time_slice	= RR_TIMESLICE,
+ 	},
++#endif
+ 	.tasks		= LIST_HEAD_INIT(init_task.tasks),
+ #ifdef CONFIG_SMP
+ 	.pushable_tasks	= PLIST_NODE_INIT(init_task.pushable_tasks, MAX_PRIO),
+diff --git a/kernel/Kconfig.preempt b/kernel/Kconfig.preempt
+index fe782cd77388..d27d2154d71a 100644
+--- a/kernel/Kconfig.preempt
++++ b/kernel/Kconfig.preempt
+@@ -117,7 +117,7 @@ config PREEMPT_DYNAMIC
+ 
+ config SCHED_CORE
+ 	bool "Core Scheduling for SMT"
+-	depends on SCHED_SMT
++	depends on SCHED_SMT && !SCHED_ALT
+ 	help
+ 	  This option permits Core Scheduling, a means of coordinated task
+ 	  selection across SMT siblings. When enabled -- see
+@@ -135,7 +135,7 @@ config SCHED_CORE
+ 
+ config SCHED_CLASS_EXT
+ 	bool "Extensible Scheduling Class"
+-	depends on BPF_SYSCALL && BPF_JIT && DEBUG_INFO_BTF
++	depends on BPF_SYSCALL && BPF_JIT && DEBUG_INFO_BTF && !SCHED_ALT
+ 	select STACKTRACE if STACKTRACE_SUPPORT
+ 	help
+ 	  This option enables a new scheduler class sched_ext (SCX), which
+diff --git a/kernel/cgroup/cpuset.c b/kernel/cgroup/cpuset.c
+index a4dd285cdf39..5b4ebe58d032 100644
+--- a/kernel/cgroup/cpuset.c
++++ b/kernel/cgroup/cpuset.c
+@@ -620,7 +620,7 @@ static int validate_change(struct cpuset *cur, struct cpuset *trial)
+ 	return ret;
+ }
+ 
+-#ifdef CONFIG_SMP
++#if defined(CONFIG_SMP) && !defined(CONFIG_SCHED_ALT)
+ /*
+  * Helper routine for generate_sched_domains().
+  * Do cpusets a, b have overlapping effective cpus_allowed masks?
+@@ -1031,7 +1031,7 @@ void rebuild_sched_domains_locked(void)
+ 	/* Have scheduler rebuild the domains */
+ 	partition_and_rebuild_sched_domains(ndoms, doms, attr);
+ }
+-#else /* !CONFIG_SMP */
++#else /* !CONFIG_SMP || CONFIG_SCHED_ALT */
+ void rebuild_sched_domains_locked(void)
+ {
+ }
+@@ -2926,12 +2926,15 @@ static int cpuset_can_attach(struct cgroup_taskset *tset)
+ 				goto out_unlock;
+ 		}
+ 
++#ifndef CONFIG_SCHED_ALT
+ 		if (dl_task(task)) {
+ 			cs->nr_migrate_dl_tasks++;
+ 			cs->sum_migrate_dl_bw += task->dl.dl_bw;
+ 		}
++#endif
+ 	}
+ 
++#ifndef CONFIG_SCHED_ALT
+ 	if (!cs->nr_migrate_dl_tasks)
+ 		goto out_success;
+ 
+@@ -2952,6 +2955,7 @@ static int cpuset_can_attach(struct cgroup_taskset *tset)
+ 	}
+ 
+ out_success:
++#endif
+ 	/*
+ 	 * Mark attach is in progress.  This makes validate_change() fail
+ 	 * changes which zero cpus/mems_allowed.
+@@ -2973,12 +2977,14 @@ static void cpuset_cancel_attach(struct cgroup_taskset *tset)
+ 	mutex_lock(&cpuset_mutex);
+ 	dec_attach_in_progress_locked(cs);
+ 
++#ifndef CONFIG_SCHED_ALT
+ 	if (cs->nr_migrate_dl_tasks) {
+ 		int cpu = cpumask_any(cs->effective_cpus);
+ 
+ 		dl_bw_free(cpu, cs->sum_migrate_dl_bw);
+ 		reset_migrate_dl_data(cs);
+ 	}
++#endif
+ 
+ 	mutex_unlock(&cpuset_mutex);
+ }
+diff --git a/kernel/delayacct.c b/kernel/delayacct.c
+index dead51de8eb5..8edef9676ab3 100644
+--- a/kernel/delayacct.c
++++ b/kernel/delayacct.c
+@@ -149,7 +149,7 @@ int delayacct_add_tsk(struct taskstats *d, struct task_struct *tsk)
+ 	 */
+ 	t1 = tsk->sched_info.pcount;
+ 	t2 = tsk->sched_info.run_delay;
+-	t3 = tsk->se.sum_exec_runtime;
++	t3 = tsk_seruntime(tsk);
+ 
+ 	d->cpu_count += t1;
+ 
+diff --git a/kernel/exit.c b/kernel/exit.c
+index 619f0014c33b..7dc53ddd45a8 100644
+--- a/kernel/exit.c
++++ b/kernel/exit.c
+@@ -175,7 +175,7 @@ static void __exit_signal(struct task_struct *tsk)
+ 			sig->curr_target = next_thread(tsk);
+ 	}
+ 
+-	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
++	add_device_randomness((const void*) &tsk_seruntime(tsk),
+ 			      sizeof(unsigned long long));
+ 
+ 	/*
+@@ -196,7 +196,7 @@ static void __exit_signal(struct task_struct *tsk)
+ 	sig->inblock += task_io_get_inblock(tsk);
+ 	sig->oublock += task_io_get_oublock(tsk);
+ 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
+-	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
++	sig->sum_sched_runtime += tsk_seruntime(tsk);
+ 	sig->nr_threads--;
+ 	__unhash_process(tsk, group_dead);
+ 	write_sequnlock(&sig->stats_lock);
+diff --git a/kernel/locking/rtmutex.c b/kernel/locking/rtmutex.c
+index ebebd0eec7f6..802112207855 100644
+--- a/kernel/locking/rtmutex.c
++++ b/kernel/locking/rtmutex.c
+@@ -363,7 +363,7 @@ waiter_update_prio(struct rt_mutex_waiter *waiter, struct task_struct *task)
+ 	lockdep_assert(RB_EMPTY_NODE(&waiter->tree.entry));
+ 
+ 	waiter->tree.prio = __waiter_prio(task);
+-	waiter->tree.deadline = task->dl.deadline;
++	waiter->tree.deadline = __tsk_deadline(task);
+ }
+ 
+ /*
+@@ -384,16 +384,20 @@ waiter_clone_prio(struct rt_mutex_waiter *waiter, struct task_struct *task)
+  * Only use with rt_waiter_node_{less,equal}()
+  */
+ #define task_to_waiter_node(p)	\
+-	&(struct rt_waiter_node){ .prio = __waiter_prio(p), .deadline = (p)->dl.deadline }
++	&(struct rt_waiter_node){ .prio = __waiter_prio(p), .deadline = __tsk_deadline(p) }
+ #define task_to_waiter(p)	\
+ 	&(struct rt_mutex_waiter){ .tree = *task_to_waiter_node(p) }
+ 
+ static __always_inline int rt_waiter_node_less(struct rt_waiter_node *left,
+ 					       struct rt_waiter_node *right)
+ {
++#ifdef CONFIG_SCHED_PDS
++	return (left->deadline < right->deadline);
++#else
+ 	if (left->prio < right->prio)
+ 		return 1;
+ 
++#ifndef CONFIG_SCHED_BMQ
+ 	/*
+ 	 * If both waiters have dl_prio(), we check the deadlines of the
+ 	 * associated tasks.
+@@ -402,16 +406,22 @@ static __always_inline int rt_waiter_node_less(struct rt_waiter_node *left,
+ 	 */
+ 	if (dl_prio(left->prio))
+ 		return dl_time_before(left->deadline, right->deadline);
++#endif
+ 
+ 	return 0;
++#endif
+ }
+ 
+ static __always_inline int rt_waiter_node_equal(struct rt_waiter_node *left,
+ 						 struct rt_waiter_node *right)
+ {
++#ifdef CONFIG_SCHED_PDS
++	return (left->deadline == right->deadline);
++#else
+ 	if (left->prio != right->prio)
+ 		return 0;
+ 
++#ifndef CONFIG_SCHED_BMQ
+ 	/*
+ 	 * If both waiters have dl_prio(), we check the deadlines of the
+ 	 * associated tasks.
+@@ -420,8 +430,10 @@ static __always_inline int rt_waiter_node_equal(struct rt_waiter_node *left,
+ 	 */
+ 	if (dl_prio(left->prio))
+ 		return left->deadline == right->deadline;
++#endif
+ 
+ 	return 1;
++#endif
+ }
+ 
+ static inline bool rt_mutex_steal(struct rt_mutex_waiter *waiter,
+diff --git a/kernel/locking/ww_mutex.h b/kernel/locking/ww_mutex.h
+index 76d204b7d29c..de1a52f963e5 100644
+--- a/kernel/locking/ww_mutex.h
++++ b/kernel/locking/ww_mutex.h
+@@ -247,6 +247,7 @@ __ww_ctx_less(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b)
+ 
+ 		/* equal static prio */
+ 
++#ifndef	CONFIG_SCHED_ALT
+ 		if (dl_prio(a_prio)) {
+ 			if (dl_time_before(b->task->dl.deadline,
+ 					   a->task->dl.deadline))
+@@ -256,6 +257,7 @@ __ww_ctx_less(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b)
+ 					   b->task->dl.deadline))
+ 				return false;
+ 		}
++#endif
+ 
+ 		/* equal prio */
+ 	}
+diff --git a/kernel/sched/Makefile b/kernel/sched/Makefile
+index 976092b7bd45..31d587c16ec1 100644
+--- a/kernel/sched/Makefile
++++ b/kernel/sched/Makefile
+@@ -28,7 +28,12 @@ endif
+ # These compilation units have roughly the same size and complexity - so their
+ # build parallelizes well and finishes roughly at once:
+ #
++ifdef CONFIG_SCHED_ALT
++obj-y += alt_core.o
++obj-$(CONFIG_SCHED_DEBUG) += alt_debug.o
++else
+ obj-y += core.o
+ obj-y += fair.o
++endif
+ obj-y += build_policy.o
+ obj-y += build_utility.o
+diff --git a/kernel/sched/alt_core.c b/kernel/sched/alt_core.c
+new file mode 100644
+index 000000000000..c59691742340
+--- /dev/null
++++ b/kernel/sched/alt_core.c
+@@ -0,0 +1,7458 @@
++/*
++ *  kernel/sched/alt_core.c
++ *
++ *  Core alternative kernel scheduler code and related syscalls
++ *
++ *  Copyright (C) 1991-2002  Linus Torvalds
++ *
++ *  2009-08-13	Brainfuck deadline scheduling policy by Con Kolivas deletes
++ *		a whole lot of those previous things.
++ *  2017-09-06	Priority and Deadline based Skip list multiple queue kernel
++ *		scheduler by Alfred Chen.
++ *  2019-02-20	BMQ(BitMap Queue) kernel scheduler by Alfred Chen.
++ */
++#include <linux/sched/clock.h>
++#include <linux/sched/cputime.h>
++#include <linux/sched/debug.h>
++#include <linux/sched/hotplug.h>
++#include <linux/sched/init.h>
++#include <linux/sched/isolation.h>
++#include <linux/sched/loadavg.h>
++#include <linux/sched/mm.h>
++#include <linux/sched/nohz.h>
++#include <linux/sched/stat.h>
++#include <linux/sched/wake_q.h>
++
++#include <linux/blkdev.h>
++#include <linux/context_tracking.h>
++#include <linux/cpuset.h>
++#include <linux/delayacct.h>
++#include <linux/init_task.h>
++#include <linux/kcov.h>
++#include <linux/kprobes.h>
++#include <linux/nmi.h>
++#include <linux/rseq.h>
++#include <linux/scs.h>
++
++#include <uapi/linux/sched/types.h>
++
++#include <asm/irq_regs.h>
++#include <asm/switch_to.h>
++
++#define CREATE_TRACE_POINTS
++#include <trace/events/sched.h>
++#include <trace/events/ipi.h>
++#undef CREATE_TRACE_POINTS
++
++#include "sched.h"
++#include "smp.h"
++
++#include "pelt.h"
++
++#include "../../io_uring/io-wq.h"
++#include "../smpboot.h"
++
++EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
++EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
++
++/*
++ * Export tracepoints that act as a bare tracehook (ie: have no trace event
++ * associated with them) to allow external modules to probe them.
++ */
++EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
++
++#ifdef CONFIG_SCHED_DEBUG
++#define sched_feat(x)	(1)
++/*
++ * Print a warning if need_resched is set for the given duration (if
++ * LATENCY_WARN is enabled).
++ *
++ * If sysctl_resched_latency_warn_once is set, only one warning will be shown
++ * per boot.
++ */
++__read_mostly int sysctl_resched_latency_warn_ms = 100;
++__read_mostly int sysctl_resched_latency_warn_once = 1;
++#else
++#define sched_feat(x)	(0)
++#endif /* CONFIG_SCHED_DEBUG */
++
++#define ALT_SCHED_VERSION "v6.12-r0"
++
++#define STOP_PRIO		(MAX_RT_PRIO - 1)
++
++/*
++ * Time slice
++ * (default: 4 msec, units: nanoseconds)
++ */
++unsigned int sysctl_sched_base_slice __read_mostly	= (4 << 20);
++
++#include "alt_core.h"
++#include "alt_topology.h"
++
++/* Reschedule if less than this many μs left */
++#define RESCHED_NS		(100 << 10)
++
++/**
++ * sched_yield_type - Type of sched_yield() will be performed.
++ * 0: No yield.
++ * 1: Requeue task. (default)
++ */
++int sched_yield_type __read_mostly = 1;
++
++#ifdef CONFIG_SMP
++cpumask_t sched_rq_pending_mask ____cacheline_aligned_in_smp;
++
++DEFINE_PER_CPU_ALIGNED(cpumask_t [NR_CPU_AFFINITY_LEVELS], sched_cpu_topo_masks);
++DEFINE_PER_CPU_ALIGNED(cpumask_t *, sched_cpu_llc_mask);
++DEFINE_PER_CPU_ALIGNED(cpumask_t *, sched_cpu_topo_end_mask);
++
++#ifdef CONFIG_SCHED_SMT
++DEFINE_STATIC_KEY_FALSE(sched_smt_present);
++EXPORT_SYMBOL_GPL(sched_smt_present);
++
++cpumask_t sched_smt_mask ____cacheline_aligned_in_smp;
++#endif
++
++/*
++ * Keep a unique ID per domain (we use the first CPUs number in the cpumask of
++ * the domain), this allows us to quickly tell if two cpus are in the same cache
++ * domain, see cpus_share_cache().
++ */
++DEFINE_PER_CPU(int, sd_llc_id);
++#endif /* CONFIG_SMP */
++
++DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
++
++#ifndef prepare_arch_switch
++# define prepare_arch_switch(next)	do { } while (0)
++#endif
++#ifndef finish_arch_post_lock_switch
++# define finish_arch_post_lock_switch()	do { } while (0)
++#endif
++
++static cpumask_t sched_preempt_mask[SCHED_QUEUE_BITS + 2] ____cacheline_aligned_in_smp;
++
++cpumask_t *const sched_idle_mask = &sched_preempt_mask[SCHED_QUEUE_BITS - 1];
++cpumask_t *const sched_sg_idle_mask = &sched_preempt_mask[SCHED_QUEUE_BITS];
++cpumask_t *const sched_pcore_idle_mask = &sched_preempt_mask[SCHED_QUEUE_BITS];
++cpumask_t *const sched_ecore_idle_mask = &sched_preempt_mask[SCHED_QUEUE_BITS + 1];
++
++/* task function */
++static inline const struct cpumask *task_user_cpus(struct task_struct *p)
++{
++	if (!p->user_cpus_ptr)
++		return cpu_possible_mask; /* &init_task.cpus_mask */
++	return p->user_cpus_ptr;
++}
++
++/* sched_queue related functions */
++static inline void sched_queue_init(struct sched_queue *q)
++{
++	int i;
++
++	bitmap_zero(q->bitmap, SCHED_QUEUE_BITS);
++	for(i = 0; i < SCHED_LEVELS; i++)
++		INIT_LIST_HEAD(&q->heads[i]);
++}
++
++/*
++ * Init idle task and put into queue structure of rq
++ * IMPORTANT: may be called multiple times for a single cpu
++ */
++static inline void sched_queue_init_idle(struct sched_queue *q,
++					 struct task_struct *idle)
++{
++	INIT_LIST_HEAD(&q->heads[IDLE_TASK_SCHED_PRIO]);
++	list_add_tail(&idle->sq_node, &q->heads[IDLE_TASK_SCHED_PRIO]);
++	idle->on_rq = TASK_ON_RQ_QUEUED;
++}
++
++#define CLEAR_CACHED_PREEMPT_MASK(pr, low, high, cpu)		\
++	if (low < pr && pr <= high)				\
++		cpumask_clear_cpu(cpu, sched_preempt_mask + pr);
++
++#define SET_CACHED_PREEMPT_MASK(pr, low, high, cpu)		\
++	if (low < pr && pr <= high)				\
++		cpumask_set_cpu(cpu, sched_preempt_mask + pr);
++
++static atomic_t sched_prio_record = ATOMIC_INIT(0);
++
++/* water mark related functions */
++static inline void update_sched_preempt_mask(struct rq *rq)
++{
++	int prio = find_first_bit(rq->queue.bitmap, SCHED_QUEUE_BITS);
++	int last_prio = rq->prio;
++	int cpu, pr;
++
++	if (prio == last_prio)
++		return;
++
++	rq->prio = prio;
++#ifdef CONFIG_SCHED_PDS
++	rq->prio_idx = sched_prio2idx(rq->prio, rq);
++#endif
++	cpu = cpu_of(rq);
++	pr = atomic_read(&sched_prio_record);
++
++	if (prio < last_prio) {
++		if (IDLE_TASK_SCHED_PRIO == last_prio) {
++			rq->clear_idle_mask_func(cpu, sched_idle_mask);
++			last_prio -= 2;
++		}
++		CLEAR_CACHED_PREEMPT_MASK(pr, prio, last_prio, cpu);
++
++		return;
++	}
++	/* last_prio < prio */
++	if (IDLE_TASK_SCHED_PRIO == prio) {
++		rq->set_idle_mask_func(cpu, sched_idle_mask);
++		prio -= 2;
++	}
++	SET_CACHED_PREEMPT_MASK(pr, last_prio, prio, cpu);
++}
++
++/*
++ * Serialization rules:
++ *
++ * Lock order:
++ *
++ *   p->pi_lock
++ *     rq->lock
++ *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
++ *
++ *  rq1->lock
++ *    rq2->lock  where: rq1 < rq2
++ *
++ * Regular state:
++ *
++ * Normal scheduling state is serialized by rq->lock. __schedule() takes the
++ * local CPU's rq->lock, it optionally removes the task from the runqueue and
++ * always looks at the local rq data structures to find the most eligible task
++ * to run next.
++ *
++ * Task enqueue is also under rq->lock, possibly taken from another CPU.
++ * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
++ * the local CPU to avoid bouncing the runqueue state around [ see
++ * ttwu_queue_wakelist() ]
++ *
++ * Task wakeup, specifically wakeups that involve migration, are horribly
++ * complicated to avoid having to take two rq->locks.
++ *
++ * Special state:
++ *
++ * System-calls and anything external will use task_rq_lock() which acquires
++ * both p->pi_lock and rq->lock. As a consequence the state they change is
++ * stable while holding either lock:
++ *
++ *  - sched_setaffinity()/
++ *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
++ *  - set_user_nice():		p->se.load, p->*prio
++ *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
++ *				p->se.load, p->rt_priority,
++ *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
++ *  - sched_setnuma():		p->numa_preferred_nid
++ *  - sched_move_task():        p->sched_task_group
++ *  - uclamp_update_active()	p->uclamp*
++ *
++ * p->state <- TASK_*:
++ *
++ *   is changed locklessly using set_current_state(), __set_current_state() or
++ *   set_special_state(), see their respective comments, or by
++ *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
++ *   concurrent self.
++ *
++ * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
++ *
++ *   is set by activate_task() and cleared by deactivate_task(), under
++ *   rq->lock. Non-zero indicates the task is runnable, the special
++ *   ON_RQ_MIGRATING state is used for migration without holding both
++ *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
++ *
++ *   Additionally it is possible to be ->on_rq but still be considered not
++ *   runnable when p->se.sched_delayed is true. These tasks are on the runqueue
++ *   but will be dequeued as soon as they get picked again. See the
++ *   task_is_runnable() helper.
++ *
++ * p->on_cpu <- { 0, 1 }:
++ *
++ *   is set by prepare_task() and cleared by finish_task() such that it will be
++ *   set before p is scheduled-in and cleared after p is scheduled-out, both
++ *   under rq->lock. Non-zero indicates the task is running on its CPU.
++ *
++ *   [ The astute reader will observe that it is possible for two tasks on one
++ *     CPU to have ->on_cpu = 1 at the same time. ]
++ *
++ * task_cpu(p): is changed by set_task_cpu(), the rules are:
++ *
++ *  - Don't call set_task_cpu() on a blocked task:
++ *
++ *    We don't care what CPU we're not running on, this simplifies hotplug,
++ *    the CPU assignment of blocked tasks isn't required to be valid.
++ *
++ *  - for try_to_wake_up(), called under p->pi_lock:
++ *
++ *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
++ *
++ *  - for migration called under rq->lock:
++ *    [ see task_on_rq_migrating() in task_rq_lock() ]
++ *
++ *    o move_queued_task()
++ *    o detach_task()
++ *
++ *  - for migration called under double_rq_lock():
++ *
++ *    o __migrate_swap_task()
++ *    o push_rt_task() / pull_rt_task()
++ *    o push_dl_task() / pull_dl_task()
++ *    o dl_task_offline_migration()
++ *
++ */
++
++/*
++ * Context: p->pi_lock
++ */
++static inline struct rq *
++task_access_lock_irqsave(struct task_struct *p, raw_spinlock_t **plock, unsigned long *flags)
++{
++	struct rq *rq;
++	for (;;) {
++		rq = task_rq(p);
++		if (p->on_cpu || task_on_rq_queued(p)) {
++			raw_spin_lock_irqsave(&rq->lock, *flags);
++			if (likely((p->on_cpu || task_on_rq_queued(p)) && rq == task_rq(p))) {
++				*plock = &rq->lock;
++				return rq;
++			}
++			raw_spin_unlock_irqrestore(&rq->lock, *flags);
++		} else if (task_on_rq_migrating(p)) {
++			do {
++				cpu_relax();
++			} while (unlikely(task_on_rq_migrating(p)));
++		} else {
++			raw_spin_lock_irqsave(&p->pi_lock, *flags);
++			if (likely(!p->on_cpu && !p->on_rq && rq == task_rq(p))) {
++				*plock = &p->pi_lock;
++				return rq;
++			}
++			raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
++		}
++	}
++}
++
++static inline void
++task_access_unlock_irqrestore(struct task_struct *p, raw_spinlock_t *lock, unsigned long *flags)
++{
++	raw_spin_unlock_irqrestore(lock, *flags);
++}
++
++/*
++ * __task_rq_lock - lock the rq @p resides on.
++ */
++struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
++	__acquires(rq->lock)
++{
++	struct rq *rq;
++
++	lockdep_assert_held(&p->pi_lock);
++
++	for (;;) {
++		rq = task_rq(p);
++		raw_spin_lock(&rq->lock);
++		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
++			return rq;
++		raw_spin_unlock(&rq->lock);
++
++		while (unlikely(task_on_rq_migrating(p)))
++			cpu_relax();
++	}
++}
++
++/*
++ * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
++ */
++struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
++	__acquires(p->pi_lock)
++	__acquires(rq->lock)
++{
++	struct rq *rq;
++
++	for (;;) {
++		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
++		rq = task_rq(p);
++		raw_spin_lock(&rq->lock);
++		/*
++		 *	move_queued_task()		task_rq_lock()
++		 *
++		 *	ACQUIRE (rq->lock)
++		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
++		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
++		 *	[S] ->cpu = new_cpu		[L] task_rq()
++		 *					[L] ->on_rq
++		 *	RELEASE (rq->lock)
++		 *
++		 * If we observe the old CPU in task_rq_lock(), the acquire of
++		 * the old rq->lock will fully serialize against the stores.
++		 *
++		 * If we observe the new CPU in task_rq_lock(), the address
++		 * dependency headed by '[L] rq = task_rq()' and the acquire
++		 * will pair with the WMB to ensure we then also see migrating.
++		 */
++		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
++			return rq;
++		}
++		raw_spin_unlock(&rq->lock);
++		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
++
++		while (unlikely(task_on_rq_migrating(p)))
++			cpu_relax();
++	}
++}
++
++static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
++	__acquires(rq->lock)
++{
++	raw_spin_lock_irqsave(&rq->lock, rf->flags);
++}
++
++static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
++	__releases(rq->lock)
++{
++	raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
++}
++
++DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq,
++		    rq_lock_irqsave(_T->lock, &_T->rf),
++		    rq_unlock_irqrestore(_T->lock, &_T->rf),
++		    struct rq_flags rf)
++
++void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
++{
++	raw_spinlock_t *lock;
++
++	/* Matches synchronize_rcu() in __sched_core_enable() */
++	preempt_disable();
++
++	for (;;) {
++		lock = __rq_lockp(rq);
++		raw_spin_lock_nested(lock, subclass);
++		if (likely(lock == __rq_lockp(rq))) {
++			/* preempt_count *MUST* be > 1 */
++			preempt_enable_no_resched();
++			return;
++		}
++		raw_spin_unlock(lock);
++	}
++}
++
++void raw_spin_rq_unlock(struct rq *rq)
++{
++	raw_spin_unlock(rq_lockp(rq));
++}
++
++/*
++ * RQ-clock updating methods:
++ */
++
++static void update_rq_clock_task(struct rq *rq, s64 delta)
++{
++/*
++ * In theory, the compile should just see 0 here, and optimize out the call
++ * to sched_rt_avg_update. But I don't trust it...
++ */
++	s64 __maybe_unused steal = 0, irq_delta = 0;
++
++#ifdef CONFIG_IRQ_TIME_ACCOUNTING
++	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
++
++	/*
++	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
++	 * this case when a previous update_rq_clock() happened inside a
++	 * {soft,}IRQ region.
++	 *
++	 * When this happens, we stop ->clock_task and only update the
++	 * prev_irq_time stamp to account for the part that fit, so that a next
++	 * update will consume the rest. This ensures ->clock_task is
++	 * monotonic.
++	 *
++	 * It does however cause some slight miss-attribution of {soft,}IRQ
++	 * time, a more accurate solution would be to update the irq_time using
++	 * the current rq->clock timestamp, except that would require using
++	 * atomic ops.
++	 */
++	if (irq_delta > delta)
++		irq_delta = delta;
++
++	rq->prev_irq_time += irq_delta;
++	delta -= irq_delta;
++	delayacct_irq(rq->curr, irq_delta);
++#endif
++#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
++	if (static_key_false((&paravirt_steal_rq_enabled))) {
++		steal = paravirt_steal_clock(cpu_of(rq));
++		steal -= rq->prev_steal_time_rq;
++
++		if (unlikely(steal > delta))
++			steal = delta;
++
++		rq->prev_steal_time_rq += steal;
++		delta -= steal;
++	}
++#endif
++
++	rq->clock_task += delta;
++
++#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
++	if ((irq_delta + steal))
++		update_irq_load_avg(rq, irq_delta + steal);
++#endif
++}
++
++static inline void update_rq_clock(struct rq *rq)
++{
++	s64 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
++
++	if (unlikely(delta <= 0))
++		return;
++	rq->clock += delta;
++	sched_update_rq_clock(rq);
++	update_rq_clock_task(rq, delta);
++}
++
++/*
++ * RQ Load update routine
++ */
++#define RQ_LOAD_HISTORY_BITS		(sizeof(s32) * 8ULL)
++#define RQ_UTIL_SHIFT			(8)
++#define RQ_LOAD_HISTORY_TO_UTIL(l)	(((l) >> (RQ_LOAD_HISTORY_BITS - 1 - RQ_UTIL_SHIFT)) & 0xff)
++
++#define LOAD_BLOCK(t)		((t) >> 17)
++#define LOAD_HALF_BLOCK(t)	((t) >> 16)
++#define BLOCK_MASK(t)		((t) & ((0x01 << 18) - 1))
++#define LOAD_BLOCK_BIT(b)	(1UL << (RQ_LOAD_HISTORY_BITS - 1 - (b)))
++#define CURRENT_LOAD_BIT	LOAD_BLOCK_BIT(0)
++
++static inline void rq_load_update(struct rq *rq)
++{
++	u64 time = rq->clock;
++	u64 delta = min(LOAD_BLOCK(time) - LOAD_BLOCK(rq->load_stamp), RQ_LOAD_HISTORY_BITS - 1);
++	u64 prev = !!(rq->load_history & CURRENT_LOAD_BIT);
++	u64 curr = !!rq->nr_running;
++
++	if (delta) {
++		rq->load_history = rq->load_history >> delta;
++
++		if (delta < RQ_UTIL_SHIFT) {
++			rq->load_block += (~BLOCK_MASK(rq->load_stamp)) * prev;
++			if (!!LOAD_HALF_BLOCK(rq->load_block) ^ curr)
++				rq->load_history ^= LOAD_BLOCK_BIT(delta);
++		}
++
++		rq->load_block = BLOCK_MASK(time) * prev;
++	} else {
++		rq->load_block += (time - rq->load_stamp) * prev;
++	}
++	if (prev ^ curr)
++		rq->load_history ^= CURRENT_LOAD_BIT;
++	rq->load_stamp = time;
++}
++
++unsigned long rq_load_util(struct rq *rq, unsigned long max)
++{
++	return RQ_LOAD_HISTORY_TO_UTIL(rq->load_history) * (max >> RQ_UTIL_SHIFT);
++}
++
++#ifdef CONFIG_SMP
++unsigned long sched_cpu_util(int cpu)
++{
++	return rq_load_util(cpu_rq(cpu), arch_scale_cpu_capacity(cpu));
++}
++#endif /* CONFIG_SMP */
++
++#ifdef CONFIG_CPU_FREQ
++/**
++ * cpufreq_update_util - Take a note about CPU utilization changes.
++ * @rq: Runqueue to carry out the update for.
++ * @flags: Update reason flags.
++ *
++ * This function is called by the scheduler on the CPU whose utilization is
++ * being updated.
++ *
++ * It can only be called from RCU-sched read-side critical sections.
++ *
++ * The way cpufreq is currently arranged requires it to evaluate the CPU
++ * performance state (frequency/voltage) on a regular basis to prevent it from
++ * being stuck in a completely inadequate performance level for too long.
++ * That is not guaranteed to happen if the updates are only triggered from CFS
++ * and DL, though, because they may not be coming in if only RT tasks are
++ * active all the time (or there are RT tasks only).
++ *
++ * As a workaround for that issue, this function is called periodically by the
++ * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
++ * but that really is a band-aid.  Going forward it should be replaced with
++ * solutions targeted more specifically at RT tasks.
++ */
++static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
++{
++	struct update_util_data *data;
++
++#ifdef CONFIG_SMP
++	rq_load_update(rq);
++#endif
++	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, cpu_of(rq)));
++	if (data)
++		data->func(data, rq_clock(rq), flags);
++}
++#else
++static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
++{
++#ifdef CONFIG_SMP
++	rq_load_update(rq);
++#endif
++}
++#endif /* CONFIG_CPU_FREQ */
++
++#ifdef CONFIG_NO_HZ_FULL
++/*
++ * Tick may be needed by tasks in the runqueue depending on their policy and
++ * requirements. If tick is needed, lets send the target an IPI to kick it out
++ * of nohz mode if necessary.
++ */
++static inline void sched_update_tick_dependency(struct rq *rq)
++{
++	int cpu = cpu_of(rq);
++
++	if (!tick_nohz_full_cpu(cpu))
++		return;
++
++	if (rq->nr_running < 2)
++		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
++	else
++		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
++}
++#else /* !CONFIG_NO_HZ_FULL */
++static inline void sched_update_tick_dependency(struct rq *rq) { }
++#endif
++
++bool sched_task_on_rq(struct task_struct *p)
++{
++	return task_on_rq_queued(p);
++}
++
++unsigned long get_wchan(struct task_struct *p)
++{
++	unsigned long ip = 0;
++	unsigned int state;
++
++	if (!p || p == current)
++		return 0;
++
++	/* Only get wchan if task is blocked and we can keep it that way. */
++	raw_spin_lock_irq(&p->pi_lock);
++	state = READ_ONCE(p->__state);
++	smp_rmb(); /* see try_to_wake_up() */
++	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
++		ip = __get_wchan(p);
++	raw_spin_unlock_irq(&p->pi_lock);
++
++	return ip;
++}
++
++/*
++ * Add/Remove/Requeue task to/from the runqueue routines
++ * Context: rq->lock
++ */
++#define __SCHED_DEQUEUE_TASK(p, rq, flags, func)					\
++	sched_info_dequeue(rq, p);							\
++											\
++	__list_del_entry(&p->sq_node);							\
++	if (p->sq_node.prev == p->sq_node.next) {					\
++		clear_bit(sched_idx2prio(p->sq_node.next - &rq->queue.heads[0], rq),	\
++			  rq->queue.bitmap);						\
++		func;									\
++	}
++
++#define __SCHED_ENQUEUE_TASK(p, rq, flags, func)					\
++	sched_info_enqueue(rq, p);							\
++	{										\
++	int idx, prio;									\
++	TASK_SCHED_PRIO_IDX(p, rq, idx, prio);						\
++	list_add_tail(&p->sq_node, &rq->queue.heads[idx]);				\
++	if (list_is_first(&p->sq_node, &rq->queue.heads[idx])) {			\
++		set_bit(prio, rq->queue.bitmap);					\
++		func;									\
++	}										\
++	}
++
++static inline void dequeue_task(struct task_struct *p, struct rq *rq, int flags)
++{
++#ifdef ALT_SCHED_DEBUG
++	lockdep_assert_held(&rq->lock);
++
++	/*printk(KERN_INFO "sched: dequeue(%d) %px %016llx\n", cpu_of(rq), p, p->deadline);*/
++	WARN_ONCE(task_rq(p) != rq, "sched: dequeue task reside on cpu%d from cpu%d\n",
++		  task_cpu(p), cpu_of(rq));
++#endif
++
++	__SCHED_DEQUEUE_TASK(p, rq, flags, update_sched_preempt_mask(rq));
++	--rq->nr_running;
++#ifdef CONFIG_SMP
++	if (1 == rq->nr_running)
++		cpumask_clear_cpu(cpu_of(rq), &sched_rq_pending_mask);
++#endif
++
++	sched_update_tick_dependency(rq);
++}
++
++static inline void enqueue_task(struct task_struct *p, struct rq *rq, int flags)
++{
++#ifdef ALT_SCHED_DEBUG
++	lockdep_assert_held(&rq->lock);
++
++	/*printk(KERN_INFO "sched: enqueue(%d) %px %d\n", cpu_of(rq), p, p->prio);*/
++	WARN_ONCE(task_rq(p) != rq, "sched: enqueue task reside on cpu%d to cpu%d\n",
++		  task_cpu(p), cpu_of(rq));
++#endif
++
++	__SCHED_ENQUEUE_TASK(p, rq, flags, update_sched_preempt_mask(rq));
++	++rq->nr_running;
++#ifdef CONFIG_SMP
++	if (2 == rq->nr_running)
++		cpumask_set_cpu(cpu_of(rq), &sched_rq_pending_mask);
++#endif
++
++	sched_update_tick_dependency(rq);
++}
++
++void requeue_task(struct task_struct *p, struct rq *rq)
++{
++	struct list_head *node = &p->sq_node;
++	int deq_idx, idx, prio;
++
++	TASK_SCHED_PRIO_IDX(p, rq, idx, prio);
++#ifdef ALT_SCHED_DEBUG
++	lockdep_assert_held(&rq->lock);
++	/*printk(KERN_INFO "sched: requeue(%d) %px %016llx\n", cpu_of(rq), p, p->deadline);*/
++	WARN_ONCE(task_rq(p) != rq, "sched: cpu[%d] requeue task reside on cpu%d\n",
++		  cpu_of(rq), task_cpu(p));
++#endif
++	if (list_is_last(node, &rq->queue.heads[idx]))
++		return;
++
++	__list_del_entry(node);
++	if (node->prev == node->next && (deq_idx = node->next - &rq->queue.heads[0]) != idx)
++		clear_bit(sched_idx2prio(deq_idx, rq), rq->queue.bitmap);
++
++	list_add_tail(node, &rq->queue.heads[idx]);
++	if (list_is_first(node, &rq->queue.heads[idx]))
++		set_bit(prio, rq->queue.bitmap);
++	update_sched_preempt_mask(rq);
++}
++
++/*
++ * try_cmpxchg based fetch_or() macro so it works for different integer types:
++ */
++#define fetch_or(ptr, mask)						\
++	({								\
++		typeof(ptr) _ptr = (ptr);				\
++		typeof(mask) _mask = (mask);				\
++		typeof(*_ptr) _val = *_ptr;				\
++									\
++		do {							\
++		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
++	_val;								\
++})
++
++#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
++/*
++ * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
++ * this avoids any races wrt polling state changes and thereby avoids
++ * spurious IPIs.
++ */
++static inline bool set_nr_and_not_polling(struct task_struct *p)
++{
++	struct thread_info *ti = task_thread_info(p);
++	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
++}
++
++/*
++ * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
++ *
++ * If this returns true, then the idle task promises to call
++ * sched_ttwu_pending() and reschedule soon.
++ */
++static bool set_nr_if_polling(struct task_struct *p)
++{
++	struct thread_info *ti = task_thread_info(p);
++	typeof(ti->flags) val = READ_ONCE(ti->flags);
++
++	do {
++		if (!(val & _TIF_POLLING_NRFLAG))
++			return false;
++		if (val & _TIF_NEED_RESCHED)
++			return true;
++	} while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED));
++
++	return true;
++}
++
++#else
++static inline bool set_nr_and_not_polling(struct task_struct *p)
++{
++	set_tsk_need_resched(p);
++	return true;
++}
++
++#ifdef CONFIG_SMP
++static inline bool set_nr_if_polling(struct task_struct *p)
++{
++	return false;
++}
++#endif
++#endif
++
++static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
++{
++	struct wake_q_node *node = &task->wake_q;
++
++	/*
++	 * Atomically grab the task, if ->wake_q is !nil already it means
++	 * it's already queued (either by us or someone else) and will get the
++	 * wakeup due to that.
++	 *
++	 * In order to ensure that a pending wakeup will observe our pending
++	 * state, even in the failed case, an explicit smp_mb() must be used.
++	 */
++	smp_mb__before_atomic();
++	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
++		return false;
++
++	/*
++	 * The head is context local, there can be no concurrency.
++	 */
++	*head->lastp = node;
++	head->lastp = &node->next;
++	return true;
++}
++
++/**
++ * wake_q_add() - queue a wakeup for 'later' waking.
++ * @head: the wake_q_head to add @task to
++ * @task: the task to queue for 'later' wakeup
++ *
++ * Queue a task for later wakeup, most likely by the wake_up_q() call in the
++ * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
++ * instantly.
++ *
++ * This function must be used as-if it were wake_up_process(); IOW the task
++ * must be ready to be woken at this location.
++ */
++void wake_q_add(struct wake_q_head *head, struct task_struct *task)
++{
++	if (__wake_q_add(head, task))
++		get_task_struct(task);
++}
++
++/**
++ * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
++ * @head: the wake_q_head to add @task to
++ * @task: the task to queue for 'later' wakeup
++ *
++ * Queue a task for later wakeup, most likely by the wake_up_q() call in the
++ * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
++ * instantly.
++ *
++ * This function must be used as-if it were wake_up_process(); IOW the task
++ * must be ready to be woken at this location.
++ *
++ * This function is essentially a task-safe equivalent to wake_q_add(). Callers
++ * that already hold reference to @task can call the 'safe' version and trust
++ * wake_q to do the right thing depending whether or not the @task is already
++ * queued for wakeup.
++ */
++void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
++{
++	if (!__wake_q_add(head, task))
++		put_task_struct(task);
++}
++
++void wake_up_q(struct wake_q_head *head)
++{
++	struct wake_q_node *node = head->first;
++
++	while (node != WAKE_Q_TAIL) {
++		struct task_struct *task;
++
++		task = container_of(node, struct task_struct, wake_q);
++		/* task can safely be re-inserted now: */
++		node = node->next;
++		task->wake_q.next = NULL;
++
++		/*
++		 * wake_up_process() executes a full barrier, which pairs with
++		 * the queueing in wake_q_add() so as not to miss wakeups.
++		 */
++		wake_up_process(task);
++		put_task_struct(task);
++	}
++}
++
++/*
++ * resched_curr - mark rq's current task 'to be rescheduled now'.
++ *
++ * On UP this means the setting of the need_resched flag, on SMP it
++ * might also involve a cross-CPU call to trigger the scheduler on
++ * the target CPU.
++ */
++static inline void resched_curr(struct rq *rq)
++{
++	struct task_struct *curr = rq->curr;
++	int cpu;
++
++	lockdep_assert_held(&rq->lock);
++
++	if (test_tsk_need_resched(curr))
++		return;
++
++	cpu = cpu_of(rq);
++	if (cpu == smp_processor_id()) {
++		set_tsk_need_resched(curr);
++		set_preempt_need_resched();
++		return;
++	}
++
++	if (set_nr_and_not_polling(curr))
++		smp_send_reschedule(cpu);
++	else
++		trace_sched_wake_idle_without_ipi(cpu);
++}
++
++void resched_cpu(int cpu)
++{
++	struct rq *rq = cpu_rq(cpu);
++	unsigned long flags;
++
++	raw_spin_lock_irqsave(&rq->lock, flags);
++	if (cpu_online(cpu) || cpu == smp_processor_id())
++		resched_curr(cpu_rq(cpu));
++	raw_spin_unlock_irqrestore(&rq->lock, flags);
++}
++
++#ifdef CONFIG_SMP
++#ifdef CONFIG_NO_HZ_COMMON
++/*
++ * This routine will record that the CPU is going idle with tick stopped.
++ * This info will be used in performing idle load balancing in the future.
++ */
++void nohz_balance_enter_idle(int cpu) {}
++
++/*
++ * In the semi idle case, use the nearest busy CPU for migrating timers
++ * from an idle CPU.  This is good for power-savings.
++ *
++ * We don't do similar optimization for completely idle system, as
++ * selecting an idle CPU will add more delays to the timers than intended
++ * (as that CPU's timer base may not be up to date wrt jiffies etc).
++ */
++int get_nohz_timer_target(void)
++{
++	int i, cpu = smp_processor_id(), default_cpu = -1;
++	struct cpumask *mask;
++	const struct cpumask *hk_mask;
++
++	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
++		if (!idle_cpu(cpu))
++			return cpu;
++		default_cpu = cpu;
++	}
++
++	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
++
++	for (mask = per_cpu(sched_cpu_topo_masks, cpu);
++	     mask < per_cpu(sched_cpu_topo_end_mask, cpu); mask++)
++		for_each_cpu_and(i, mask, hk_mask)
++			if (!idle_cpu(i))
++				return i;
++
++	if (default_cpu == -1)
++		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
++	cpu = default_cpu;
++
++	return cpu;
++}
++
++/*
++ * When add_timer_on() enqueues a timer into the timer wheel of an
++ * idle CPU then this timer might expire before the next timer event
++ * which is scheduled to wake up that CPU. In case of a completely
++ * idle system the next event might even be infinite time into the
++ * future. wake_up_idle_cpu() ensures that the CPU is woken up and
++ * leaves the inner idle loop so the newly added timer is taken into
++ * account when the CPU goes back to idle and evaluates the timer
++ * wheel for the next timer event.
++ */
++static inline void wake_up_idle_cpu(int cpu)
++{
++	struct rq *rq = cpu_rq(cpu);
++
++	if (cpu == smp_processor_id())
++		return;
++
++	/*
++	 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling
++	 * part of the idle loop. This forces an exit from the idle loop
++	 * and a round trip to schedule(). Now this could be optimized
++	 * because a simple new idle loop iteration is enough to
++	 * re-evaluate the next tick. Provided some re-ordering of tick
++	 * nohz functions that would need to follow TIF_NR_POLLING
++	 * clearing:
++	 *
++	 * - On most architectures, a simple fetch_or on ti::flags with a
++	 *   "0" value would be enough to know if an IPI needs to be sent.
++	 *
++	 * - x86 needs to perform a last need_resched() check between
++	 *   monitor and mwait which doesn't take timers into account.
++	 *   There a dedicated TIF_TIMER flag would be required to
++	 *   fetch_or here and be checked along with TIF_NEED_RESCHED
++	 *   before mwait().
++	 *
++	 * However, remote timer enqueue is not such a frequent event
++	 * and testing of the above solutions didn't appear to report
++	 * much benefits.
++	 */
++	if (set_nr_and_not_polling(rq->idle))
++		smp_send_reschedule(cpu);
++	else
++		trace_sched_wake_idle_without_ipi(cpu);
++}
++
++static inline bool wake_up_full_nohz_cpu(int cpu)
++{
++	/*
++	 * We just need the target to call irq_exit() and re-evaluate
++	 * the next tick. The nohz full kick at least implies that.
++	 * If needed we can still optimize that later with an
++	 * empty IRQ.
++	 */
++	if (cpu_is_offline(cpu))
++		return true;  /* Don't try to wake offline CPUs. */
++	if (tick_nohz_full_cpu(cpu)) {
++		if (cpu != smp_processor_id() ||
++		    tick_nohz_tick_stopped())
++			tick_nohz_full_kick_cpu(cpu);
++		return true;
++	}
++
++	return false;
++}
++
++void wake_up_nohz_cpu(int cpu)
++{
++	if (!wake_up_full_nohz_cpu(cpu))
++		wake_up_idle_cpu(cpu);
++}
++
++static void nohz_csd_func(void *info)
++{
++	struct rq *rq = info;
++	int cpu = cpu_of(rq);
++	unsigned int flags;
++
++	/*
++	 * Release the rq::nohz_csd.
++	 */
++	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
++	WARN_ON(!(flags & NOHZ_KICK_MASK));
++
++	rq->idle_balance = idle_cpu(cpu);
++	if (rq->idle_balance && !need_resched()) {
++		rq->nohz_idle_balance = flags;
++		raise_softirq_irqoff(SCHED_SOFTIRQ);
++	}
++}
++
++#endif /* CONFIG_NO_HZ_COMMON */
++#endif /* CONFIG_SMP */
++
++static inline void wakeup_preempt(struct rq *rq)
++{
++	if (sched_rq_first_task(rq) != rq->curr)
++		resched_curr(rq);
++}
++
++static __always_inline
++int __task_state_match(struct task_struct *p, unsigned int state)
++{
++	if (READ_ONCE(p->__state) & state)
++		return 1;
++
++	if (READ_ONCE(p->saved_state) & state)
++		return -1;
++
++	return 0;
++}
++
++static __always_inline
++int task_state_match(struct task_struct *p, unsigned int state)
++{
++	/*
++	 * Serialize against current_save_and_set_rtlock_wait_state(),
++	 * current_restore_rtlock_saved_state(), and __refrigerator().
++	 */
++	guard(raw_spinlock_irq)(&p->pi_lock);
++
++	return __task_state_match(p, state);
++}
++
++/*
++ * wait_task_inactive - wait for a thread to unschedule.
++ *
++ * Wait for the thread to block in any of the states set in @match_state.
++ * If it changes, i.e. @p might have woken up, then return zero.  When we
++ * succeed in waiting for @p to be off its CPU, we return a positive number
++ * (its total switch count).  If a second call a short while later returns the
++ * same number, the caller can be sure that @p has remained unscheduled the
++ * whole time.
++ *
++ * The caller must ensure that the task *will* unschedule sometime soon,
++ * else this function might spin for a *long* time. This function can't
++ * be called with interrupts off, or it may introduce deadlock with
++ * smp_call_function() if an IPI is sent by the same process we are
++ * waiting to become inactive.
++ */
++unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
++{
++	unsigned long flags;
++	int running, queued, match;
++	unsigned long ncsw;
++	struct rq *rq;
++	raw_spinlock_t *lock;
++
++	for (;;) {
++		rq = task_rq(p);
++
++		/*
++		 * If the task is actively running on another CPU
++		 * still, just relax and busy-wait without holding
++		 * any locks.
++		 *
++		 * NOTE! Since we don't hold any locks, it's not
++		 * even sure that "rq" stays as the right runqueue!
++		 * But we don't care, since this will return false
++		 * if the runqueue has changed and p is actually now
++		 * running somewhere else!
++		 */
++		while (task_on_cpu(p)) {
++			if (!task_state_match(p, match_state))
++				return 0;
++			cpu_relax();
++		}
++
++		/*
++		 * Ok, time to look more closely! We need the rq
++		 * lock now, to be *sure*. If we're wrong, we'll
++		 * just go back and repeat.
++		 */
++		task_access_lock_irqsave(p, &lock, &flags);
++		trace_sched_wait_task(p);
++		running = task_on_cpu(p);
++		queued = p->on_rq;
++		ncsw = 0;
++		if ((match = __task_state_match(p, match_state))) {
++			/*
++			 * When matching on p->saved_state, consider this task
++			 * still queued so it will wait.
++			 */
++			if (match < 0)
++				queued = 1;
++			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
++		}
++		task_access_unlock_irqrestore(p, lock, &flags);
++
++		/*
++		 * If it changed from the expected state, bail out now.
++		 */
++		if (unlikely(!ncsw))
++			break;
++
++		/*
++		 * Was it really running after all now that we
++		 * checked with the proper locks actually held?
++		 *
++		 * Oops. Go back and try again..
++		 */
++		if (unlikely(running)) {
++			cpu_relax();
++			continue;
++		}
++
++		/*
++		 * It's not enough that it's not actively running,
++		 * it must be off the runqueue _entirely_, and not
++		 * preempted!
++		 *
++		 * So if it was still runnable (but just not actively
++		 * running right now), it's preempted, and we should
++		 * yield - it could be a while.
++		 */
++		if (unlikely(queued)) {
++			ktime_t to = NSEC_PER_SEC / HZ;
++
++			set_current_state(TASK_UNINTERRUPTIBLE);
++			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
++			continue;
++		}
++
++		/*
++		 * Ahh, all good. It wasn't running, and it wasn't
++		 * runnable, which means that it will never become
++		 * running in the future either. We're all done!
++		 */
++		break;
++	}
++
++	return ncsw;
++}
++
++#ifdef CONFIG_SCHED_HRTICK
++/*
++ * Use HR-timers to deliver accurate preemption points.
++ */
++
++static void hrtick_clear(struct rq *rq)
++{
++	if (hrtimer_active(&rq->hrtick_timer))
++		hrtimer_cancel(&rq->hrtick_timer);
++}
++
++/*
++ * High-resolution timer tick.
++ * Runs from hardirq context with interrupts disabled.
++ */
++static enum hrtimer_restart hrtick(struct hrtimer *timer)
++{
++	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
++
++	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
++
++	raw_spin_lock(&rq->lock);
++	resched_curr(rq);
++	raw_spin_unlock(&rq->lock);
++
++	return HRTIMER_NORESTART;
++}
++
++/*
++ * Use hrtick when:
++ *  - enabled by features
++ *  - hrtimer is actually high res
++ */
++static inline int hrtick_enabled(struct rq *rq)
++{
++	/**
++	 * Alt schedule FW doesn't support sched_feat yet
++	if (!sched_feat(HRTICK))
++		return 0;
++	*/
++	if (!cpu_active(cpu_of(rq)))
++		return 0;
++	return hrtimer_is_hres_active(&rq->hrtick_timer);
++}
++
++#ifdef CONFIG_SMP
++
++static void __hrtick_restart(struct rq *rq)
++{
++	struct hrtimer *timer = &rq->hrtick_timer;
++	ktime_t time = rq->hrtick_time;
++
++	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
++}
++
++/*
++ * called from hardirq (IPI) context
++ */
++static void __hrtick_start(void *arg)
++{
++	struct rq *rq = arg;
++
++	raw_spin_lock(&rq->lock);
++	__hrtick_restart(rq);
++	raw_spin_unlock(&rq->lock);
++}
++
++/*
++ * Called to set the hrtick timer state.
++ *
++ * called with rq->lock held and IRQs disabled
++ */
++static inline void hrtick_start(struct rq *rq, u64 delay)
++{
++	struct hrtimer *timer = &rq->hrtick_timer;
++	s64 delta;
++
++	/*
++	 * Don't schedule slices shorter than 10000ns, that just
++	 * doesn't make sense and can cause timer DoS.
++	 */
++	delta = max_t(s64, delay, 10000LL);
++
++	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
++
++	if (rq == this_rq())
++		__hrtick_restart(rq);
++	else
++		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
++}
++
++#else
++/*
++ * Called to set the hrtick timer state.
++ *
++ * called with rq->lock held and IRQs disabled
++ */
++static inline void hrtick_start(struct rq *rq, u64 delay)
++{
++	/*
++	 * Don't schedule slices shorter than 10000ns, that just
++	 * doesn't make sense. Rely on vruntime for fairness.
++	 */
++	delay = max_t(u64, delay, 10000LL);
++	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
++		      HRTIMER_MODE_REL_PINNED_HARD);
++}
++#endif /* CONFIG_SMP */
++
++static void hrtick_rq_init(struct rq *rq)
++{
++#ifdef CONFIG_SMP
++	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
++#endif
++
++	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
++	rq->hrtick_timer.function = hrtick;
++}
++#else	/* CONFIG_SCHED_HRTICK */
++static inline int hrtick_enabled(struct rq *rq)
++{
++	return 0;
++}
++
++static inline void hrtick_clear(struct rq *rq)
++{
++}
++
++static inline void hrtick_rq_init(struct rq *rq)
++{
++}
++#endif	/* CONFIG_SCHED_HRTICK */
++
++/*
++ * activate_task - move a task to the runqueue.
++ *
++ * Context: rq->lock
++ */
++static void activate_task(struct task_struct *p, struct rq *rq)
++{
++	enqueue_task(p, rq, ENQUEUE_WAKEUP);
++
++	WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED);
++	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
++
++	/*
++	 * If in_iowait is set, the code below may not trigger any cpufreq
++	 * utilization updates, so do it here explicitly with the IOWAIT flag
++	 * passed.
++	 */
++	cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT * p->in_iowait);
++}
++
++static void block_task(struct rq *rq, struct task_struct *p)
++{
++	dequeue_task(p, rq, DEQUEUE_SLEEP);
++
++	WRITE_ONCE(p->on_rq, 0);
++	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
++	if (p->sched_contributes_to_load)
++		rq->nr_uninterruptible++;
++
++	if (p->in_iowait) {
++		atomic_inc(&rq->nr_iowait);
++		delayacct_blkio_start();
++	}
++}
++
++static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
++{
++#ifdef CONFIG_SMP
++	/*
++	 * After ->cpu is set up to a new value, task_access_lock(p, ...) can be
++	 * successfully executed on another CPU. We must ensure that updates of
++	 * per-task data have been completed by this moment.
++	 */
++	smp_wmb();
++
++	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
++#endif
++}
++
++#ifdef CONFIG_SMP
++
++void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
++{
++#ifdef CONFIG_SCHED_DEBUG
++	unsigned int state = READ_ONCE(p->__state);
++
++	/*
++	 * We should never call set_task_cpu() on a blocked task,
++	 * ttwu() will sort out the placement.
++	 */
++	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
++
++#ifdef CONFIG_LOCKDEP
++	/*
++	 * The caller should hold either p->pi_lock or rq->lock, when changing
++	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
++	 *
++	 * sched_move_task() holds both and thus holding either pins the cgroup,
++	 * see task_group().
++	 */
++	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
++				      lockdep_is_held(&task_rq(p)->lock)));
++#endif
++	/*
++	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
++	 */
++	WARN_ON_ONCE(!cpu_online(new_cpu));
++
++	WARN_ON_ONCE(is_migration_disabled(p));
++#endif
++	trace_sched_migrate_task(p, new_cpu);
++
++	if (task_cpu(p) != new_cpu)
++	{
++		rseq_migrate(p);
++		sched_mm_cid_migrate_from(p);
++		perf_event_task_migrate(p);
++	}
++
++	__set_task_cpu(p, new_cpu);
++}
++
++#define MDF_FORCE_ENABLED	0x80
++
++static void
++__do_set_cpus_ptr(struct task_struct *p, const struct cpumask *new_mask)
++{
++	/*
++	 * This here violates the locking rules for affinity, since we're only
++	 * supposed to change these variables while holding both rq->lock and
++	 * p->pi_lock.
++	 *
++	 * HOWEVER, it magically works, because ttwu() is the only code that
++	 * accesses these variables under p->pi_lock and only does so after
++	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
++	 * before finish_task().
++	 *
++	 * XXX do further audits, this smells like something putrid.
++	 */
++	SCHED_WARN_ON(!p->on_cpu);
++	p->cpus_ptr = new_mask;
++}
++
++void migrate_disable(void)
++{
++	struct task_struct *p = current;
++	int cpu;
++
++	if (p->migration_disabled) {
++#ifdef CONFIG_DEBUG_PREEMPT
++		/*
++		 * Warn about overflow half-way through the range.
++		 */
++		WARN_ON_ONCE((s16)p->migration_disabled < 0);
++#endif
++		p->migration_disabled++;
++		return;
++	}
++
++	guard(preempt)();
++	cpu = smp_processor_id();
++	if (cpumask_test_cpu(cpu, &p->cpus_mask)) {
++		cpu_rq(cpu)->nr_pinned++;
++		p->migration_disabled = 1;
++		p->migration_flags &= ~MDF_FORCE_ENABLED;
++
++		/*
++		 * Violates locking rules! see comment in __do_set_cpus_ptr().
++		 */
++		if (p->cpus_ptr == &p->cpus_mask)
++			__do_set_cpus_ptr(p, cpumask_of(cpu));
++	}
++}
++EXPORT_SYMBOL_GPL(migrate_disable);
++
++void migrate_enable(void)
++{
++	struct task_struct *p = current;
++
++#ifdef CONFIG_DEBUG_PREEMPT
++	/*
++	 * Check both overflow from migrate_disable() and superfluous
++	 * migrate_enable().
++	 */
++	if (WARN_ON_ONCE((s16)p->migration_disabled <= 0))
++		return;
++#endif
++
++	if (p->migration_disabled > 1) {
++		p->migration_disabled--;
++		return;
++	}
++
++	/*
++	 * Ensure stop_task runs either before or after this, and that
++	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
++	 */
++	guard(preempt)();
++	/*
++	 * Assumption: current should be running on allowed cpu
++	 */
++	WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(), &p->cpus_mask));
++	if (p->cpus_ptr != &p->cpus_mask)
++		__do_set_cpus_ptr(p, &p->cpus_mask);
++	/*
++	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
++	 * regular cpus_mask, otherwise things that race (eg.
++	 * select_fallback_rq) get confused.
++	 */
++	barrier();
++	p->migration_disabled = 0;
++	this_rq()->nr_pinned--;
++}
++EXPORT_SYMBOL_GPL(migrate_enable);
++
++static inline bool rq_has_pinned_tasks(struct rq *rq)
++{
++	return rq->nr_pinned;
++}
++
++/*
++ * Per-CPU kthreads are allowed to run on !active && online CPUs, see
++ * __set_cpus_allowed_ptr() and select_fallback_rq().
++ */
++static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
++{
++	/* When not in the task's cpumask, no point in looking further. */
++	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
++		return false;
++
++	/* migrate_disabled() must be allowed to finish. */
++	if (is_migration_disabled(p))
++		return cpu_online(cpu);
++
++	/* Non kernel threads are not allowed during either online or offline. */
++	if (!(p->flags & PF_KTHREAD))
++		return cpu_active(cpu) && task_cpu_possible(cpu, p);
++
++	/* KTHREAD_IS_PER_CPU is always allowed. */
++	if (kthread_is_per_cpu(p))
++		return cpu_online(cpu);
++
++	/* Regular kernel threads don't get to stay during offline. */
++	if (cpu_dying(cpu))
++		return false;
++
++	/* But are allowed during online. */
++	return cpu_online(cpu);
++}
++
++/*
++ * This is how migration works:
++ *
++ * 1) we invoke migration_cpu_stop() on the target CPU using
++ *    stop_one_cpu().
++ * 2) stopper starts to run (implicitly forcing the migrated thread
++ *    off the CPU)
++ * 3) it checks whether the migrated task is still in the wrong runqueue.
++ * 4) if it's in the wrong runqueue then the migration thread removes
++ *    it and puts it into the right queue.
++ * 5) stopper completes and stop_one_cpu() returns and the migration
++ *    is done.
++ */
++
++/*
++ * move_queued_task - move a queued task to new rq.
++ *
++ * Returns (locked) new rq. Old rq's lock is released.
++ */
++struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
++{
++	lockdep_assert_held(&rq->lock);
++
++	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
++	dequeue_task(p, rq, 0);
++	set_task_cpu(p, new_cpu);
++	raw_spin_unlock(&rq->lock);
++
++	rq = cpu_rq(new_cpu);
++
++	raw_spin_lock(&rq->lock);
++	WARN_ON_ONCE(task_cpu(p) != new_cpu);
++
++	sched_mm_cid_migrate_to(rq, p);
++
++	sched_task_sanity_check(p, rq);
++	enqueue_task(p, rq, 0);
++	WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED);
++	wakeup_preempt(rq);
++
++	return rq;
++}
++
++struct migration_arg {
++	struct task_struct *task;
++	int dest_cpu;
++};
++
++/*
++ * Move (not current) task off this CPU, onto the destination CPU. We're doing
++ * this because either it can't run here any more (set_cpus_allowed()
++ * away from this CPU, or CPU going down), or because we're
++ * attempting to rebalance this task on exec (sched_exec).
++ *
++ * So we race with normal scheduler movements, but that's OK, as long
++ * as the task is no longer on this CPU.
++ */
++static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
++{
++	/* Affinity changed (again). */
++	if (!is_cpu_allowed(p, dest_cpu))
++		return rq;
++
++	return move_queued_task(rq, p, dest_cpu);
++}
++
++/*
++ * migration_cpu_stop - this will be executed by a high-prio stopper thread
++ * and performs thread migration by bumping thread off CPU then
++ * 'pushing' onto another runqueue.
++ */
++static int migration_cpu_stop(void *data)
++{
++	struct migration_arg *arg = data;
++	struct task_struct *p = arg->task;
++	struct rq *rq = this_rq();
++	unsigned long flags;
++
++	/*
++	 * The original target CPU might have gone down and we might
++	 * be on another CPU but it doesn't matter.
++	 */
++	local_irq_save(flags);
++	/*
++	 * We need to explicitly wake pending tasks before running
++	 * __migrate_task() such that we will not miss enforcing cpus_ptr
++	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
++	 */
++	flush_smp_call_function_queue();
++
++	raw_spin_lock(&p->pi_lock);
++	raw_spin_lock(&rq->lock);
++	/*
++	 * If task_rq(p) != rq, it cannot be migrated here, because we're
++	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
++	 * we're holding p->pi_lock.
++	 */
++	if (task_rq(p) == rq && task_on_rq_queued(p)) {
++		update_rq_clock(rq);
++		rq = __migrate_task(rq, p, arg->dest_cpu);
++	}
++	raw_spin_unlock(&rq->lock);
++	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
++
++	return 0;
++}
++
++static inline void
++set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
++{
++	cpumask_copy(&p->cpus_mask, ctx->new_mask);
++	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
++
++	/*
++	 * Swap in a new user_cpus_ptr if SCA_USER flag set
++	 */
++	if (ctx->flags & SCA_USER)
++		swap(p->user_cpus_ptr, ctx->user_mask);
++}
++
++static void
++__do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
++{
++	lockdep_assert_held(&p->pi_lock);
++	set_cpus_allowed_common(p, ctx);
++}
++
++/*
++ * Used for kthread_bind() and select_fallback_rq(), in both cases the user
++ * affinity (if any) should be destroyed too.
++ */
++void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
++{
++	struct affinity_context ac = {
++		.new_mask  = new_mask,
++		.user_mask = NULL,
++		.flags     = SCA_USER,	/* clear the user requested mask */
++	};
++	union cpumask_rcuhead {
++		cpumask_t cpumask;
++		struct rcu_head rcu;
++	};
++
++	__do_set_cpus_allowed(p, &ac);
++
++	/*
++	 * Because this is called with p->pi_lock held, it is not possible
++	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
++	 * kfree_rcu().
++	 */
++	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
++}
++
++int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
++		      int node)
++{
++	cpumask_t *user_mask;
++	unsigned long flags;
++
++	/*
++	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
++	 * may differ by now due to racing.
++	 */
++	dst->user_cpus_ptr = NULL;
++
++	/*
++	 * This check is racy and losing the race is a valid situation.
++	 * It is not worth the extra overhead of taking the pi_lock on
++	 * every fork/clone.
++	 */
++	if (data_race(!src->user_cpus_ptr))
++		return 0;
++
++	user_mask = alloc_user_cpus_ptr(node);
++	if (!user_mask)
++		return -ENOMEM;
++
++	/*
++	 * Use pi_lock to protect content of user_cpus_ptr
++	 *
++	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
++	 * do_set_cpus_allowed().
++	 */
++	raw_spin_lock_irqsave(&src->pi_lock, flags);
++	if (src->user_cpus_ptr) {
++		swap(dst->user_cpus_ptr, user_mask);
++		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
++	}
++	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
++
++	if (unlikely(user_mask))
++		kfree(user_mask);
++
++	return 0;
++}
++
++static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
++{
++	struct cpumask *user_mask = NULL;
++
++	swap(p->user_cpus_ptr, user_mask);
++
++	return user_mask;
++}
++
++void release_user_cpus_ptr(struct task_struct *p)
++{
++	kfree(clear_user_cpus_ptr(p));
++}
++
++#endif
++
++/**
++ * task_curr - is this task currently executing on a CPU?
++ * @p: the task in question.
++ *
++ * Return: 1 if the task is currently executing. 0 otherwise.
++ */
++inline int task_curr(const struct task_struct *p)
++{
++	return cpu_curr(task_cpu(p)) == p;
++}
++
++#ifdef CONFIG_SMP
++/***
++ * kick_process - kick a running thread to enter/exit the kernel
++ * @p: the to-be-kicked thread
++ *
++ * Cause a process which is running on another CPU to enter
++ * kernel-mode, without any delay. (to get signals handled.)
++ *
++ * NOTE: this function doesn't have to take the runqueue lock,
++ * because all it wants to ensure is that the remote task enters
++ * the kernel. If the IPI races and the task has been migrated
++ * to another CPU then no harm is done and the purpose has been
++ * achieved as well.
++ */
++void kick_process(struct task_struct *p)
++{
++	guard(preempt)();
++	int cpu = task_cpu(p);
++
++	if ((cpu != smp_processor_id()) && task_curr(p))
++		smp_send_reschedule(cpu);
++}
++EXPORT_SYMBOL_GPL(kick_process);
++
++/*
++ * ->cpus_ptr is protected by both rq->lock and p->pi_lock
++ *
++ * A few notes on cpu_active vs cpu_online:
++ *
++ *  - cpu_active must be a subset of cpu_online
++ *
++ *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
++ *    see __set_cpus_allowed_ptr(). At this point the newly online
++ *    CPU isn't yet part of the sched domains, and balancing will not
++ *    see it.
++ *
++ *  - on cpu-down we clear cpu_active() to mask the sched domains and
++ *    avoid the load balancer to place new tasks on the to be removed
++ *    CPU. Existing tasks will remain running there and will be taken
++ *    off.
++ *
++ * This means that fallback selection must not select !active CPUs.
++ * And can assume that any active CPU must be online. Conversely
++ * select_task_rq() below may allow selection of !active CPUs in order
++ * to satisfy the above rules.
++ */
++static int select_fallback_rq(int cpu, struct task_struct *p)
++{
++	int nid = cpu_to_node(cpu);
++	const struct cpumask *nodemask = NULL;
++	enum { cpuset, possible, fail } state = cpuset;
++	int dest_cpu;
++
++	/*
++	 * If the node that the CPU is on has been offlined, cpu_to_node()
++	 * will return -1. There is no CPU on the node, and we should
++	 * select the CPU on the other node.
++	 */
++	if (nid != -1) {
++		nodemask = cpumask_of_node(nid);
++
++		/* Look for allowed, online CPU in same node. */
++		for_each_cpu(dest_cpu, nodemask) {
++			if (is_cpu_allowed(p, dest_cpu))
++				return dest_cpu;
++		}
++	}
++
++	for (;;) {
++		/* Any allowed, online CPU? */
++		for_each_cpu(dest_cpu, p->cpus_ptr) {
++			if (!is_cpu_allowed(p, dest_cpu))
++				continue;
++			goto out;
++		}
++
++		/* No more Mr. Nice Guy. */
++		switch (state) {
++		case cpuset:
++			if (cpuset_cpus_allowed_fallback(p)) {
++				state = possible;
++				break;
++			}
++			fallthrough;
++		case possible:
++			/*
++			 * XXX When called from select_task_rq() we only
++			 * hold p->pi_lock and again violate locking order.
++			 *
++			 * More yuck to audit.
++			 */
++			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
++			state = fail;
++			break;
++
++		case fail:
++			BUG();
++			break;
++		}
++	}
++
++out:
++	if (state != cpuset) {
++		/*
++		 * Don't tell them about moving exiting tasks or
++		 * kernel threads (both mm NULL), since they never
++		 * leave kernel.
++		 */
++		if (p->mm && printk_ratelimit()) {
++			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
++					task_pid_nr(p), p->comm, cpu);
++		}
++	}
++
++	return dest_cpu;
++}
++
++static inline void
++sched_preempt_mask_flush(cpumask_t *mask, int prio, int ref)
++{
++	int cpu;
++
++	cpumask_copy(mask, sched_preempt_mask + ref);
++	if (prio < ref) {
++		for_each_clear_bit(cpu, cpumask_bits(mask), nr_cpumask_bits) {
++			if (prio < cpu_rq(cpu)->prio)
++				cpumask_set_cpu(cpu, mask);
++		}
++	} else {
++		for_each_cpu_andnot(cpu, mask, sched_idle_mask) {
++			if (prio >= cpu_rq(cpu)->prio)
++				cpumask_clear_cpu(cpu, mask);
++		}
++	}
++}
++
++static inline int
++preempt_mask_check(cpumask_t *preempt_mask, cpumask_t *allow_mask, int prio)
++{
++	cpumask_t *mask = sched_preempt_mask + prio;
++	int pr = atomic_read(&sched_prio_record);
++
++	if (pr != prio && SCHED_QUEUE_BITS - 1 != prio) {
++		sched_preempt_mask_flush(mask, prio, pr);
++		atomic_set(&sched_prio_record, prio);
++	}
++
++	return cpumask_and(preempt_mask, allow_mask, mask);
++}
++
++__read_mostly idle_select_func_t idle_select_func ____cacheline_aligned_in_smp = cpumask_and;
++
++static inline int select_task_rq(struct task_struct *p)
++{
++	cpumask_t allow_mask, mask;
++
++	if (unlikely(!cpumask_and(&allow_mask, p->cpus_ptr, cpu_active_mask)))
++		return select_fallback_rq(task_cpu(p), p);
++
++	if (idle_select_func(&mask, &allow_mask, sched_idle_mask)	||
++	    preempt_mask_check(&mask, &allow_mask, task_sched_prio(p)))
++		return best_mask_cpu(task_cpu(p), &mask);
++
++	return best_mask_cpu(task_cpu(p), &allow_mask);
++}
++
++void sched_set_stop_task(int cpu, struct task_struct *stop)
++{
++	static struct lock_class_key stop_pi_lock;
++	struct sched_param stop_param = { .sched_priority = STOP_PRIO };
++	struct sched_param start_param = { .sched_priority = 0 };
++	struct task_struct *old_stop = cpu_rq(cpu)->stop;
++
++	if (stop) {
++		/*
++		 * Make it appear like a SCHED_FIFO task, its something
++		 * userspace knows about and won't get confused about.
++		 *
++		 * Also, it will make PI more or less work without too
++		 * much confusion -- but then, stop work should not
++		 * rely on PI working anyway.
++		 */
++		sched_setscheduler_nocheck(stop, SCHED_FIFO, &stop_param);
++
++		/*
++		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
++		 * adjust the effective priority of a task. As a result,
++		 * rt_mutex_setprio() can trigger (RT) balancing operations,
++		 * which can then trigger wakeups of the stop thread to push
++		 * around the current task.
++		 *
++		 * The stop task itself will never be part of the PI-chain, it
++		 * never blocks, therefore that ->pi_lock recursion is safe.
++		 * Tell lockdep about this by placing the stop->pi_lock in its
++		 * own class.
++		 */
++		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
++	}
++
++	cpu_rq(cpu)->stop = stop;
++
++	if (old_stop) {
++		/*
++		 * Reset it back to a normal scheduling policy so that
++		 * it can die in pieces.
++		 */
++		sched_setscheduler_nocheck(old_stop, SCHED_NORMAL, &start_param);
++	}
++}
++
++static int affine_move_task(struct rq *rq, struct task_struct *p, int dest_cpu,
++			    raw_spinlock_t *lock, unsigned long irq_flags)
++	__releases(rq->lock)
++	__releases(p->pi_lock)
++{
++	/* Can the task run on the task's current CPU? If so, we're done */
++	if (!cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
++		if (p->migration_disabled) {
++			if (likely(p->cpus_ptr != &p->cpus_mask))
++				__do_set_cpus_ptr(p, &p->cpus_mask);
++			p->migration_disabled = 0;
++			p->migration_flags |= MDF_FORCE_ENABLED;
++			/* When p is migrate_disabled, rq->lock should be held */
++			rq->nr_pinned--;
++		}
++
++		if (task_on_cpu(p) || READ_ONCE(p->__state) == TASK_WAKING) {
++			struct migration_arg arg = { p, dest_cpu };
++
++			/* Need help from migration thread: drop lock and wait. */
++			__task_access_unlock(p, lock);
++			raw_spin_unlock_irqrestore(&p->pi_lock, irq_flags);
++			stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
++			return 0;
++		}
++		if (task_on_rq_queued(p)) {
++			/*
++			 * OK, since we're going to drop the lock immediately
++			 * afterwards anyway.
++			 */
++			update_rq_clock(rq);
++			rq = move_queued_task(rq, p, dest_cpu);
++			lock = &rq->lock;
++		}
++	}
++	__task_access_unlock(p, lock);
++	raw_spin_unlock_irqrestore(&p->pi_lock, irq_flags);
++	return 0;
++}
++
++static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
++					 struct affinity_context *ctx,
++					 struct rq *rq,
++					 raw_spinlock_t *lock,
++					 unsigned long irq_flags)
++{
++	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
++	const struct cpumask *cpu_valid_mask = cpu_active_mask;
++	bool kthread = p->flags & PF_KTHREAD;
++	int dest_cpu;
++	int ret = 0;
++
++	if (kthread || is_migration_disabled(p)) {
++		/*
++		 * Kernel threads are allowed on online && !active CPUs,
++		 * however, during cpu-hot-unplug, even these might get pushed
++		 * away if not KTHREAD_IS_PER_CPU.
++		 *
++		 * Specifically, migration_disabled() tasks must not fail the
++		 * cpumask_any_and_distribute() pick below, esp. so on
++		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
++		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
++		 */
++		cpu_valid_mask = cpu_online_mask;
++	}
++
++	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
++		ret = -EINVAL;
++		goto out;
++	}
++
++	/*
++	 * Must re-check here, to close a race against __kthread_bind(),
++	 * sched_setaffinity() is not guaranteed to observe the flag.
++	 */
++	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
++		ret = -EINVAL;
++		goto out;
++	}
++
++	if (cpumask_equal(&p->cpus_mask, ctx->new_mask))
++		goto out;
++
++	dest_cpu = cpumask_any_and(cpu_valid_mask, ctx->new_mask);
++	if (dest_cpu >= nr_cpu_ids) {
++		ret = -EINVAL;
++		goto out;
++	}
++
++	__do_set_cpus_allowed(p, ctx);
++
++	return affine_move_task(rq, p, dest_cpu, lock, irq_flags);
++
++out:
++	__task_access_unlock(p, lock);
++	raw_spin_unlock_irqrestore(&p->pi_lock, irq_flags);
++
++	return ret;
++}
++
++/*
++ * Change a given task's CPU affinity. Migrate the thread to a
++ * is removed from the allowed bitmask.
++ *
++ * NOTE: the caller must have a valid reference to the task, the
++ * task must not exit() & deallocate itself prematurely. The
++ * call is not atomic; no spinlocks may be held.
++ */
++int __set_cpus_allowed_ptr(struct task_struct *p,
++			   struct affinity_context *ctx)
++{
++	unsigned long irq_flags;
++	struct rq *rq;
++	raw_spinlock_t *lock;
++
++	raw_spin_lock_irqsave(&p->pi_lock, irq_flags);
++	rq = __task_access_lock(p, &lock);
++	/*
++	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
++	 * flags are set.
++	 */
++	if (p->user_cpus_ptr &&
++	    !(ctx->flags & SCA_USER) &&
++	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
++		ctx->new_mask = rq->scratch_mask;
++
++
++	return __set_cpus_allowed_ptr_locked(p, ctx, rq, lock, irq_flags);
++}
++
++int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
++{
++	struct affinity_context ac = {
++		.new_mask  = new_mask,
++		.flags     = 0,
++	};
++
++	return __set_cpus_allowed_ptr(p, &ac);
++}
++EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
++
++/*
++ * Change a given task's CPU affinity to the intersection of its current
++ * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
++ * If user_cpus_ptr is defined, use it as the basis for restricting CPU
++ * affinity or use cpu_online_mask instead.
++ *
++ * If the resulting mask is empty, leave the affinity unchanged and return
++ * -EINVAL.
++ */
++static int restrict_cpus_allowed_ptr(struct task_struct *p,
++				     struct cpumask *new_mask,
++				     const struct cpumask *subset_mask)
++{
++	struct affinity_context ac = {
++		.new_mask  = new_mask,
++		.flags     = 0,
++	};
++	unsigned long irq_flags;
++	raw_spinlock_t *lock;
++	struct rq *rq;
++	int err;
++
++	raw_spin_lock_irqsave(&p->pi_lock, irq_flags);
++	rq = __task_access_lock(p, &lock);
++
++	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
++		err = -EINVAL;
++		goto err_unlock;
++	}
++
++	return __set_cpus_allowed_ptr_locked(p, &ac, rq, lock, irq_flags);
++
++err_unlock:
++	__task_access_unlock(p, lock);
++	raw_spin_unlock_irqrestore(&p->pi_lock, irq_flags);
++	return err;
++}
++
++/*
++ * Restrict the CPU affinity of task @p so that it is a subset of
++ * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
++ * old affinity mask. If the resulting mask is empty, we warn and walk
++ * up the cpuset hierarchy until we find a suitable mask.
++ */
++void force_compatible_cpus_allowed_ptr(struct task_struct *p)
++{
++	cpumask_var_t new_mask;
++	const struct cpumask *override_mask = task_cpu_possible_mask(p);
++
++	alloc_cpumask_var(&new_mask, GFP_KERNEL);
++
++	/*
++	 * __migrate_task() can fail silently in the face of concurrent
++	 * offlining of the chosen destination CPU, so take the hotplug
++	 * lock to ensure that the migration succeeds.
++	 */
++	cpus_read_lock();
++	if (!cpumask_available(new_mask))
++		goto out_set_mask;
++
++	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
++		goto out_free_mask;
++
++	/*
++	 * We failed to find a valid subset of the affinity mask for the
++	 * task, so override it based on its cpuset hierarchy.
++	 */
++	cpuset_cpus_allowed(p, new_mask);
++	override_mask = new_mask;
++
++out_set_mask:
++	if (printk_ratelimit()) {
++		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
++				task_pid_nr(p), p->comm,
++				cpumask_pr_args(override_mask));
++	}
++
++	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
++out_free_mask:
++	cpus_read_unlock();
++	free_cpumask_var(new_mask);
++}
++
++/*
++ * Restore the affinity of a task @p which was previously restricted by a
++ * call to force_compatible_cpus_allowed_ptr().
++ *
++ * It is the caller's responsibility to serialise this with any calls to
++ * force_compatible_cpus_allowed_ptr(@p).
++ */
++void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
++{
++	struct affinity_context ac = {
++		.new_mask  = task_user_cpus(p),
++		.flags     = 0,
++	};
++	int ret;
++
++	/*
++	 * Try to restore the old affinity mask with __sched_setaffinity().
++	 * Cpuset masking will be done there too.
++	 */
++	ret = __sched_setaffinity(p, &ac);
++	WARN_ON_ONCE(ret);
++}
++
++#else /* CONFIG_SMP */
++
++static inline int select_task_rq(struct task_struct *p)
++{
++	return 0;
++}
++
++static inline bool rq_has_pinned_tasks(struct rq *rq)
++{
++	return false;
++}
++
++#endif /* !CONFIG_SMP */
++
++static void
++ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
++{
++	struct rq *rq;
++
++	if (!schedstat_enabled())
++		return;
++
++	rq = this_rq();
++
++#ifdef CONFIG_SMP
++	if (cpu == rq->cpu) {
++		__schedstat_inc(rq->ttwu_local);
++		__schedstat_inc(p->stats.nr_wakeups_local);
++	} else {
++		/** Alt schedule FW ToDo:
++		 * How to do ttwu_wake_remote
++		 */
++	}
++#endif /* CONFIG_SMP */
++
++	__schedstat_inc(rq->ttwu_count);
++	__schedstat_inc(p->stats.nr_wakeups);
++}
++
++/*
++ * Mark the task runnable.
++ */
++static inline void ttwu_do_wakeup(struct task_struct *p)
++{
++	WRITE_ONCE(p->__state, TASK_RUNNING);
++	trace_sched_wakeup(p);
++}
++
++static inline void
++ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
++{
++	if (p->sched_contributes_to_load)
++		rq->nr_uninterruptible--;
++
++	if (
++#ifdef CONFIG_SMP
++	    !(wake_flags & WF_MIGRATED) &&
++#endif
++	    p->in_iowait) {
++		delayacct_blkio_end(p);
++		atomic_dec(&task_rq(p)->nr_iowait);
++	}
++
++	activate_task(p, rq);
++	wakeup_preempt(rq);
++
++	ttwu_do_wakeup(p);
++}
++
++/*
++ * Consider @p being inside a wait loop:
++ *
++ *   for (;;) {
++ *      set_current_state(TASK_UNINTERRUPTIBLE);
++ *
++ *      if (CONDITION)
++ *         break;
++ *
++ *      schedule();
++ *   }
++ *   __set_current_state(TASK_RUNNING);
++ *
++ * between set_current_state() and schedule(). In this case @p is still
++ * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
++ * an atomic manner.
++ *
++ * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
++ * then schedule() must still happen and p->state can be changed to
++ * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
++ * need to do a full wakeup with enqueue.
++ *
++ * Returns: %true when the wakeup is done,
++ *          %false otherwise.
++ */
++static int ttwu_runnable(struct task_struct *p, int wake_flags)
++{
++	struct rq *rq;
++	raw_spinlock_t *lock;
++	int ret = 0;
++
++	rq = __task_access_lock(p, &lock);
++	if (task_on_rq_queued(p)) {
++		if (!task_on_cpu(p)) {
++			/*
++			 * When on_rq && !on_cpu the task is preempted, see if
++			 * it should preempt the task that is current now.
++			 */
++			update_rq_clock(rq);
++			wakeup_preempt(rq);
++		}
++		ttwu_do_wakeup(p);
++		ret = 1;
++	}
++	__task_access_unlock(p, lock);
++
++	return ret;
++}
++
++#ifdef CONFIG_SMP
++void sched_ttwu_pending(void *arg)
++{
++	struct llist_node *llist = arg;
++	struct rq *rq = this_rq();
++	struct task_struct *p, *t;
++	struct rq_flags rf;
++
++	if (!llist)
++		return;
++
++	rq_lock_irqsave(rq, &rf);
++	update_rq_clock(rq);
++
++	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
++		if (WARN_ON_ONCE(p->on_cpu))
++			smp_cond_load_acquire(&p->on_cpu, !VAL);
++
++		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
++			set_task_cpu(p, cpu_of(rq));
++
++		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0);
++	}
++
++	/*
++	 * Must be after enqueueing at least once task such that
++	 * idle_cpu() does not observe a false-negative -- if it does,
++	 * it is possible for select_idle_siblings() to stack a number
++	 * of tasks on this CPU during that window.
++	 *
++	 * It is OK to clear ttwu_pending when another task pending.
++	 * We will receive IPI after local IRQ enabled and then enqueue it.
++	 * Since now nr_running > 0, idle_cpu() will always get correct result.
++	 */
++	WRITE_ONCE(rq->ttwu_pending, 0);
++	rq_unlock_irqrestore(rq, &rf);
++}
++
++/*
++ * Prepare the scene for sending an IPI for a remote smp_call
++ *
++ * Returns true if the caller can proceed with sending the IPI.
++ * Returns false otherwise.
++ */
++bool call_function_single_prep_ipi(int cpu)
++{
++	if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
++		trace_sched_wake_idle_without_ipi(cpu);
++		return false;
++	}
++
++	return true;
++}
++
++/*
++ * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
++ * necessary. The wakee CPU on receipt of the IPI will queue the task
++ * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
++ * of the wakeup instead of the waker.
++ */
++static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
++{
++	struct rq *rq = cpu_rq(cpu);
++
++	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
++
++	WRITE_ONCE(rq->ttwu_pending, 1);
++	__smp_call_single_queue(cpu, &p->wake_entry.llist);
++}
++
++static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
++{
++	/*
++	 * Do not complicate things with the async wake_list while the CPU is
++	 * in hotplug state.
++	 */
++	if (!cpu_active(cpu))
++		return false;
++
++	/* Ensure the task will still be allowed to run on the CPU. */
++	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
++		return false;
++
++	/*
++	 * If the CPU does not share cache, then queue the task on the
++	 * remote rqs wakelist to avoid accessing remote data.
++	 */
++	if (!cpus_share_cache(smp_processor_id(), cpu))
++		return true;
++
++	if (cpu == smp_processor_id())
++		return false;
++
++	/*
++	 * If the wakee cpu is idle, or the task is descheduling and the
++	 * only running task on the CPU, then use the wakelist to offload
++	 * the task activation to the idle (or soon-to-be-idle) CPU as
++	 * the current CPU is likely busy. nr_running is checked to
++	 * avoid unnecessary task stacking.
++	 *
++	 * Note that we can only get here with (wakee) p->on_rq=0,
++	 * p->on_cpu can be whatever, we've done the dequeue, so
++	 * the wakee has been accounted out of ->nr_running.
++	 */
++	if (!cpu_rq(cpu)->nr_running)
++		return true;
++
++	return false;
++}
++
++static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
++{
++	if (__is_defined(ALT_SCHED_TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
++		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
++		__ttwu_queue_wakelist(p, cpu, wake_flags);
++		return true;
++	}
++
++	return false;
++}
++
++void wake_up_if_idle(int cpu)
++{
++	struct rq *rq = cpu_rq(cpu);
++
++	guard(rcu)();
++	if (is_idle_task(rcu_dereference(rq->curr))) {
++		guard(raw_spinlock_irqsave)(&rq->lock);
++		if (is_idle_task(rq->curr))
++			resched_curr(rq);
++	}
++}
++
++extern struct static_key_false sched_asym_cpucapacity;
++
++static __always_inline bool sched_asym_cpucap_active(void)
++{
++	return static_branch_unlikely(&sched_asym_cpucapacity);
++}
++
++bool cpus_equal_capacity(int this_cpu, int that_cpu)
++{
++	if (!sched_asym_cpucap_active())
++		return true;
++
++	if (this_cpu == that_cpu)
++		return true;
++
++	return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu);
++}
++
++bool cpus_share_cache(int this_cpu, int that_cpu)
++{
++	if (this_cpu == that_cpu)
++		return true;
++
++	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
++}
++#else /* !CONFIG_SMP */
++
++static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
++{
++	return false;
++}
++
++#endif /* CONFIG_SMP */
++
++static inline void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
++{
++	struct rq *rq = cpu_rq(cpu);
++
++	if (ttwu_queue_wakelist(p, cpu, wake_flags))
++		return;
++
++	raw_spin_lock(&rq->lock);
++	update_rq_clock(rq);
++	ttwu_do_activate(rq, p, wake_flags);
++	raw_spin_unlock(&rq->lock);
++}
++
++/*
++ * Invoked from try_to_wake_up() to check whether the task can be woken up.
++ *
++ * The caller holds p::pi_lock if p != current or has preemption
++ * disabled when p == current.
++ *
++ * The rules of saved_state:
++ *
++ *   The related locking code always holds p::pi_lock when updating
++ *   p::saved_state, which means the code is fully serialized in both cases.
++ *
++ *  For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
++ *  No other bits set. This allows to distinguish all wakeup scenarios.
++ *
++ *  For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
++ *  allows us to prevent early wakeup of tasks before they can be run on
++ *  asymmetric ISA architectures (eg ARMv9).
++ */
++static __always_inline
++bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
++{
++	int match;
++
++	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
++		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
++			     state != TASK_RTLOCK_WAIT);
++	}
++
++	*success = !!(match = __task_state_match(p, state));
++
++	/*
++	 * Saved state preserves the task state across blocking on
++	 * an RT lock or TASK_FREEZABLE tasks.  If the state matches,
++	 * set p::saved_state to TASK_RUNNING, but do not wake the task
++	 * because it waits for a lock wakeup or __thaw_task(). Also
++	 * indicate success because from the regular waker's point of
++	 * view this has succeeded.
++	 *
++	 * After acquiring the lock the task will restore p::__state
++	 * from p::saved_state which ensures that the regular
++	 * wakeup is not lost. The restore will also set
++	 * p::saved_state to TASK_RUNNING so any further tests will
++	 * not result in false positives vs. @success
++	 */
++	if (match < 0)
++		p->saved_state = TASK_RUNNING;
++
++	return match > 0;
++}
++
++/*
++ * Notes on Program-Order guarantees on SMP systems.
++ *
++ *  MIGRATION
++ *
++ * The basic program-order guarantee on SMP systems is that when a task [t]
++ * migrates, all its activity on its old CPU [c0] happens-before any subsequent
++ * execution on its new CPU [c1].
++ *
++ * For migration (of runnable tasks) this is provided by the following means:
++ *
++ *  A) UNLOCK of the rq(c0)->lock scheduling out task t
++ *  B) migration for t is required to synchronize *both* rq(c0)->lock and
++ *     rq(c1)->lock (if not at the same time, then in that order).
++ *  C) LOCK of the rq(c1)->lock scheduling in task
++ *
++ * Transitivity guarantees that B happens after A and C after B.
++ * Note: we only require RCpc transitivity.
++ * Note: the CPU doing B need not be c0 or c1
++ *
++ * Example:
++ *
++ *   CPU0            CPU1            CPU2
++ *
++ *   LOCK rq(0)->lock
++ *   sched-out X
++ *   sched-in Y
++ *   UNLOCK rq(0)->lock
++ *
++ *                                   LOCK rq(0)->lock // orders against CPU0
++ *                                   dequeue X
++ *                                   UNLOCK rq(0)->lock
++ *
++ *                                   LOCK rq(1)->lock
++ *                                   enqueue X
++ *                                   UNLOCK rq(1)->lock
++ *
++ *                   LOCK rq(1)->lock // orders against CPU2
++ *                   sched-out Z
++ *                   sched-in X
++ *                   UNLOCK rq(1)->lock
++ *
++ *
++ *  BLOCKING -- aka. SLEEP + WAKEUP
++ *
++ * For blocking we (obviously) need to provide the same guarantee as for
++ * migration. However the means are completely different as there is no lock
++ * chain to provide order. Instead we do:
++ *
++ *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
++ *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
++ *
++ * Example:
++ *
++ *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
++ *
++ *   LOCK rq(0)->lock LOCK X->pi_lock
++ *   dequeue X
++ *   sched-out X
++ *   smp_store_release(X->on_cpu, 0);
++ *
++ *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
++ *                    X->state = WAKING
++ *                    set_task_cpu(X,2)
++ *
++ *                    LOCK rq(2)->lock
++ *                    enqueue X
++ *                    X->state = RUNNING
++ *                    UNLOCK rq(2)->lock
++ *
++ *                                          LOCK rq(2)->lock // orders against CPU1
++ *                                          sched-out Z
++ *                                          sched-in X
++ *                                          UNLOCK rq(2)->lock
++ *
++ *                    UNLOCK X->pi_lock
++ *   UNLOCK rq(0)->lock
++ *
++ *
++ * However; for wakeups there is a second guarantee we must provide, namely we
++ * must observe the state that lead to our wakeup. That is, not only must our
++ * task observe its own prior state, it must also observe the stores prior to
++ * its wakeup.
++ *
++ * This means that any means of doing remote wakeups must order the CPU doing
++ * the wakeup against the CPU the task is going to end up running on. This,
++ * however, is already required for the regular Program-Order guarantee above,
++ * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
++ *
++ */
++
++/**
++ * try_to_wake_up - wake up a thread
++ * @p: the thread to be awakened
++ * @state: the mask of task states that can be woken
++ * @wake_flags: wake modifier flags (WF_*)
++ *
++ * Conceptually does:
++ *
++ *   If (@state & @p->state) @p->state = TASK_RUNNING.
++ *
++ * If the task was not queued/runnable, also place it back on a runqueue.
++ *
++ * This function is atomic against schedule() which would dequeue the task.
++ *
++ * It issues a full memory barrier before accessing @p->state, see the comment
++ * with set_current_state().
++ *
++ * Uses p->pi_lock to serialize against concurrent wake-ups.
++ *
++ * Relies on p->pi_lock stabilizing:
++ *  - p->sched_class
++ *  - p->cpus_ptr
++ *  - p->sched_task_group
++ * in order to do migration, see its use of select_task_rq()/set_task_cpu().
++ *
++ * Tries really hard to only take one task_rq(p)->lock for performance.
++ * Takes rq->lock in:
++ *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
++ *  - ttwu_queue()       -- new rq, for enqueue of the task;
++ *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
++ *
++ * As a consequence we race really badly with just about everything. See the
++ * many memory barriers and their comments for details.
++ *
++ * Return: %true if @p->state changes (an actual wakeup was done),
++ *	   %false otherwise.
++ */
++int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
++{
++	guard(preempt)();
++	int cpu, success = 0;
++
++	if (p == current) {
++		/*
++		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
++		 * == smp_processor_id()'. Together this means we can special
++		 * case the whole 'p->on_rq && ttwu_runnable()' case below
++		 * without taking any locks.
++		 *
++		 * In particular:
++		 *  - we rely on Program-Order guarantees for all the ordering,
++		 *  - we're serialized against set_special_state() by virtue of
++		 *    it disabling IRQs (this allows not taking ->pi_lock).
++		 */
++		if (!ttwu_state_match(p, state, &success))
++			goto out;
++
++		trace_sched_waking(p);
++		ttwu_do_wakeup(p);
++		goto out;
++	}
++
++	/*
++	 * If we are going to wake up a thread waiting for CONDITION we
++	 * need to ensure that CONDITION=1 done by the caller can not be
++	 * reordered with p->state check below. This pairs with smp_store_mb()
++	 * in set_current_state() that the waiting thread does.
++	 */
++	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
++		smp_mb__after_spinlock();
++		if (!ttwu_state_match(p, state, &success))
++			break;
++
++		trace_sched_waking(p);
++
++		/*
++		 * Ensure we load p->on_rq _after_ p->state, otherwise it would
++		 * be possible to, falsely, observe p->on_rq == 0 and get stuck
++		 * in smp_cond_load_acquire() below.
++		 *
++		 * sched_ttwu_pending()			try_to_wake_up()
++		 *   STORE p->on_rq = 1			  LOAD p->state
++		 *   UNLOCK rq->lock
++		 *
++		 * __schedule() (switch to task 'p')
++		 *   LOCK rq->lock			  smp_rmb();
++		 *   smp_mb__after_spinlock();
++		 *   UNLOCK rq->lock
++		 *
++		 * [task p]
++		 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
++		 *
++		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
++		 * __schedule().  See the comment for smp_mb__after_spinlock().
++		 *
++		 * A similar smp_rmb() lives in __task_needs_rq_lock().
++		 */
++		smp_rmb();
++		if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
++			break;
++
++#ifdef CONFIG_SMP
++		/*
++		 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
++		 * possible to, falsely, observe p->on_cpu == 0.
++		 *
++		 * One must be running (->on_cpu == 1) in order to remove oneself
++		 * from the runqueue.
++		 *
++		 * __schedule() (switch to task 'p')	try_to_wake_up()
++		 *   STORE p->on_cpu = 1		  LOAD p->on_rq
++		 *   UNLOCK rq->lock
++		 *
++		 * __schedule() (put 'p' to sleep)
++		 *   LOCK rq->lock			  smp_rmb();
++		 *   smp_mb__after_spinlock();
++		 *   STORE p->on_rq = 0			  LOAD p->on_cpu
++		 *
++		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
++		 * __schedule().  See the comment for smp_mb__after_spinlock().
++		 *
++		 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
++		 * schedule()'s deactivate_task() has 'happened' and p will no longer
++		 * care about it's own p->state. See the comment in __schedule().
++		 */
++		smp_acquire__after_ctrl_dep();
++
++		/*
++		 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
++		 * == 0), which means we need to do an enqueue, change p->state to
++		 * TASK_WAKING such that we can unlock p->pi_lock before doing the
++		 * enqueue, such as ttwu_queue_wakelist().
++		 */
++		WRITE_ONCE(p->__state, TASK_WAKING);
++
++		/*
++		 * If the owning (remote) CPU is still in the middle of schedule() with
++		 * this task as prev, considering queueing p on the remote CPUs wake_list
++		 * which potentially sends an IPI instead of spinning on p->on_cpu to
++		 * let the waker make forward progress. This is safe because IRQs are
++		 * disabled and the IPI will deliver after on_cpu is cleared.
++		 *
++		 * Ensure we load task_cpu(p) after p->on_cpu:
++		 *
++		 * set_task_cpu(p, cpu);
++		 *   STORE p->cpu = @cpu
++		 * __schedule() (switch to task 'p')
++		 *   LOCK rq->lock
++		 *   smp_mb__after_spin_lock()          smp_cond_load_acquire(&p->on_cpu)
++		 *   STORE p->on_cpu = 1                LOAD p->cpu
++		 *
++		 * to ensure we observe the correct CPU on which the task is currently
++		 * scheduling.
++		 */
++		if (smp_load_acquire(&p->on_cpu) &&
++		    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
++			break;
++
++		/*
++		 * If the owning (remote) CPU is still in the middle of schedule() with
++		 * this task as prev, wait until it's done referencing the task.
++		 *
++		 * Pairs with the smp_store_release() in finish_task().
++		 *
++		 * This ensures that tasks getting woken will be fully ordered against
++		 * their previous state and preserve Program Order.
++		 */
++		smp_cond_load_acquire(&p->on_cpu, !VAL);
++
++		sched_task_ttwu(p);
++
++		if ((wake_flags & WF_CURRENT_CPU) &&
++		    cpumask_test_cpu(smp_processor_id(), p->cpus_ptr))
++			cpu = smp_processor_id();
++		else
++			cpu = select_task_rq(p);
++
++		if (cpu != task_cpu(p)) {
++			if (p->in_iowait) {
++				delayacct_blkio_end(p);
++				atomic_dec(&task_rq(p)->nr_iowait);
++			}
++
++			wake_flags |= WF_MIGRATED;
++			set_task_cpu(p, cpu);
++		}
++#else
++		sched_task_ttwu(p);
++
++		cpu = task_cpu(p);
++#endif /* CONFIG_SMP */
++
++		ttwu_queue(p, cpu, wake_flags);
++	}
++out:
++	if (success)
++		ttwu_stat(p, task_cpu(p), wake_flags);
++
++	return success;
++}
++
++static bool __task_needs_rq_lock(struct task_struct *p)
++{
++	unsigned int state = READ_ONCE(p->__state);
++
++	/*
++	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
++	 * the task is blocked. Make sure to check @state since ttwu() can drop
++	 * locks at the end, see ttwu_queue_wakelist().
++	 */
++	if (state == TASK_RUNNING || state == TASK_WAKING)
++		return true;
++
++	/*
++	 * Ensure we load p->on_rq after p->__state, otherwise it would be
++	 * possible to, falsely, observe p->on_rq == 0.
++	 *
++	 * See try_to_wake_up() for a longer comment.
++	 */
++	smp_rmb();
++	if (p->on_rq)
++		return true;
++
++#ifdef CONFIG_SMP
++	/*
++	 * Ensure the task has finished __schedule() and will not be referenced
++	 * anymore. Again, see try_to_wake_up() for a longer comment.
++	 */
++	smp_rmb();
++	smp_cond_load_acquire(&p->on_cpu, !VAL);
++#endif
++
++	return false;
++}
++
++/**
++ * task_call_func - Invoke a function on task in fixed state
++ * @p: Process for which the function is to be invoked, can be @current.
++ * @func: Function to invoke.
++ * @arg: Argument to function.
++ *
++ * Fix the task in it's current state by avoiding wakeups and or rq operations
++ * and call @func(@arg) on it.  This function can use task_is_runnable() and
++ * task_curr() to work out what the state is, if required.  Given that @func
++ * can be invoked with a runqueue lock held, it had better be quite
++ * lightweight.
++ *
++ * Returns:
++ *   Whatever @func returns
++ */
++int task_call_func(struct task_struct *p, task_call_f func, void *arg)
++{
++	struct rq *rq = NULL;
++	struct rq_flags rf;
++	int ret;
++
++	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
++
++	if (__task_needs_rq_lock(p))
++		rq = __task_rq_lock(p, &rf);
++
++	/*
++	 * At this point the task is pinned; either:
++	 *  - blocked and we're holding off wakeups      (pi->lock)
++	 *  - woken, and we're holding off enqueue       (rq->lock)
++	 *  - queued, and we're holding off schedule     (rq->lock)
++	 *  - running, and we're holding off de-schedule (rq->lock)
++	 *
++	 * The called function (@func) can use: task_curr(), p->on_rq and
++	 * p->__state to differentiate between these states.
++	 */
++	ret = func(p, arg);
++
++	if (rq)
++		__task_rq_unlock(rq, &rf);
++
++	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
++	return ret;
++}
++
++/**
++ * cpu_curr_snapshot - Return a snapshot of the currently running task
++ * @cpu: The CPU on which to snapshot the task.
++ *
++ * Returns the task_struct pointer of the task "currently" running on
++ * the specified CPU.  If the same task is running on that CPU throughout,
++ * the return value will be a pointer to that task's task_struct structure.
++ * If the CPU did any context switches even vaguely concurrently with the
++ * execution of this function, the return value will be a pointer to the
++ * task_struct structure of a randomly chosen task that was running on
++ * that CPU somewhere around the time that this function was executing.
++ *
++ * If the specified CPU was offline, the return value is whatever it
++ * is, perhaps a pointer to the task_struct structure of that CPU's idle
++ * task, but there is no guarantee.  Callers wishing a useful return
++ * value must take some action to ensure that the specified CPU remains
++ * online throughout.
++ *
++ * This function executes full memory barriers before and after fetching
++ * the pointer, which permits the caller to confine this function's fetch
++ * with respect to the caller's accesses to other shared variables.
++ */
++struct task_struct *cpu_curr_snapshot(int cpu)
++{
++	struct task_struct *t;
++
++	smp_mb(); /* Pairing determined by caller's synchronization design. */
++	t = rcu_dereference(cpu_curr(cpu));
++	smp_mb(); /* Pairing determined by caller's synchronization design. */
++	return t;
++}
++
++/**
++ * wake_up_process - Wake up a specific process
++ * @p: The process to be woken up.
++ *
++ * Attempt to wake up the nominated process and move it to the set of runnable
++ * processes.
++ *
++ * Return: 1 if the process was woken up, 0 if it was already running.
++ *
++ * This function executes a full memory barrier before accessing the task state.
++ */
++int wake_up_process(struct task_struct *p)
++{
++	return try_to_wake_up(p, TASK_NORMAL, 0);
++}
++EXPORT_SYMBOL(wake_up_process);
++
++int wake_up_state(struct task_struct *p, unsigned int state)
++{
++	return try_to_wake_up(p, state, 0);
++}
++
++/*
++ * Perform scheduler related setup for a newly forked process p.
++ * p is forked by current.
++ *
++ * __sched_fork() is basic setup used by init_idle() too:
++ */
++static inline void __sched_fork(unsigned long clone_flags, struct task_struct *p)
++{
++	p->on_rq			= 0;
++	p->on_cpu			= 0;
++	p->utime			= 0;
++	p->stime			= 0;
++	p->sched_time			= 0;
++
++#ifdef CONFIG_SCHEDSTATS
++	/* Even if schedstat is disabled, there should not be garbage */
++	memset(&p->stats, 0, sizeof(p->stats));
++#endif
++
++#ifdef CONFIG_PREEMPT_NOTIFIERS
++	INIT_HLIST_HEAD(&p->preempt_notifiers);
++#endif
++
++#ifdef CONFIG_COMPACTION
++	p->capture_control = NULL;
++#endif
++#ifdef CONFIG_SMP
++	p->wake_entry.u_flags = CSD_TYPE_TTWU;
++#endif
++	init_sched_mm_cid(p);
++}
++
++/*
++ * fork()/clone()-time setup:
++ */
++int sched_fork(unsigned long clone_flags, struct task_struct *p)
++{
++	__sched_fork(clone_flags, p);
++	/*
++	 * We mark the process as NEW here. This guarantees that
++	 * nobody will actually run it, and a signal or other external
++	 * event cannot wake it up and insert it on the runqueue either.
++	 */
++	p->__state = TASK_NEW;
++
++	/*
++	 * Make sure we do not leak PI boosting priority to the child.
++	 */
++	p->prio = current->normal_prio;
++
++	/*
++	 * Revert to default priority/policy on fork if requested.
++	 */
++	if (unlikely(p->sched_reset_on_fork)) {
++		if (task_has_rt_policy(p)) {
++			p->policy = SCHED_NORMAL;
++			p->static_prio = NICE_TO_PRIO(0);
++			p->rt_priority = 0;
++		} else if (PRIO_TO_NICE(p->static_prio) < 0)
++			p->static_prio = NICE_TO_PRIO(0);
++
++		p->prio = p->normal_prio = p->static_prio;
++
++		/*
++		 * We don't need the reset flag anymore after the fork. It has
++		 * fulfilled its duty:
++		 */
++		p->sched_reset_on_fork = 0;
++	}
++
++#ifdef CONFIG_SCHED_INFO
++	if (unlikely(sched_info_on()))
++		memset(&p->sched_info, 0, sizeof(p->sched_info));
++#endif
++	init_task_preempt_count(p);
++
++	return 0;
++}
++
++int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
++{
++	unsigned long flags;
++	struct rq *rq;
++
++	/*
++	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
++	 * required yet, but lockdep gets upset if rules are violated.
++	 */
++	raw_spin_lock_irqsave(&p->pi_lock, flags);
++	/*
++	 * Share the timeslice between parent and child, thus the
++	 * total amount of pending timeslices in the system doesn't change,
++	 * resulting in more scheduling fairness.
++	 */
++	rq = this_rq();
++	raw_spin_lock(&rq->lock);
++
++	rq->curr->time_slice /= 2;
++	p->time_slice = rq->curr->time_slice;
++#ifdef CONFIG_SCHED_HRTICK
++	hrtick_start(rq, rq->curr->time_slice);
++#endif
++
++	if (p->time_slice < RESCHED_NS) {
++		p->time_slice = sysctl_sched_base_slice;
++		resched_curr(rq);
++	}
++	sched_task_fork(p, rq);
++	raw_spin_unlock(&rq->lock);
++
++	rseq_migrate(p);
++	/*
++	 * We're setting the CPU for the first time, we don't migrate,
++	 * so use __set_task_cpu().
++	 */
++	__set_task_cpu(p, smp_processor_id());
++	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
++
++	return 0;
++}
++
++void sched_cancel_fork(struct task_struct *p)
++{
++}
++
++void sched_post_fork(struct task_struct *p)
++{
++}
++
++#ifdef CONFIG_SCHEDSTATS
++
++DEFINE_STATIC_KEY_FALSE(sched_schedstats);
++
++static void set_schedstats(bool enabled)
++{
++	if (enabled)
++		static_branch_enable(&sched_schedstats);
++	else
++		static_branch_disable(&sched_schedstats);
++}
++
++void force_schedstat_enabled(void)
++{
++	if (!schedstat_enabled()) {
++		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
++		static_branch_enable(&sched_schedstats);
++	}
++}
++
++static int __init setup_schedstats(char *str)
++{
++	int ret = 0;
++	if (!str)
++		goto out;
++
++	if (!strcmp(str, "enable")) {
++		set_schedstats(true);
++		ret = 1;
++	} else if (!strcmp(str, "disable")) {
++		set_schedstats(false);
++		ret = 1;
++	}
++out:
++	if (!ret)
++		pr_warn("Unable to parse schedstats=\n");
++
++	return ret;
++}
++__setup("schedstats=", setup_schedstats);
++
++#ifdef CONFIG_PROC_SYSCTL
++static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer,
++		size_t *lenp, loff_t *ppos)
++{
++	struct ctl_table t;
++	int err;
++	int state = static_branch_likely(&sched_schedstats);
++
++	if (write && !capable(CAP_SYS_ADMIN))
++		return -EPERM;
++
++	t = *table;
++	t.data = &state;
++	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
++	if (err < 0)
++		return err;
++	if (write)
++		set_schedstats(state);
++	return err;
++}
++
++static struct ctl_table sched_core_sysctls[] = {
++	{
++		.procname       = "sched_schedstats",
++		.data           = NULL,
++		.maxlen         = sizeof(unsigned int),
++		.mode           = 0644,
++		.proc_handler   = sysctl_schedstats,
++		.extra1         = SYSCTL_ZERO,
++		.extra2         = SYSCTL_ONE,
++	},
++};
++static int __init sched_core_sysctl_init(void)
++{
++	register_sysctl_init("kernel", sched_core_sysctls);
++	return 0;
++}
++late_initcall(sched_core_sysctl_init);
++#endif /* CONFIG_PROC_SYSCTL */
++#endif /* CONFIG_SCHEDSTATS */
++
++/*
++ * wake_up_new_task - wake up a newly created task for the first time.
++ *
++ * This function will do some initial scheduler statistics housekeeping
++ * that must be done for every newly created context, then puts the task
++ * on the runqueue and wakes it.
++ */
++void wake_up_new_task(struct task_struct *p)
++{
++	unsigned long flags;
++	struct rq *rq;
++
++	raw_spin_lock_irqsave(&p->pi_lock, flags);
++	WRITE_ONCE(p->__state, TASK_RUNNING);
++	rq = cpu_rq(select_task_rq(p));
++#ifdef CONFIG_SMP
++	rseq_migrate(p);
++	/*
++	 * Fork balancing, do it here and not earlier because:
++	 * - cpus_ptr can change in the fork path
++	 * - any previously selected CPU might disappear through hotplug
++	 *
++	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
++	 * as we're not fully set-up yet.
++	 */
++	__set_task_cpu(p, cpu_of(rq));
++#endif
++
++	raw_spin_lock(&rq->lock);
++	update_rq_clock(rq);
++
++	activate_task(p, rq);
++	trace_sched_wakeup_new(p);
++	wakeup_preempt(rq);
++
++	raw_spin_unlock(&rq->lock);
++	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
++}
++
++#ifdef CONFIG_PREEMPT_NOTIFIERS
++
++static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
++
++void preempt_notifier_inc(void)
++{
++	static_branch_inc(&preempt_notifier_key);
++}
++EXPORT_SYMBOL_GPL(preempt_notifier_inc);
++
++void preempt_notifier_dec(void)
++{
++	static_branch_dec(&preempt_notifier_key);
++}
++EXPORT_SYMBOL_GPL(preempt_notifier_dec);
++
++/**
++ * preempt_notifier_register - tell me when current is being preempted & rescheduled
++ * @notifier: notifier struct to register
++ */
++void preempt_notifier_register(struct preempt_notifier *notifier)
++{
++	if (!static_branch_unlikely(&preempt_notifier_key))
++		WARN(1, "registering preempt_notifier while notifiers disabled\n");
++
++	hlist_add_head(&notifier->link, &current->preempt_notifiers);
++}
++EXPORT_SYMBOL_GPL(preempt_notifier_register);
++
++/**
++ * preempt_notifier_unregister - no longer interested in preemption notifications
++ * @notifier: notifier struct to unregister
++ *
++ * This is *not* safe to call from within a preemption notifier.
++ */
++void preempt_notifier_unregister(struct preempt_notifier *notifier)
++{
++	hlist_del(&notifier->link);
++}
++EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
++
++static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
++{
++	struct preempt_notifier *notifier;
++
++	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
++		notifier->ops->sched_in(notifier, raw_smp_processor_id());
++}
++
++static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
++{
++	if (static_branch_unlikely(&preempt_notifier_key))
++		__fire_sched_in_preempt_notifiers(curr);
++}
++
++static void
++__fire_sched_out_preempt_notifiers(struct task_struct *curr,
++				   struct task_struct *next)
++{
++	struct preempt_notifier *notifier;
++
++	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
++		notifier->ops->sched_out(notifier, next);
++}
++
++static __always_inline void
++fire_sched_out_preempt_notifiers(struct task_struct *curr,
++				 struct task_struct *next)
++{
++	if (static_branch_unlikely(&preempt_notifier_key))
++		__fire_sched_out_preempt_notifiers(curr, next);
++}
++
++#else /* !CONFIG_PREEMPT_NOTIFIERS */
++
++static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
++{
++}
++
++static inline void
++fire_sched_out_preempt_notifiers(struct task_struct *curr,
++				 struct task_struct *next)
++{
++}
++
++#endif /* CONFIG_PREEMPT_NOTIFIERS */
++
++static inline void prepare_task(struct task_struct *next)
++{
++	/*
++	 * Claim the task as running, we do this before switching to it
++	 * such that any running task will have this set.
++	 *
++	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
++	 * its ordering comment.
++	 */
++	WRITE_ONCE(next->on_cpu, 1);
++}
++
++static inline void finish_task(struct task_struct *prev)
++{
++#ifdef CONFIG_SMP
++	/*
++	 * This must be the very last reference to @prev from this CPU. After
++	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
++	 * must ensure this doesn't happen until the switch is completely
++	 * finished.
++	 *
++	 * In particular, the load of prev->state in finish_task_switch() must
++	 * happen before this.
++	 *
++	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
++	 */
++	smp_store_release(&prev->on_cpu, 0);
++#else
++	prev->on_cpu = 0;
++#endif
++}
++
++#ifdef CONFIG_SMP
++
++static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
++{
++	void (*func)(struct rq *rq);
++	struct balance_callback *next;
++
++	lockdep_assert_held(&rq->lock);
++
++	while (head) {
++		func = (void (*)(struct rq *))head->func;
++		next = head->next;
++		head->next = NULL;
++		head = next;
++
++		func(rq);
++	}
++}
++
++static void balance_push(struct rq *rq);
++
++/*
++ * balance_push_callback is a right abuse of the callback interface and plays
++ * by significantly different rules.
++ *
++ * Where the normal balance_callback's purpose is to be ran in the same context
++ * that queued it (only later, when it's safe to drop rq->lock again),
++ * balance_push_callback is specifically targeted at __schedule().
++ *
++ * This abuse is tolerated because it places all the unlikely/odd cases behind
++ * a single test, namely: rq->balance_callback == NULL.
++ */
++struct balance_callback balance_push_callback = {
++	.next = NULL,
++	.func = balance_push,
++};
++
++static inline struct balance_callback *
++__splice_balance_callbacks(struct rq *rq, bool split)
++{
++	struct balance_callback *head = rq->balance_callback;
++
++	if (likely(!head))
++		return NULL;
++
++	lockdep_assert_rq_held(rq);
++	/*
++	 * Must not take balance_push_callback off the list when
++	 * splice_balance_callbacks() and balance_callbacks() are not
++	 * in the same rq->lock section.
++	 *
++	 * In that case it would be possible for __schedule() to interleave
++	 * and observe the list empty.
++	 */
++	if (split && head == &balance_push_callback)
++		head = NULL;
++	else
++		rq->balance_callback = NULL;
++
++	return head;
++}
++
++struct balance_callback *splice_balance_callbacks(struct rq *rq)
++{
++	return __splice_balance_callbacks(rq, true);
++}
++
++static void __balance_callbacks(struct rq *rq)
++{
++	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
++}
++
++void balance_callbacks(struct rq *rq, struct balance_callback *head)
++{
++	unsigned long flags;
++
++	if (unlikely(head)) {
++		raw_spin_lock_irqsave(&rq->lock, flags);
++		do_balance_callbacks(rq, head);
++		raw_spin_unlock_irqrestore(&rq->lock, flags);
++	}
++}
++
++#else
++
++static inline void __balance_callbacks(struct rq *rq)
++{
++}
++#endif
++
++static inline void
++prepare_lock_switch(struct rq *rq, struct task_struct *next)
++{
++	/*
++	 * Since the runqueue lock will be released by the next
++	 * task (which is an invalid locking op but in the case
++	 * of the scheduler it's an obvious special-case), so we
++	 * do an early lockdep release here:
++	 */
++	spin_release(&rq->lock.dep_map, _THIS_IP_);
++#ifdef CONFIG_DEBUG_SPINLOCK
++	/* this is a valid case when another task releases the spinlock */
++	rq->lock.owner = next;
++#endif
++}
++
++static inline void finish_lock_switch(struct rq *rq)
++{
++	/*
++	 * If we are tracking spinlock dependencies then we have to
++	 * fix up the runqueue lock - which gets 'carried over' from
++	 * prev into current:
++	 */
++	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
++	__balance_callbacks(rq);
++	raw_spin_unlock_irq(&rq->lock);
++}
++
++/*
++ * NOP if the arch has not defined these:
++ */
++
++#ifndef prepare_arch_switch
++# define prepare_arch_switch(next)	do { } while (0)
++#endif
++
++#ifndef finish_arch_post_lock_switch
++# define finish_arch_post_lock_switch()	do { } while (0)
++#endif
++
++static inline void kmap_local_sched_out(void)
++{
++#ifdef CONFIG_KMAP_LOCAL
++	if (unlikely(current->kmap_ctrl.idx))
++		__kmap_local_sched_out();
++#endif
++}
++
++static inline void kmap_local_sched_in(void)
++{
++#ifdef CONFIG_KMAP_LOCAL
++	if (unlikely(current->kmap_ctrl.idx))
++		__kmap_local_sched_in();
++#endif
++}
++
++/**
++ * prepare_task_switch - prepare to switch tasks
++ * @rq: the runqueue preparing to switch
++ * @next: the task we are going to switch to.
++ *
++ * This is called with the rq lock held and interrupts off. It must
++ * be paired with a subsequent finish_task_switch after the context
++ * switch.
++ *
++ * prepare_task_switch sets up locking and calls architecture specific
++ * hooks.
++ */
++static inline void
++prepare_task_switch(struct rq *rq, struct task_struct *prev,
++		    struct task_struct *next)
++{
++	kcov_prepare_switch(prev);
++	sched_info_switch(rq, prev, next);
++	perf_event_task_sched_out(prev, next);
++	rseq_preempt(prev);
++	fire_sched_out_preempt_notifiers(prev, next);
++	kmap_local_sched_out();
++	prepare_task(next);
++	prepare_arch_switch(next);
++}
++
++/**
++ * finish_task_switch - clean up after a task-switch
++ * @rq: runqueue associated with task-switch
++ * @prev: the thread we just switched away from.
++ *
++ * finish_task_switch must be called after the context switch, paired
++ * with a prepare_task_switch call before the context switch.
++ * finish_task_switch will reconcile locking set up by prepare_task_switch,
++ * and do any other architecture-specific cleanup actions.
++ *
++ * Note that we may have delayed dropping an mm in context_switch(). If
++ * so, we finish that here outside of the runqueue lock.  (Doing it
++ * with the lock held can cause deadlocks; see schedule() for
++ * details.)
++ *
++ * The context switch have flipped the stack from under us and restored the
++ * local variables which were saved when this task called schedule() in the
++ * past. 'prev == current' is still correct but we need to recalculate this_rq
++ * because prev may have moved to another CPU.
++ */
++static struct rq *finish_task_switch(struct task_struct *prev)
++	__releases(rq->lock)
++{
++	struct rq *rq = this_rq();
++	struct mm_struct *mm = rq->prev_mm;
++	unsigned int prev_state;
++
++	/*
++	 * The previous task will have left us with a preempt_count of 2
++	 * because it left us after:
++	 *
++	 *	schedule()
++	 *	  preempt_disable();			// 1
++	 *	  __schedule()
++	 *	    raw_spin_lock_irq(&rq->lock)	// 2
++	 *
++	 * Also, see FORK_PREEMPT_COUNT.
++	 */
++	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
++		      "corrupted preempt_count: %s/%d/0x%x\n",
++		      current->comm, current->pid, preempt_count()))
++		preempt_count_set(FORK_PREEMPT_COUNT);
++
++	rq->prev_mm = NULL;
++
++	/*
++	 * A task struct has one reference for the use as "current".
++	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
++	 * schedule one last time. The schedule call will never return, and
++	 * the scheduled task must drop that reference.
++	 *
++	 * We must observe prev->state before clearing prev->on_cpu (in
++	 * finish_task), otherwise a concurrent wakeup can get prev
++	 * running on another CPU and we could rave with its RUNNING -> DEAD
++	 * transition, resulting in a double drop.
++	 */
++	prev_state = READ_ONCE(prev->__state);
++	vtime_task_switch(prev);
++	perf_event_task_sched_in(prev, current);
++	finish_task(prev);
++	tick_nohz_task_switch();
++	finish_lock_switch(rq);
++	finish_arch_post_lock_switch();
++	kcov_finish_switch(current);
++	/*
++	 * kmap_local_sched_out() is invoked with rq::lock held and
++	 * interrupts disabled. There is no requirement for that, but the
++	 * sched out code does not have an interrupt enabled section.
++	 * Restoring the maps on sched in does not require interrupts being
++	 * disabled either.
++	 */
++	kmap_local_sched_in();
++
++	fire_sched_in_preempt_notifiers(current);
++	/*
++	 * When switching through a kernel thread, the loop in
++	 * membarrier_{private,global}_expedited() may have observed that
++	 * kernel thread and not issued an IPI. It is therefore possible to
++	 * schedule between user->kernel->user threads without passing though
++	 * switch_mm(). Membarrier requires a barrier after storing to
++	 * rq->curr, before returning to userspace, so provide them here:
++	 *
++	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
++	 *   provided by mmdrop(),
++	 * - a sync_core for SYNC_CORE.
++	 */
++	if (mm) {
++		membarrier_mm_sync_core_before_usermode(mm);
++		mmdrop_sched(mm);
++	}
++	if (unlikely(prev_state == TASK_DEAD)) {
++		/* Task is done with its stack. */
++		put_task_stack(prev);
++
++		put_task_struct_rcu_user(prev);
++	}
++
++	return rq;
++}
++
++/**
++ * schedule_tail - first thing a freshly forked thread must call.
++ * @prev: the thread we just switched away from.
++ */
++asmlinkage __visible void schedule_tail(struct task_struct *prev)
++	__releases(rq->lock)
++{
++	/*
++	 * New tasks start with FORK_PREEMPT_COUNT, see there and
++	 * finish_task_switch() for details.
++	 *
++	 * finish_task_switch() will drop rq->lock() and lower preempt_count
++	 * and the preempt_enable() will end up enabling preemption (on
++	 * PREEMPT_COUNT kernels).
++	 */
++
++	finish_task_switch(prev);
++	preempt_enable();
++
++	if (current->set_child_tid)
++		put_user(task_pid_vnr(current), current->set_child_tid);
++
++	calculate_sigpending();
++}
++
++/*
++ * context_switch - switch to the new MM and the new thread's register state.
++ */
++static __always_inline struct rq *
++context_switch(struct rq *rq, struct task_struct *prev,
++	       struct task_struct *next)
++{
++	prepare_task_switch(rq, prev, next);
++
++	/*
++	 * For paravirt, this is coupled with an exit in switch_to to
++	 * combine the page table reload and the switch backend into
++	 * one hypercall.
++	 */
++	arch_start_context_switch(prev);
++
++	/*
++	 * kernel -> kernel   lazy + transfer active
++	 *   user -> kernel   lazy + mmgrab() active
++	 *
++	 * kernel ->   user   switch + mmdrop() active
++	 *   user ->   user   switch
++	 *
++	 * switch_mm_cid() needs to be updated if the barriers provided
++	 * by context_switch() are modified.
++	 */
++	if (!next->mm) {                                // to kernel
++		enter_lazy_tlb(prev->active_mm, next);
++
++		next->active_mm = prev->active_mm;
++		if (prev->mm)                           // from user
++			mmgrab(prev->active_mm);
++		else
++			prev->active_mm = NULL;
++	} else {                                        // to user
++		membarrier_switch_mm(rq, prev->active_mm, next->mm);
++		/*
++		 * sys_membarrier() requires an smp_mb() between setting
++		 * rq->curr / membarrier_switch_mm() and returning to userspace.
++		 *
++		 * The below provides this either through switch_mm(), or in
++		 * case 'prev->active_mm == next->mm' through
++		 * finish_task_switch()'s mmdrop().
++		 */
++		switch_mm_irqs_off(prev->active_mm, next->mm, next);
++		lru_gen_use_mm(next->mm);
++
++		if (!prev->mm) {                        // from kernel
++			/* will mmdrop() in finish_task_switch(). */
++			rq->prev_mm = prev->active_mm;
++			prev->active_mm = NULL;
++		}
++	}
++
++	/* switch_mm_cid() requires the memory barriers above. */
++	switch_mm_cid(rq, prev, next);
++
++	prepare_lock_switch(rq, next);
++
++	/* Here we just switch the register state and the stack. */
++	switch_to(prev, next, prev);
++	barrier();
++
++	return finish_task_switch(prev);
++}
++
++/*
++ * nr_running, nr_uninterruptible and nr_context_switches:
++ *
++ * externally visible scheduler statistics: current number of runnable
++ * threads, total number of context switches performed since bootup.
++ */
++unsigned int nr_running(void)
++{
++	unsigned int i, sum = 0;
++
++	for_each_online_cpu(i)
++		sum += cpu_rq(i)->nr_running;
++
++	return sum;
++}
++
++/*
++ * Check if only the current task is running on the CPU.
++ *
++ * Caution: this function does not check that the caller has disabled
++ * preemption, thus the result might have a time-of-check-to-time-of-use
++ * race.  The caller is responsible to use it correctly, for example:
++ *
++ * - from a non-preemptible section (of course)
++ *
++ * - from a thread that is bound to a single CPU
++ *
++ * - in a loop with very short iterations (e.g. a polling loop)
++ */
++bool single_task_running(void)
++{
++	return raw_rq()->nr_running == 1;
++}
++EXPORT_SYMBOL(single_task_running);
++
++unsigned long long nr_context_switches_cpu(int cpu)
++{
++	return cpu_rq(cpu)->nr_switches;
++}
++
++unsigned long long nr_context_switches(void)
++{
++	int i;
++	unsigned long long sum = 0;
++
++	for_each_possible_cpu(i)
++		sum += cpu_rq(i)->nr_switches;
++
++	return sum;
++}
++
++/*
++ * Consumers of these two interfaces, like for example the cpuidle menu
++ * governor, are using nonsensical data. Preferring shallow idle state selection
++ * for a CPU that has IO-wait which might not even end up running the task when
++ * it does become runnable.
++ */
++
++unsigned int nr_iowait_cpu(int cpu)
++{
++	return atomic_read(&cpu_rq(cpu)->nr_iowait);
++}
++
++/*
++ * IO-wait accounting, and how it's mostly bollocks (on SMP).
++ *
++ * The idea behind IO-wait account is to account the idle time that we could
++ * have spend running if it were not for IO. That is, if we were to improve the
++ * storage performance, we'd have a proportional reduction in IO-wait time.
++ *
++ * This all works nicely on UP, where, when a task blocks on IO, we account
++ * idle time as IO-wait, because if the storage were faster, it could've been
++ * running and we'd not be idle.
++ *
++ * This has been extended to SMP, by doing the same for each CPU. This however
++ * is broken.
++ *
++ * Imagine for instance the case where two tasks block on one CPU, only the one
++ * CPU will have IO-wait accounted, while the other has regular idle. Even
++ * though, if the storage were faster, both could've ran at the same time,
++ * utilising both CPUs.
++ *
++ * This means, that when looking globally, the current IO-wait accounting on
++ * SMP is a lower bound, by reason of under accounting.
++ *
++ * Worse, since the numbers are provided per CPU, they are sometimes
++ * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
++ * associated with any one particular CPU, it can wake to another CPU than it
++ * blocked on. This means the per CPU IO-wait number is meaningless.
++ *
++ * Task CPU affinities can make all that even more 'interesting'.
++ */
++
++unsigned int nr_iowait(void)
++{
++	unsigned int i, sum = 0;
++
++	for_each_possible_cpu(i)
++		sum += nr_iowait_cpu(i);
++
++	return sum;
++}
++
++#ifdef CONFIG_SMP
++
++/*
++ * sched_exec - execve() is a valuable balancing opportunity, because at
++ * this point the task has the smallest effective memory and cache
++ * footprint.
++ */
++void sched_exec(void)
++{
++}
++
++#endif
++
++DEFINE_PER_CPU(struct kernel_stat, kstat);
++DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
++
++EXPORT_PER_CPU_SYMBOL(kstat);
++EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
++
++static inline void update_curr(struct rq *rq, struct task_struct *p)
++{
++	s64 ns = rq->clock_task - p->last_ran;
++
++	p->sched_time += ns;
++	cgroup_account_cputime(p, ns);
++	account_group_exec_runtime(p, ns);
++
++	p->time_slice -= ns;
++	p->last_ran = rq->clock_task;
++}
++
++/*
++ * Return accounted runtime for the task.
++ * Return separately the current's pending runtime that have not been
++ * accounted yet.
++ */
++unsigned long long task_sched_runtime(struct task_struct *p)
++{
++	unsigned long flags;
++	struct rq *rq;
++	raw_spinlock_t *lock;
++	u64 ns;
++
++#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
++	/*
++	 * 64-bit doesn't need locks to atomically read a 64-bit value.
++	 * So we have a optimization chance when the task's delta_exec is 0.
++	 * Reading ->on_cpu is racy, but this is OK.
++	 *
++	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
++	 * If we race with it entering CPU, unaccounted time is 0. This is
++	 * indistinguishable from the read occurring a few cycles earlier.
++	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
++	 * been accounted, so we're correct here as well.
++	 */
++	if (!p->on_cpu || !task_on_rq_queued(p))
++		return tsk_seruntime(p);
++#endif
++
++	rq = task_access_lock_irqsave(p, &lock, &flags);
++	/*
++	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
++	 * project cycles that may never be accounted to this
++	 * thread, breaking clock_gettime().
++	 */
++	if (p == rq->curr && task_on_rq_queued(p)) {
++		update_rq_clock(rq);
++		update_curr(rq, p);
++	}
++	ns = tsk_seruntime(p);
++	task_access_unlock_irqrestore(p, lock, &flags);
++
++	return ns;
++}
++
++/* This manages tasks that have run out of timeslice during a scheduler_tick */
++static inline void scheduler_task_tick(struct rq *rq)
++{
++	struct task_struct *p = rq->curr;
++
++	if (is_idle_task(p))
++		return;
++
++	update_curr(rq, p);
++	cpufreq_update_util(rq, 0);
++
++	/*
++	 * Tasks have less than RESCHED_NS of time slice left they will be
++	 * rescheduled.
++	 */
++	if (p->time_slice >= RESCHED_NS)
++		return;
++	set_tsk_need_resched(p);
++	set_preempt_need_resched();
++}
++
++#ifdef CONFIG_SCHED_DEBUG
++static u64 cpu_resched_latency(struct rq *rq)
++{
++	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
++	u64 resched_latency, now = rq_clock(rq);
++	static bool warned_once;
++
++	if (sysctl_resched_latency_warn_once && warned_once)
++		return 0;
++
++	if (!need_resched() || !latency_warn_ms)
++		return 0;
++
++	if (system_state == SYSTEM_BOOTING)
++		return 0;
++
++	if (!rq->last_seen_need_resched_ns) {
++		rq->last_seen_need_resched_ns = now;
++		rq->ticks_without_resched = 0;
++		return 0;
++	}
++
++	rq->ticks_without_resched++;
++	resched_latency = now - rq->last_seen_need_resched_ns;
++	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
++		return 0;
++
++	warned_once = true;
++
++	return resched_latency;
++}
++
++static int __init setup_resched_latency_warn_ms(char *str)
++{
++	long val;
++
++	if ((kstrtol(str, 0, &val))) {
++		pr_warn("Unable to set resched_latency_warn_ms\n");
++		return 1;
++	}
++
++	sysctl_resched_latency_warn_ms = val;
++	return 1;
++}
++__setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
++#else
++static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
++#endif /* CONFIG_SCHED_DEBUG */
++
++/*
++ * This function gets called by the timer code, with HZ frequency.
++ * We call it with interrupts disabled.
++ */
++void sched_tick(void)
++{
++	int cpu __maybe_unused = smp_processor_id();
++	struct rq *rq = cpu_rq(cpu);
++	struct task_struct *curr = rq->curr;
++	u64 resched_latency;
++
++	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
++		arch_scale_freq_tick();
++
++	sched_clock_tick();
++
++	raw_spin_lock(&rq->lock);
++	update_rq_clock(rq);
++
++	scheduler_task_tick(rq);
++	if (sched_feat(LATENCY_WARN))
++		resched_latency = cpu_resched_latency(rq);
++	calc_global_load_tick(rq);
++
++	task_tick_mm_cid(rq, rq->curr);
++
++	raw_spin_unlock(&rq->lock);
++
++	if (sched_feat(LATENCY_WARN) && resched_latency)
++		resched_latency_warn(cpu, resched_latency);
++
++	perf_event_task_tick();
++
++	if (curr->flags & PF_WQ_WORKER)
++		wq_worker_tick(curr);
++}
++
++#ifdef CONFIG_NO_HZ_FULL
++
++struct tick_work {
++	int			cpu;
++	atomic_t		state;
++	struct delayed_work	work;
++};
++/* Values for ->state, see diagram below. */
++#define TICK_SCHED_REMOTE_OFFLINE	0
++#define TICK_SCHED_REMOTE_OFFLINING	1
++#define TICK_SCHED_REMOTE_RUNNING	2
++
++/*
++ * State diagram for ->state:
++ *
++ *
++ *          TICK_SCHED_REMOTE_OFFLINE
++ *                    |   ^
++ *                    |   |
++ *                    |   | sched_tick_remote()
++ *                    |   |
++ *                    |   |
++ *                    +--TICK_SCHED_REMOTE_OFFLINING
++ *                    |   ^
++ *                    |   |
++ * sched_tick_start() |   | sched_tick_stop()
++ *                    |   |
++ *                    V   |
++ *          TICK_SCHED_REMOTE_RUNNING
++ *
++ *
++ * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
++ * and sched_tick_start() are happy to leave the state in RUNNING.
++ */
++
++static struct tick_work __percpu *tick_work_cpu;
++
++static void sched_tick_remote(struct work_struct *work)
++{
++	struct delayed_work *dwork = to_delayed_work(work);
++	struct tick_work *twork = container_of(dwork, struct tick_work, work);
++	int cpu = twork->cpu;
++	struct rq *rq = cpu_rq(cpu);
++	int os;
++
++	/*
++	 * Handle the tick only if it appears the remote CPU is running in full
++	 * dynticks mode. The check is racy by nature, but missing a tick or
++	 * having one too much is no big deal because the scheduler tick updates
++	 * statistics and checks timeslices in a time-independent way, regardless
++	 * of when exactly it is running.
++	 */
++	if (tick_nohz_tick_stopped_cpu(cpu)) {
++		guard(raw_spinlock_irqsave)(&rq->lock);
++		struct task_struct *curr = rq->curr;
++
++		if (cpu_online(cpu)) {
++			update_rq_clock(rq);
++
++			if (!is_idle_task(curr)) {
++				/*
++				 * Make sure the next tick runs within a
++				 * reasonable amount of time.
++				 */
++				u64 delta = rq_clock_task(rq) - curr->last_ran;
++				WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
++			}
++			scheduler_task_tick(rq);
++
++			calc_load_nohz_remote(rq);
++		}
++	}
++
++	/*
++	 * Run the remote tick once per second (1Hz). This arbitrary
++	 * frequency is large enough to avoid overload but short enough
++	 * to keep scheduler internal stats reasonably up to date.  But
++	 * first update state to reflect hotplug activity if required.
++	 */
++	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
++	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
++	if (os == TICK_SCHED_REMOTE_RUNNING)
++		queue_delayed_work(system_unbound_wq, dwork, HZ);
++}
++
++static void sched_tick_start(int cpu)
++{
++	int os;
++	struct tick_work *twork;
++
++	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
++		return;
++
++	WARN_ON_ONCE(!tick_work_cpu);
++
++	twork = per_cpu_ptr(tick_work_cpu, cpu);
++	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
++	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
++	if (os == TICK_SCHED_REMOTE_OFFLINE) {
++		twork->cpu = cpu;
++		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
++		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
++	}
++}
++
++#ifdef CONFIG_HOTPLUG_CPU
++static void sched_tick_stop(int cpu)
++{
++	struct tick_work *twork;
++	int os;
++
++	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
++		return;
++
++	WARN_ON_ONCE(!tick_work_cpu);
++
++	twork = per_cpu_ptr(tick_work_cpu, cpu);
++	/* There cannot be competing actions, but don't rely on stop-machine. */
++	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
++	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
++	/* Don't cancel, as this would mess up the state machine. */
++}
++#endif /* CONFIG_HOTPLUG_CPU */
++
++int __init sched_tick_offload_init(void)
++{
++	tick_work_cpu = alloc_percpu(struct tick_work);
++	BUG_ON(!tick_work_cpu);
++	return 0;
++}
++
++#else /* !CONFIG_NO_HZ_FULL */
++static inline void sched_tick_start(int cpu) { }
++static inline void sched_tick_stop(int cpu) { }
++#endif
++
++#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
++				defined(CONFIG_PREEMPT_TRACER))
++/*
++ * If the value passed in is equal to the current preempt count
++ * then we just disabled preemption. Start timing the latency.
++ */
++static inline void preempt_latency_start(int val)
++{
++	if (preempt_count() == val) {
++		unsigned long ip = get_lock_parent_ip();
++#ifdef CONFIG_DEBUG_PREEMPT
++		current->preempt_disable_ip = ip;
++#endif
++		trace_preempt_off(CALLER_ADDR0, ip);
++	}
++}
++
++void preempt_count_add(int val)
++{
++#ifdef CONFIG_DEBUG_PREEMPT
++	/*
++	 * Underflow?
++	 */
++	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
++		return;
++#endif
++	__preempt_count_add(val);
++#ifdef CONFIG_DEBUG_PREEMPT
++	/*
++	 * Spinlock count overflowing soon?
++	 */
++	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
++				PREEMPT_MASK - 10);
++#endif
++	preempt_latency_start(val);
++}
++EXPORT_SYMBOL(preempt_count_add);
++NOKPROBE_SYMBOL(preempt_count_add);
++
++/*
++ * If the value passed in equals to the current preempt count
++ * then we just enabled preemption. Stop timing the latency.
++ */
++static inline void preempt_latency_stop(int val)
++{
++	if (preempt_count() == val)
++		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
++}
++
++void preempt_count_sub(int val)
++{
++#ifdef CONFIG_DEBUG_PREEMPT
++	/*
++	 * Underflow?
++	 */
++	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
++		return;
++	/*
++	 * Is the spinlock portion underflowing?
++	 */
++	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
++			!(preempt_count() & PREEMPT_MASK)))
++		return;
++#endif
++
++	preempt_latency_stop(val);
++	__preempt_count_sub(val);
++}
++EXPORT_SYMBOL(preempt_count_sub);
++NOKPROBE_SYMBOL(preempt_count_sub);
++
++#else
++static inline void preempt_latency_start(int val) { }
++static inline void preempt_latency_stop(int val) { }
++#endif
++
++static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
++{
++#ifdef CONFIG_DEBUG_PREEMPT
++	return p->preempt_disable_ip;
++#else
++	return 0;
++#endif
++}
++
++/*
++ * Print scheduling while atomic bug:
++ */
++static noinline void __schedule_bug(struct task_struct *prev)
++{
++	/* Save this before calling printk(), since that will clobber it */
++	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
++
++	if (oops_in_progress)
++		return;
++
++	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
++		prev->comm, prev->pid, preempt_count());
++
++	debug_show_held_locks(prev);
++	print_modules();
++	if (irqs_disabled())
++		print_irqtrace_events(prev);
++	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
++		pr_err("Preemption disabled at:");
++		print_ip_sym(KERN_ERR, preempt_disable_ip);
++	}
++	check_panic_on_warn("scheduling while atomic");
++
++	dump_stack();
++	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
++}
++
++/*
++ * Various schedule()-time debugging checks and statistics:
++ */
++static inline void schedule_debug(struct task_struct *prev, bool preempt)
++{
++#ifdef CONFIG_SCHED_STACK_END_CHECK
++	if (task_stack_end_corrupted(prev))
++		panic("corrupted stack end detected inside scheduler\n");
++
++	if (task_scs_end_corrupted(prev))
++		panic("corrupted shadow stack detected inside scheduler\n");
++#endif
++
++#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
++	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
++		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
++			prev->comm, prev->pid, prev->non_block_count);
++		dump_stack();
++		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
++	}
++#endif
++
++	if (unlikely(in_atomic_preempt_off())) {
++		__schedule_bug(prev);
++		preempt_count_set(PREEMPT_DISABLED);
++	}
++	rcu_sleep_check();
++	SCHED_WARN_ON(ct_state() == CT_STATE_USER);
++
++	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
++
++	schedstat_inc(this_rq()->sched_count);
++}
++
++#ifdef ALT_SCHED_DEBUG
++void alt_sched_debug(void)
++{
++	printk(KERN_INFO "sched: pending: 0x%04lx, idle: 0x%04lx, sg_idle: 0x%04lx,"
++	       " ecore_idle: 0x%04lx\n",
++	       sched_rq_pending_mask.bits[0],
++	       sched_idle_mask->bits[0],
++	       sched_pcore_idle_mask->bits[0],
++	       sched_ecore_idle_mask->bits[0]);
++}
++#endif
++
++#ifdef	CONFIG_SMP
++
++#ifdef CONFIG_PREEMPT_RT
++#define SCHED_NR_MIGRATE_BREAK 8
++#else
++#define SCHED_NR_MIGRATE_BREAK 32
++#endif
++
++const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
++
++/*
++ * Migrate pending tasks in @rq to @dest_cpu
++ */
++static inline int
++migrate_pending_tasks(struct rq *rq, struct rq *dest_rq, const int dest_cpu)
++{
++	struct task_struct *p, *skip = rq->curr;
++	int nr_migrated = 0;
++	int nr_tries = min(rq->nr_running / 2, sysctl_sched_nr_migrate);
++
++	/* WA to check rq->curr is still on rq */
++	if (!task_on_rq_queued(skip))
++		return 0;
++
++	while (skip != rq->idle && nr_tries &&
++	       (p = sched_rq_next_task(skip, rq)) != rq->idle) {
++		skip = sched_rq_next_task(p, rq);
++		if (cpumask_test_cpu(dest_cpu, p->cpus_ptr)) {
++			__SCHED_DEQUEUE_TASK(p, rq, 0, );
++			set_task_cpu(p, dest_cpu);
++			sched_task_sanity_check(p, dest_rq);
++			sched_mm_cid_migrate_to(dest_rq, p);
++			__SCHED_ENQUEUE_TASK(p, dest_rq, 0, );
++			nr_migrated++;
++		}
++		nr_tries--;
++	}
++
++	return nr_migrated;
++}
++
++static inline int take_other_rq_tasks(struct rq *rq, int cpu)
++{
++	cpumask_t *topo_mask, *end_mask, chk;
++
++	if (unlikely(!rq->online))
++		return 0;
++
++	if (cpumask_empty(&sched_rq_pending_mask))
++		return 0;
++
++	topo_mask = per_cpu(sched_cpu_topo_masks, cpu);
++	end_mask = per_cpu(sched_cpu_topo_end_mask, cpu);
++	do {
++		int i;
++
++		if (!cpumask_and(&chk, &sched_rq_pending_mask, topo_mask))
++			continue;
++
++		for_each_cpu_wrap(i, &chk, cpu) {
++			int nr_migrated;
++			struct rq *src_rq;
++
++			src_rq = cpu_rq(i);
++			if (!do_raw_spin_trylock(&src_rq->lock))
++				continue;
++			spin_acquire(&src_rq->lock.dep_map,
++				     SINGLE_DEPTH_NESTING, 1, _RET_IP_);
++
++			if ((nr_migrated = migrate_pending_tasks(src_rq, rq, cpu))) {
++				src_rq->nr_running -= nr_migrated;
++				if (src_rq->nr_running < 2)
++					cpumask_clear_cpu(i, &sched_rq_pending_mask);
++
++				spin_release(&src_rq->lock.dep_map, _RET_IP_);
++				do_raw_spin_unlock(&src_rq->lock);
++
++				rq->nr_running += nr_migrated;
++				if (rq->nr_running > 1)
++					cpumask_set_cpu(cpu, &sched_rq_pending_mask);
++
++				update_sched_preempt_mask(rq);
++				cpufreq_update_util(rq, 0);
++
++				return 1;
++			}
++
++			spin_release(&src_rq->lock.dep_map, _RET_IP_);
++			do_raw_spin_unlock(&src_rq->lock);
++		}
++	} while (++topo_mask < end_mask);
++
++	return 0;
++}
++#endif
++
++static inline void time_slice_expired(struct task_struct *p, struct rq *rq)
++{
++	p->time_slice = sysctl_sched_base_slice;
++
++	sched_task_renew(p, rq);
++
++	if (SCHED_FIFO != p->policy && task_on_rq_queued(p))
++		requeue_task(p, rq);
++}
++
++/*
++ * Timeslices below RESCHED_NS are considered as good as expired as there's no
++ * point rescheduling when there's so little time left.
++ */
++static inline void check_curr(struct task_struct *p, struct rq *rq)
++{
++	if (unlikely(rq->idle == p))
++		return;
++
++	update_curr(rq, p);
++
++	if (p->time_slice < RESCHED_NS)
++		time_slice_expired(p, rq);
++}
++
++static inline struct task_struct *
++choose_next_task(struct rq *rq, int cpu)
++{
++	struct task_struct *next = sched_rq_first_task(rq);
++
++	if (next == rq->idle) {
++#ifdef	CONFIG_SMP
++		if (!take_other_rq_tasks(rq, cpu)) {
++			if (likely(rq->balance_func && rq->online))
++				rq->balance_func(rq, cpu);
++#endif /* CONFIG_SMP */
++
++			schedstat_inc(rq->sched_goidle);
++			/*printk(KERN_INFO "sched: choose_next_task(%d) idle %px\n", cpu, next);*/
++			return next;
++#ifdef	CONFIG_SMP
++		}
++		next = sched_rq_first_task(rq);
++#endif
++	}
++#ifdef CONFIG_HIGH_RES_TIMERS
++	hrtick_start(rq, next->time_slice);
++#endif
++	/*printk(KERN_INFO "sched: choose_next_task(%d) next %px\n", cpu, next);*/
++	return next;
++}
++
++/*
++ * Constants for the sched_mode argument of __schedule().
++ *
++ * The mode argument allows RT enabled kernels to differentiate a
++ * preemption from blocking on an 'sleeping' spin/rwlock.
++ */
++ #define SM_IDLE		(-1)
++ #define SM_NONE		0
++ #define SM_PREEMPT		1
++ #define SM_RTLOCK_WAIT		2
++
++/*
++ * schedule() is the main scheduler function.
++ *
++ * The main means of driving the scheduler and thus entering this function are:
++ *
++ *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
++ *
++ *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
++ *      paths. For example, see arch/x86/entry_64.S.
++ *
++ *      To drive preemption between tasks, the scheduler sets the flag in timer
++ *      interrupt handler sched_tick().
++ *
++ *   3. Wakeups don't really cause entry into schedule(). They add a
++ *      task to the run-queue and that's it.
++ *
++ *      Now, if the new task added to the run-queue preempts the current
++ *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
++ *      called on the nearest possible occasion:
++ *
++ *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
++ *
++ *         - in syscall or exception context, at the next outmost
++ *           preempt_enable(). (this might be as soon as the wake_up()'s
++ *           spin_unlock()!)
++ *
++ *         - in IRQ context, return from interrupt-handler to
++ *           preemptible context
++ *
++ *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
++ *         then at the next:
++ *
++ *          - cond_resched() call
++ *          - explicit schedule() call
++ *          - return from syscall or exception to user-space
++ *          - return from interrupt-handler to user-space
++ *
++ * WARNING: must be called with preemption disabled!
++ */
++static void __sched notrace __schedule(int sched_mode)
++{
++	struct task_struct *prev, *next;
++	/*
++	 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted
++	 * as a preemption by schedule_debug() and RCU.
++	 */
++	bool preempt = sched_mode > SM_NONE;
++	unsigned long *switch_count;
++	unsigned long prev_state;
++	struct rq *rq;
++	int cpu;
++
++	cpu = smp_processor_id();
++	rq = cpu_rq(cpu);
++	prev = rq->curr;
++
++	schedule_debug(prev, preempt);
++
++	/* by passing sched_feat(HRTICK) checking which Alt schedule FW doesn't support */
++	hrtick_clear(rq);
++
++	local_irq_disable();
++	rcu_note_context_switch(preempt);
++
++	/*
++	 * Make sure that signal_pending_state()->signal_pending() below
++	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
++	 * done by the caller to avoid the race with signal_wake_up():
++	 *
++	 * __set_current_state(@state)		signal_wake_up()
++	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
++	 *					  wake_up_state(p, state)
++	 *   LOCK rq->lock			    LOCK p->pi_state
++	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
++	 *     if (signal_pending_state())	    if (p->state & @state)
++	 *
++	 * Also, the membarrier system call requires a full memory barrier
++	 * after coming from user-space, before storing to rq->curr; this
++	 * barrier matches a full barrier in the proximity of the membarrier
++	 * system call exit.
++	 */
++	raw_spin_lock(&rq->lock);
++	smp_mb__after_spinlock();
++
++	update_rq_clock(rq);
++
++	switch_count = &prev->nivcsw;
++
++	/* Task state changes only considers SM_PREEMPT as preemption */
++	preempt = sched_mode == SM_PREEMPT;
++
++	/*
++	 * We must load prev->state once (task_struct::state is volatile), such
++	 * that we form a control dependency vs deactivate_task() below.
++	 */
++	prev_state = READ_ONCE(prev->__state);
++	if (sched_mode == SM_IDLE) {
++		if (!rq->nr_running) {
++			next = prev;
++			goto picked;
++		}
++	} else if (!preempt && prev_state) {
++		if (signal_pending_state(prev_state, prev)) {
++			WRITE_ONCE(prev->__state, TASK_RUNNING);
++		} else {
++			prev->sched_contributes_to_load =
++				(prev_state & TASK_UNINTERRUPTIBLE) &&
++				!(prev_state & TASK_NOLOAD) &&
++				!(prev_state & TASK_FROZEN);
++
++			/*
++			 * __schedule()			ttwu()
++			 *   prev_state = prev->state;    if (p->on_rq && ...)
++			 *   if (prev_state)		    goto out;
++			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
++			 *				  p->state = TASK_WAKING
++			 *
++			 * Where __schedule() and ttwu() have matching control dependencies.
++			 *
++			 * After this, schedule() must not care about p->state any more.
++			 */
++			sched_task_deactivate(prev, rq);
++			block_task(rq, prev);
++		}
++		switch_count = &prev->nvcsw;
++	}
++
++	check_curr(prev, rq);
++
++	next = choose_next_task(rq, cpu);
++picked:
++	clear_tsk_need_resched(prev);
++	clear_preempt_need_resched();
++#ifdef CONFIG_SCHED_DEBUG
++	rq->last_seen_need_resched_ns = 0;
++#endif
++
++	if (likely(prev != next)) {
++		next->last_ran = rq->clock_task;
++
++		/*printk(KERN_INFO "sched: %px -> %px\n", prev, next);*/
++		rq->nr_switches++;
++		/*
++		 * RCU users of rcu_dereference(rq->curr) may not see
++		 * changes to task_struct made by pick_next_task().
++		 */
++		RCU_INIT_POINTER(rq->curr, next);
++		/*
++		 * The membarrier system call requires each architecture
++		 * to have a full memory barrier after updating
++		 * rq->curr, before returning to user-space.
++		 *
++		 * Here are the schemes providing that barrier on the
++		 * various architectures:
++		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC,
++		 *   RISC-V.  switch_mm() relies on membarrier_arch_switch_mm()
++		 *   on PowerPC and on RISC-V.
++		 * - finish_lock_switch() for weakly-ordered
++		 *   architectures where spin_unlock is a full barrier,
++		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
++		 *   is a RELEASE barrier),
++		 *
++		 * The barrier matches a full barrier in the proximity of
++		 * the membarrier system call entry.
++		 *
++		 * On RISC-V, this barrier pairing is also needed for the
++		 * SYNC_CORE command when switching between processes, cf.
++		 * the inline comments in membarrier_arch_switch_mm().
++		 */
++		++*switch_count;
++
++		trace_sched_switch(preempt, prev, next, prev_state);
++
++		/* Also unlocks the rq: */
++		rq = context_switch(rq, prev, next);
++
++		cpu = cpu_of(rq);
++	} else {
++		__balance_callbacks(rq);
++		raw_spin_unlock_irq(&rq->lock);
++	}
++}
++
++void __noreturn do_task_dead(void)
++{
++	/* Causes final put_task_struct in finish_task_switch(): */
++	set_special_state(TASK_DEAD);
++
++	/* Tell freezer to ignore us: */
++	current->flags |= PF_NOFREEZE;
++
++	__schedule(SM_NONE);
++	BUG();
++
++	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
++	for (;;)
++		cpu_relax();
++}
++
++static inline void sched_submit_work(struct task_struct *tsk)
++{
++	static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG);
++	unsigned int task_flags;
++
++	/*
++	 * Establish LD_WAIT_CONFIG context to ensure none of the code called
++	 * will use a blocking primitive -- which would lead to recursion.
++	 */
++	lock_map_acquire_try(&sched_map);
++
++	task_flags = tsk->flags;
++	/*
++	 * If a worker goes to sleep, notify and ask workqueue whether it
++	 * wants to wake up a task to maintain concurrency.
++	 */
++	if (task_flags & PF_WQ_WORKER)
++		wq_worker_sleeping(tsk);
++	else if (task_flags & PF_IO_WORKER)
++		io_wq_worker_sleeping(tsk);
++
++	/*
++	 * spinlock and rwlock must not flush block requests.  This will
++	 * deadlock if the callback attempts to acquire a lock which is
++	 * already acquired.
++	 */
++	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
++
++	/*
++	 * If we are going to sleep and we have plugged IO queued,
++	 * make sure to submit it to avoid deadlocks.
++	 */
++	blk_flush_plug(tsk->plug, true);
++
++	lock_map_release(&sched_map);
++}
++
++static void sched_update_worker(struct task_struct *tsk)
++{
++	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) {
++		if (tsk->flags & PF_BLOCK_TS)
++			blk_plug_invalidate_ts(tsk);
++		if (tsk->flags & PF_WQ_WORKER)
++			wq_worker_running(tsk);
++		else if (tsk->flags & PF_IO_WORKER)
++			io_wq_worker_running(tsk);
++	}
++}
++
++static __always_inline void __schedule_loop(int sched_mode)
++{
++	do {
++		preempt_disable();
++		__schedule(sched_mode);
++		sched_preempt_enable_no_resched();
++	} while (need_resched());
++}
++
++asmlinkage __visible void __sched schedule(void)
++{
++	struct task_struct *tsk = current;
++
++#ifdef CONFIG_RT_MUTEXES
++	lockdep_assert(!tsk->sched_rt_mutex);
++#endif
++
++	if (!task_is_running(tsk))
++		sched_submit_work(tsk);
++	__schedule_loop(SM_NONE);
++	sched_update_worker(tsk);
++}
++EXPORT_SYMBOL(schedule);
++
++/*
++ * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
++ * state (have scheduled out non-voluntarily) by making sure that all
++ * tasks have either left the run queue or have gone into user space.
++ * As idle tasks do not do either, they must not ever be preempted
++ * (schedule out non-voluntarily).
++ *
++ * schedule_idle() is similar to schedule_preempt_disable() except that it
++ * never enables preemption because it does not call sched_submit_work().
++ */
++void __sched schedule_idle(void)
++{
++	/*
++	 * As this skips calling sched_submit_work(), which the idle task does
++	 * regardless because that function is a NOP when the task is in a
++	 * TASK_RUNNING state, make sure this isn't used someplace that the
++	 * current task can be in any other state. Note, idle is always in the
++	 * TASK_RUNNING state.
++	 */
++	WARN_ON_ONCE(current->__state);
++	do {
++		__schedule(SM_IDLE);
++	} while (need_resched());
++}
++
++#if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
++asmlinkage __visible void __sched schedule_user(void)
++{
++	/*
++	 * If we come here after a random call to set_need_resched(),
++	 * or we have been woken up remotely but the IPI has not yet arrived,
++	 * we haven't yet exited the RCU idle mode. Do it here manually until
++	 * we find a better solution.
++	 *
++	 * NB: There are buggy callers of this function.  Ideally we
++	 * should warn if prev_state != CT_STATE_USER, but that will trigger
++	 * too frequently to make sense yet.
++	 */
++	enum ctx_state prev_state = exception_enter();
++	schedule();
++	exception_exit(prev_state);
++}
++#endif
++
++/**
++ * schedule_preempt_disabled - called with preemption disabled
++ *
++ * Returns with preemption disabled. Note: preempt_count must be 1
++ */
++void __sched schedule_preempt_disabled(void)
++{
++	sched_preempt_enable_no_resched();
++	schedule();
++	preempt_disable();
++}
++
++#ifdef CONFIG_PREEMPT_RT
++void __sched notrace schedule_rtlock(void)
++{
++	__schedule_loop(SM_RTLOCK_WAIT);
++}
++NOKPROBE_SYMBOL(schedule_rtlock);
++#endif
++
++static void __sched notrace preempt_schedule_common(void)
++{
++	do {
++		/*
++		 * Because the function tracer can trace preempt_count_sub()
++		 * and it also uses preempt_enable/disable_notrace(), if
++		 * NEED_RESCHED is set, the preempt_enable_notrace() called
++		 * by the function tracer will call this function again and
++		 * cause infinite recursion.
++		 *
++		 * Preemption must be disabled here before the function
++		 * tracer can trace. Break up preempt_disable() into two
++		 * calls. One to disable preemption without fear of being
++		 * traced. The other to still record the preemption latency,
++		 * which can also be traced by the function tracer.
++		 */
++		preempt_disable_notrace();
++		preempt_latency_start(1);
++		__schedule(SM_PREEMPT);
++		preempt_latency_stop(1);
++		preempt_enable_no_resched_notrace();
++
++		/*
++		 * Check again in case we missed a preemption opportunity
++		 * between schedule and now.
++		 */
++	} while (need_resched());
++}
++
++#ifdef CONFIG_PREEMPTION
++/*
++ * This is the entry point to schedule() from in-kernel preemption
++ * off of preempt_enable.
++ */
++asmlinkage __visible void __sched notrace preempt_schedule(void)
++{
++	/*
++	 * If there is a non-zero preempt_count or interrupts are disabled,
++	 * we do not want to preempt the current task. Just return..
++	 */
++	if (likely(!preemptible()))
++		return;
++
++	preempt_schedule_common();
++}
++NOKPROBE_SYMBOL(preempt_schedule);
++EXPORT_SYMBOL(preempt_schedule);
++
++#ifdef CONFIG_PREEMPT_DYNAMIC
++#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
++#ifndef preempt_schedule_dynamic_enabled
++#define preempt_schedule_dynamic_enabled	preempt_schedule
++#define preempt_schedule_dynamic_disabled	NULL
++#endif
++DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
++EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
++#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
++static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
++void __sched notrace dynamic_preempt_schedule(void)
++{
++	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
++		return;
++	preempt_schedule();
++}
++NOKPROBE_SYMBOL(dynamic_preempt_schedule);
++EXPORT_SYMBOL(dynamic_preempt_schedule);
++#endif
++#endif
++
++/**
++ * preempt_schedule_notrace - preempt_schedule called by tracing
++ *
++ * The tracing infrastructure uses preempt_enable_notrace to prevent
++ * recursion and tracing preempt enabling caused by the tracing
++ * infrastructure itself. But as tracing can happen in areas coming
++ * from userspace or just about to enter userspace, a preempt enable
++ * can occur before user_exit() is called. This will cause the scheduler
++ * to be called when the system is still in usermode.
++ *
++ * To prevent this, the preempt_enable_notrace will use this function
++ * instead of preempt_schedule() to exit user context if needed before
++ * calling the scheduler.
++ */
++asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
++{
++	enum ctx_state prev_ctx;
++
++	if (likely(!preemptible()))
++		return;
++
++	do {
++		/*
++		 * Because the function tracer can trace preempt_count_sub()
++		 * and it also uses preempt_enable/disable_notrace(), if
++		 * NEED_RESCHED is set, the preempt_enable_notrace() called
++		 * by the function tracer will call this function again and
++		 * cause infinite recursion.
++		 *
++		 * Preemption must be disabled here before the function
++		 * tracer can trace. Break up preempt_disable() into two
++		 * calls. One to disable preemption without fear of being
++		 * traced. The other to still record the preemption latency,
++		 * which can also be traced by the function tracer.
++		 */
++		preempt_disable_notrace();
++		preempt_latency_start(1);
++		/*
++		 * Needs preempt disabled in case user_exit() is traced
++		 * and the tracer calls preempt_enable_notrace() causing
++		 * an infinite recursion.
++		 */
++		prev_ctx = exception_enter();
++		__schedule(SM_PREEMPT);
++		exception_exit(prev_ctx);
++
++		preempt_latency_stop(1);
++		preempt_enable_no_resched_notrace();
++	} while (need_resched());
++}
++EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
++
++#ifdef CONFIG_PREEMPT_DYNAMIC
++#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
++#ifndef preempt_schedule_notrace_dynamic_enabled
++#define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
++#define preempt_schedule_notrace_dynamic_disabled	NULL
++#endif
++DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
++EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
++#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
++static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
++void __sched notrace dynamic_preempt_schedule_notrace(void)
++{
++	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
++		return;
++	preempt_schedule_notrace();
++}
++NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
++EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
++#endif
++#endif
++
++#endif /* CONFIG_PREEMPTION */
++
++/*
++ * This is the entry point to schedule() from kernel preemption
++ * off of IRQ context.
++ * Note, that this is called and return with IRQs disabled. This will
++ * protect us against recursive calling from IRQ contexts.
++ */
++asmlinkage __visible void __sched preempt_schedule_irq(void)
++{
++	enum ctx_state prev_state;
++
++	/* Catch callers which need to be fixed */
++	BUG_ON(preempt_count() || !irqs_disabled());
++
++	prev_state = exception_enter();
++
++	do {
++		preempt_disable();
++		local_irq_enable();
++		__schedule(SM_PREEMPT);
++		local_irq_disable();
++		sched_preempt_enable_no_resched();
++	} while (need_resched());
++
++	exception_exit(prev_state);
++}
++
++int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
++			  void *key)
++{
++	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
++	return try_to_wake_up(curr->private, mode, wake_flags);
++}
++EXPORT_SYMBOL(default_wake_function);
++
++void check_task_changed(struct task_struct *p, struct rq *rq)
++{
++	/* Trigger resched if task sched_prio has been modified. */
++	if (task_on_rq_queued(p)) {
++		update_rq_clock(rq);
++		requeue_task(p, rq);
++		wakeup_preempt(rq);
++	}
++}
++
++void __setscheduler_prio(struct task_struct *p, int prio)
++{
++	p->prio = prio;
++}
++
++#ifdef CONFIG_RT_MUTEXES
++
++/*
++ * Would be more useful with typeof()/auto_type but they don't mix with
++ * bit-fields. Since it's a local thing, use int. Keep the generic sounding
++ * name such that if someone were to implement this function we get to compare
++ * notes.
++ */
++#define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; })
++
++void rt_mutex_pre_schedule(void)
++{
++	lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1));
++	sched_submit_work(current);
++}
++
++void rt_mutex_schedule(void)
++{
++	lockdep_assert(current->sched_rt_mutex);
++	__schedule_loop(SM_NONE);
++}
++
++void rt_mutex_post_schedule(void)
++{
++	sched_update_worker(current);
++	lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
++}
++
++/*
++ * rt_mutex_setprio - set the current priority of a task
++ * @p: task to boost
++ * @pi_task: donor task
++ *
++ * This function changes the 'effective' priority of a task. It does
++ * not touch ->normal_prio like __setscheduler().
++ *
++ * Used by the rt_mutex code to implement priority inheritance
++ * logic. Call site only calls if the priority of the task changed.
++ */
++void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
++{
++	int prio;
++	struct rq *rq;
++	raw_spinlock_t *lock;
++
++	/* XXX used to be waiter->prio, not waiter->task->prio */
++	prio = __rt_effective_prio(pi_task, p->normal_prio);
++
++	/*
++	 * If nothing changed; bail early.
++	 */
++	if (p->pi_top_task == pi_task && prio == p->prio)
++		return;
++
++	rq = __task_access_lock(p, &lock);
++	/*
++	 * Set under pi_lock && rq->lock, such that the value can be used under
++	 * either lock.
++	 *
++	 * Note that there is loads of tricky to make this pointer cache work
++	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
++	 * ensure a task is de-boosted (pi_task is set to NULL) before the
++	 * task is allowed to run again (and can exit). This ensures the pointer
++	 * points to a blocked task -- which guarantees the task is present.
++	 */
++	p->pi_top_task = pi_task;
++
++	/*
++	 * For FIFO/RR we only need to set prio, if that matches we're done.
++	 */
++	if (prio == p->prio)
++		goto out_unlock;
++
++	/*
++	 * Idle task boosting is a no-no in general. There is one
++	 * exception, when PREEMPT_RT and NOHZ is active:
++	 *
++	 * The idle task calls get_next_timer_interrupt() and holds
++	 * the timer wheel base->lock on the CPU and another CPU wants
++	 * to access the timer (probably to cancel it). We can safely
++	 * ignore the boosting request, as the idle CPU runs this code
++	 * with interrupts disabled and will complete the lock
++	 * protected section without being interrupted. So there is no
++	 * real need to boost.
++	 */
++	if (unlikely(p == rq->idle)) {
++		WARN_ON(p != rq->curr);
++		WARN_ON(p->pi_blocked_on);
++		goto out_unlock;
++	}
++
++	trace_sched_pi_setprio(p, pi_task);
++
++	__setscheduler_prio(p, prio);
++
++	check_task_changed(p, rq);
++out_unlock:
++	/* Avoid rq from going away on us: */
++	preempt_disable();
++
++	if (task_on_rq_queued(p))
++		__balance_callbacks(rq);
++	__task_access_unlock(p, lock);
++
++	preempt_enable();
++}
++#endif
++
++#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
++int __sched __cond_resched(void)
++{
++	if (should_resched(0)) {
++		preempt_schedule_common();
++		return 1;
++	}
++	/*
++	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
++	 * whether the current CPU is in an RCU read-side critical section,
++	 * so the tick can report quiescent states even for CPUs looping
++	 * in kernel context.  In contrast, in non-preemptible kernels,
++	 * RCU readers leave no in-memory hints, which means that CPU-bound
++	 * processes executing in kernel context might never report an
++	 * RCU quiescent state.  Therefore, the following code causes
++	 * cond_resched() to report a quiescent state, but only when RCU
++	 * is in urgent need of one.
++	 */
++#ifndef CONFIG_PREEMPT_RCU
++	rcu_all_qs();
++#endif
++	return 0;
++}
++EXPORT_SYMBOL(__cond_resched);
++#endif
++
++#ifdef CONFIG_PREEMPT_DYNAMIC
++#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
++#define cond_resched_dynamic_enabled	__cond_resched
++#define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
++DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
++EXPORT_STATIC_CALL_TRAMP(cond_resched);
++
++#define might_resched_dynamic_enabled	__cond_resched
++#define might_resched_dynamic_disabled	((void *)&__static_call_return0)
++DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
++EXPORT_STATIC_CALL_TRAMP(might_resched);
++#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
++static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
++int __sched dynamic_cond_resched(void)
++{
++	klp_sched_try_switch();
++	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
++		return 0;
++	return __cond_resched();
++}
++EXPORT_SYMBOL(dynamic_cond_resched);
++
++static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
++int __sched dynamic_might_resched(void)
++{
++	if (!static_branch_unlikely(&sk_dynamic_might_resched))
++		return 0;
++	return __cond_resched();
++}
++EXPORT_SYMBOL(dynamic_might_resched);
++#endif
++#endif
++
++/*
++ * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
++ * call schedule, and on return reacquire the lock.
++ *
++ * This works OK both with and without CONFIG_PREEMPTION.  We do strange low-level
++ * operations here to prevent schedule() from being called twice (once via
++ * spin_unlock(), once by hand).
++ */
++int __cond_resched_lock(spinlock_t *lock)
++{
++	int resched = should_resched(PREEMPT_LOCK_OFFSET);
++	int ret = 0;
++
++	lockdep_assert_held(lock);
++
++	if (spin_needbreak(lock) || resched) {
++		spin_unlock(lock);
++		if (!_cond_resched())
++			cpu_relax();
++		ret = 1;
++		spin_lock(lock);
++	}
++	return ret;
++}
++EXPORT_SYMBOL(__cond_resched_lock);
++
++int __cond_resched_rwlock_read(rwlock_t *lock)
++{
++	int resched = should_resched(PREEMPT_LOCK_OFFSET);
++	int ret = 0;
++
++	lockdep_assert_held_read(lock);
++
++	if (rwlock_needbreak(lock) || resched) {
++		read_unlock(lock);
++		if (!_cond_resched())
++			cpu_relax();
++		ret = 1;
++		read_lock(lock);
++	}
++	return ret;
++}
++EXPORT_SYMBOL(__cond_resched_rwlock_read);
++
++int __cond_resched_rwlock_write(rwlock_t *lock)
++{
++	int resched = should_resched(PREEMPT_LOCK_OFFSET);
++	int ret = 0;
++
++	lockdep_assert_held_write(lock);
++
++	if (rwlock_needbreak(lock) || resched) {
++		write_unlock(lock);
++		if (!_cond_resched())
++			cpu_relax();
++		ret = 1;
++		write_lock(lock);
++	}
++	return ret;
++}
++EXPORT_SYMBOL(__cond_resched_rwlock_write);
++
++#ifdef CONFIG_PREEMPT_DYNAMIC
++
++#ifdef CONFIG_GENERIC_ENTRY
++#include <linux/entry-common.h>
++#endif
++
++/*
++ * SC:cond_resched
++ * SC:might_resched
++ * SC:preempt_schedule
++ * SC:preempt_schedule_notrace
++ * SC:irqentry_exit_cond_resched
++ *
++ *
++ * NONE:
++ *   cond_resched               <- __cond_resched
++ *   might_resched              <- RET0
++ *   preempt_schedule           <- NOP
++ *   preempt_schedule_notrace   <- NOP
++ *   irqentry_exit_cond_resched <- NOP
++ *
++ * VOLUNTARY:
++ *   cond_resched               <- __cond_resched
++ *   might_resched              <- __cond_resched
++ *   preempt_schedule           <- NOP
++ *   preempt_schedule_notrace   <- NOP
++ *   irqentry_exit_cond_resched <- NOP
++ *
++ * FULL:
++ *   cond_resched               <- RET0
++ *   might_resched              <- RET0
++ *   preempt_schedule           <- preempt_schedule
++ *   preempt_schedule_notrace   <- preempt_schedule_notrace
++ *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
++ */
++
++enum {
++	preempt_dynamic_undefined = -1,
++	preempt_dynamic_none,
++	preempt_dynamic_voluntary,
++	preempt_dynamic_full,
++};
++
++int preempt_dynamic_mode = preempt_dynamic_undefined;
++
++int sched_dynamic_mode(const char *str)
++{
++	if (!strcmp(str, "none"))
++		return preempt_dynamic_none;
++
++	if (!strcmp(str, "voluntary"))
++		return preempt_dynamic_voluntary;
++
++	if (!strcmp(str, "full"))
++		return preempt_dynamic_full;
++
++	return -EINVAL;
++}
++
++#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
++#define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
++#define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
++#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
++#define preempt_dynamic_enable(f)	static_key_enable(&sk_dynamic_##f.key)
++#define preempt_dynamic_disable(f)	static_key_disable(&sk_dynamic_##f.key)
++#else
++#error "Unsupported PREEMPT_DYNAMIC mechanism"
++#endif
++
++static DEFINE_MUTEX(sched_dynamic_mutex);
++static bool klp_override;
++
++static void __sched_dynamic_update(int mode)
++{
++	/*
++	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
++	 * the ZERO state, which is invalid.
++	 */
++	if (!klp_override)
++		preempt_dynamic_enable(cond_resched);
++	preempt_dynamic_enable(cond_resched);
++	preempt_dynamic_enable(might_resched);
++	preempt_dynamic_enable(preempt_schedule);
++	preempt_dynamic_enable(preempt_schedule_notrace);
++	preempt_dynamic_enable(irqentry_exit_cond_resched);
++
++	switch (mode) {
++	case preempt_dynamic_none:
++		if (!klp_override)
++			preempt_dynamic_enable(cond_resched);
++		preempt_dynamic_disable(might_resched);
++		preempt_dynamic_disable(preempt_schedule);
++		preempt_dynamic_disable(preempt_schedule_notrace);
++		preempt_dynamic_disable(irqentry_exit_cond_resched);
++		if (mode != preempt_dynamic_mode)
++			pr_info("Dynamic Preempt: none\n");
++		break;
++
++	case preempt_dynamic_voluntary:
++		if (!klp_override)
++			preempt_dynamic_enable(cond_resched);
++		preempt_dynamic_enable(might_resched);
++		preempt_dynamic_disable(preempt_schedule);
++		preempt_dynamic_disable(preempt_schedule_notrace);
++		preempt_dynamic_disable(irqentry_exit_cond_resched);
++		if (mode != preempt_dynamic_mode)
++			pr_info("Dynamic Preempt: voluntary\n");
++		break;
++
++	case preempt_dynamic_full:
++		if (!klp_override)
++			preempt_dynamic_enable(cond_resched);
++		preempt_dynamic_disable(might_resched);
++		preempt_dynamic_enable(preempt_schedule);
++		preempt_dynamic_enable(preempt_schedule_notrace);
++		preempt_dynamic_enable(irqentry_exit_cond_resched);
++		if (mode != preempt_dynamic_mode)
++			pr_info("Dynamic Preempt: full\n");
++		break;
++	}
++
++	preempt_dynamic_mode = mode;
++}
++
++void sched_dynamic_update(int mode)
++{
++	mutex_lock(&sched_dynamic_mutex);
++	__sched_dynamic_update(mode);
++	mutex_unlock(&sched_dynamic_mutex);
++}
++
++#ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
++
++static int klp_cond_resched(void)
++{
++	__klp_sched_try_switch();
++	return __cond_resched();
++}
++
++void sched_dynamic_klp_enable(void)
++{
++	mutex_lock(&sched_dynamic_mutex);
++
++	klp_override = true;
++	static_call_update(cond_resched, klp_cond_resched);
++
++	mutex_unlock(&sched_dynamic_mutex);
++}
++
++void sched_dynamic_klp_disable(void)
++{
++	mutex_lock(&sched_dynamic_mutex);
++
++	klp_override = false;
++	__sched_dynamic_update(preempt_dynamic_mode);
++
++	mutex_unlock(&sched_dynamic_mutex);
++}
++
++#endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
++
++
++static int __init setup_preempt_mode(char *str)
++{
++	int mode = sched_dynamic_mode(str);
++	if (mode < 0) {
++		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
++		return 0;
++	}
++
++	sched_dynamic_update(mode);
++	return 1;
++}
++__setup("preempt=", setup_preempt_mode);
++
++static void __init preempt_dynamic_init(void)
++{
++	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
++		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
++			sched_dynamic_update(preempt_dynamic_none);
++		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
++			sched_dynamic_update(preempt_dynamic_voluntary);
++		} else {
++			/* Default static call setting, nothing to do */
++			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
++			preempt_dynamic_mode = preempt_dynamic_full;
++			pr_info("Dynamic Preempt: full\n");
++		}
++	}
++}
++
++#define PREEMPT_MODEL_ACCESSOR(mode) \
++	bool preempt_model_##mode(void)						 \
++	{									 \
++		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
++		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
++	}									 \
++	EXPORT_SYMBOL_GPL(preempt_model_##mode)
++
++PREEMPT_MODEL_ACCESSOR(none);
++PREEMPT_MODEL_ACCESSOR(voluntary);
++PREEMPT_MODEL_ACCESSOR(full);
++
++#else /* !CONFIG_PREEMPT_DYNAMIC: */
++
++static inline void preempt_dynamic_init(void) { }
++
++#endif /* CONFIG_PREEMPT_DYNAMIC */
++
++int io_schedule_prepare(void)
++{
++	int old_iowait = current->in_iowait;
++
++	current->in_iowait = 1;
++	blk_flush_plug(current->plug, true);
++	return old_iowait;
++}
++
++void io_schedule_finish(int token)
++{
++	current->in_iowait = token;
++}
++
++/*
++ * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
++ * that process accounting knows that this is a task in IO wait state.
++ *
++ * But don't do that if it is a deliberate, throttling IO wait (this task
++ * has set its backing_dev_info: the queue against which it should throttle)
++ */
++
++long __sched io_schedule_timeout(long timeout)
++{
++	int token;
++	long ret;
++
++	token = io_schedule_prepare();
++	ret = schedule_timeout(timeout);
++	io_schedule_finish(token);
++
++	return ret;
++}
++EXPORT_SYMBOL(io_schedule_timeout);
++
++void __sched io_schedule(void)
++{
++	int token;
++
++	token = io_schedule_prepare();
++	schedule();
++	io_schedule_finish(token);
++}
++EXPORT_SYMBOL(io_schedule);
++
++void sched_show_task(struct task_struct *p)
++{
++	unsigned long free;
++	int ppid;
++
++	if (!try_get_task_stack(p))
++		return;
++
++	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
++
++	if (task_is_running(p))
++		pr_cont("  running task    ");
++	free = stack_not_used(p);
++	ppid = 0;
++	rcu_read_lock();
++	if (pid_alive(p))
++		ppid = task_pid_nr(rcu_dereference(p->real_parent));
++	rcu_read_unlock();
++	pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n",
++		free, task_pid_nr(p), task_tgid_nr(p),
++		ppid, read_task_thread_flags(p));
++
++	print_worker_info(KERN_INFO, p);
++	print_stop_info(KERN_INFO, p);
++	show_stack(p, NULL, KERN_INFO);
++	put_task_stack(p);
++}
++EXPORT_SYMBOL_GPL(sched_show_task);
++
++static inline bool
++state_filter_match(unsigned long state_filter, struct task_struct *p)
++{
++	unsigned int state = READ_ONCE(p->__state);
++
++	/* no filter, everything matches */
++	if (!state_filter)
++		return true;
++
++	/* filter, but doesn't match */
++	if (!(state & state_filter))
++		return false;
++
++	/*
++	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
++	 * TASK_KILLABLE).
++	 */
++	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
++		return false;
++
++	return true;
++}
++
++
++void show_state_filter(unsigned int state_filter)
++{
++	struct task_struct *g, *p;
++
++	rcu_read_lock();
++	for_each_process_thread(g, p) {
++		/*
++		 * reset the NMI-timeout, listing all files on a slow
++		 * console might take a lot of time:
++		 * Also, reset softlockup watchdogs on all CPUs, because
++		 * another CPU might be blocked waiting for us to process
++		 * an IPI.
++		 */
++		touch_nmi_watchdog();
++		touch_all_softlockup_watchdogs();
++		if (state_filter_match(state_filter, p))
++			sched_show_task(p);
++	}
++
++#ifdef CONFIG_SCHED_DEBUG
++	/* TODO: Alt schedule FW should support this
++	if (!state_filter)
++		sysrq_sched_debug_show();
++	*/
++#endif
++	rcu_read_unlock();
++	/*
++	 * Only show locks if all tasks are dumped:
++	 */
++	if (!state_filter)
++		debug_show_all_locks();
++}
++
++void dump_cpu_task(int cpu)
++{
++	if (in_hardirq() && cpu == smp_processor_id()) {
++		struct pt_regs *regs;
++
++		regs = get_irq_regs();
++		if (regs) {
++			show_regs(regs);
++			return;
++		}
++	}
++
++	if (trigger_single_cpu_backtrace(cpu))
++		return;
++
++	pr_info("Task dump for CPU %d:\n", cpu);
++	sched_show_task(cpu_curr(cpu));
++}
++
++/**
++ * init_idle - set up an idle thread for a given CPU
++ * @idle: task in question
++ * @cpu: CPU the idle task belongs to
++ *
++ * NOTE: this function does not set the idle thread's NEED_RESCHED
++ * flag, to make booting more robust.
++ */
++void __init init_idle(struct task_struct *idle, int cpu)
++{
++#ifdef CONFIG_SMP
++	struct affinity_context ac = (struct affinity_context) {
++		.new_mask  = cpumask_of(cpu),
++		.flags     = 0,
++	};
++#endif
++	struct rq *rq = cpu_rq(cpu);
++	unsigned long flags;
++
++	__sched_fork(0, idle);
++
++	raw_spin_lock_irqsave(&idle->pi_lock, flags);
++	raw_spin_lock(&rq->lock);
++
++	idle->last_ran = rq->clock_task;
++	idle->__state = TASK_RUNNING;
++	/*
++	 * PF_KTHREAD should already be set at this point; regardless, make it
++	 * look like a proper per-CPU kthread.
++	 */
++	idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
++	kthread_set_per_cpu(idle, cpu);
++
++	sched_queue_init_idle(&rq->queue, idle);
++
++#ifdef CONFIG_SMP
++	/*
++	 * It's possible that init_idle() gets called multiple times on a task,
++	 * in that case do_set_cpus_allowed() will not do the right thing.
++	 *
++	 * And since this is boot we can forgo the serialisation.
++	 */
++	set_cpus_allowed_common(idle, &ac);
++#endif
++
++	/* Silence PROVE_RCU */
++	rcu_read_lock();
++	__set_task_cpu(idle, cpu);
++	rcu_read_unlock();
++
++	rq->idle = idle;
++	rcu_assign_pointer(rq->curr, idle);
++	idle->on_cpu = 1;
++
++	raw_spin_unlock(&rq->lock);
++	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
++
++	/* Set the preempt count _outside_ the spinlocks! */
++	init_idle_preempt_count(idle, cpu);
++
++	ftrace_graph_init_idle_task(idle, cpu);
++	vtime_init_idle(idle, cpu);
++#ifdef CONFIG_SMP
++	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
++#endif
++}
++
++#ifdef CONFIG_SMP
++
++int cpuset_cpumask_can_shrink(const struct cpumask __maybe_unused *cur,
++			      const struct cpumask __maybe_unused *trial)
++{
++	return 1;
++}
++
++int task_can_attach(struct task_struct *p)
++{
++	int ret = 0;
++
++	/*
++	 * Kthreads which disallow setaffinity shouldn't be moved
++	 * to a new cpuset; we don't want to change their CPU
++	 * affinity and isolating such threads by their set of
++	 * allowed nodes is unnecessary.  Thus, cpusets are not
++	 * applicable for such threads.  This prevents checking for
++	 * success of set_cpus_allowed_ptr() on all attached tasks
++	 * before cpus_mask may be changed.
++	 */
++	if (p->flags & PF_NO_SETAFFINITY)
++		ret = -EINVAL;
++
++	return ret;
++}
++
++bool sched_smp_initialized __read_mostly;
++
++#ifdef CONFIG_HOTPLUG_CPU
++/*
++ * Ensures that the idle task is using init_mm right before its CPU goes
++ * offline.
++ */
++void idle_task_exit(void)
++{
++	struct mm_struct *mm = current->active_mm;
++
++	BUG_ON(current != this_rq()->idle);
++
++	if (mm != &init_mm) {
++		switch_mm(mm, &init_mm, current);
++		finish_arch_post_lock_switch();
++	}
++
++	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
++}
++
++static int __balance_push_cpu_stop(void *arg)
++{
++	struct task_struct *p = arg;
++	struct rq *rq = this_rq();
++	struct rq_flags rf;
++	int cpu;
++
++	raw_spin_lock_irq(&p->pi_lock);
++	rq_lock(rq, &rf);
++
++	update_rq_clock(rq);
++
++	if (task_rq(p) == rq && task_on_rq_queued(p)) {
++		cpu = select_fallback_rq(rq->cpu, p);
++		rq = __migrate_task(rq, p, cpu);
++	}
++
++	rq_unlock(rq, &rf);
++	raw_spin_unlock_irq(&p->pi_lock);
++
++	put_task_struct(p);
++
++	return 0;
++}
++
++static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
++
++/*
++ * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
++ * effective when the hotplug motion is down.
++ */
++static void balance_push(struct rq *rq)
++{
++	struct task_struct *push_task = rq->curr;
++
++	lockdep_assert_held(&rq->lock);
++
++	/*
++	 * Ensure the thing is persistent until balance_push_set(.on = false);
++	 */
++	rq->balance_callback = &balance_push_callback;
++
++	/*
++	 * Only active while going offline and when invoked on the outgoing
++	 * CPU.
++	 */
++	if (!cpu_dying(rq->cpu) || rq != this_rq())
++		return;
++
++	/*
++	 * Both the cpu-hotplug and stop task are in this case and are
++	 * required to complete the hotplug process.
++	 */
++	if (kthread_is_per_cpu(push_task) ||
++	    is_migration_disabled(push_task)) {
++
++		/*
++		 * If this is the idle task on the outgoing CPU try to wake
++		 * up the hotplug control thread which might wait for the
++		 * last task to vanish. The rcuwait_active() check is
++		 * accurate here because the waiter is pinned on this CPU
++		 * and can't obviously be running in parallel.
++		 *
++		 * On RT kernels this also has to check whether there are
++		 * pinned and scheduled out tasks on the runqueue. They
++		 * need to leave the migrate disabled section first.
++		 */
++		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
++		    rcuwait_active(&rq->hotplug_wait)) {
++			raw_spin_unlock(&rq->lock);
++			rcuwait_wake_up(&rq->hotplug_wait);
++			raw_spin_lock(&rq->lock);
++		}
++		return;
++	}
++
++	get_task_struct(push_task);
++	/*
++	 * Temporarily drop rq->lock such that we can wake-up the stop task.
++	 * Both preemption and IRQs are still disabled.
++	 */
++	preempt_disable();
++	raw_spin_unlock(&rq->lock);
++	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
++			    this_cpu_ptr(&push_work));
++	preempt_enable();
++	/*
++	 * At this point need_resched() is true and we'll take the loop in
++	 * schedule(). The next pick is obviously going to be the stop task
++	 * which kthread_is_per_cpu() and will push this task away.
++	 */
++	raw_spin_lock(&rq->lock);
++}
++
++static void balance_push_set(int cpu, bool on)
++{
++	struct rq *rq = cpu_rq(cpu);
++	struct rq_flags rf;
++
++	rq_lock_irqsave(rq, &rf);
++	if (on) {
++		WARN_ON_ONCE(rq->balance_callback);
++		rq->balance_callback = &balance_push_callback;
++	} else if (rq->balance_callback == &balance_push_callback) {
++		rq->balance_callback = NULL;
++	}
++	rq_unlock_irqrestore(rq, &rf);
++}
++
++/*
++ * Invoked from a CPUs hotplug control thread after the CPU has been marked
++ * inactive. All tasks which are not per CPU kernel threads are either
++ * pushed off this CPU now via balance_push() or placed on a different CPU
++ * during wakeup. Wait until the CPU is quiescent.
++ */
++static void balance_hotplug_wait(void)
++{
++	struct rq *rq = this_rq();
++
++	rcuwait_wait_event(&rq->hotplug_wait,
++			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
++			   TASK_UNINTERRUPTIBLE);
++}
++
++#else
++
++static void balance_push(struct rq *rq)
++{
++}
++
++static void balance_push_set(int cpu, bool on)
++{
++}
++
++static inline void balance_hotplug_wait(void)
++{
++}
++#endif /* CONFIG_HOTPLUG_CPU */
++
++static void set_rq_offline(struct rq *rq)
++{
++	if (rq->online) {
++		update_rq_clock(rq);
++		rq->online = false;
++	}
++}
++
++static void set_rq_online(struct rq *rq)
++{
++	if (!rq->online)
++		rq->online = true;
++}
++
++static inline void sched_set_rq_online(struct rq *rq, int cpu)
++{
++	unsigned long flags;
++
++	raw_spin_lock_irqsave(&rq->lock, flags);
++	set_rq_online(rq);
++	raw_spin_unlock_irqrestore(&rq->lock, flags);
++}
++
++static inline void sched_set_rq_offline(struct rq *rq, int cpu)
++{
++	unsigned long flags;
++
++	raw_spin_lock_irqsave(&rq->lock, flags);
++	set_rq_offline(rq);
++	raw_spin_unlock_irqrestore(&rq->lock, flags);
++}
++
++/*
++ * used to mark begin/end of suspend/resume:
++ */
++static int num_cpus_frozen;
++
++/*
++ * Update cpusets according to cpu_active mask.  If cpusets are
++ * disabled, cpuset_update_active_cpus() becomes a simple wrapper
++ * around partition_sched_domains().
++ *
++ * If we come here as part of a suspend/resume, don't touch cpusets because we
++ * want to restore it back to its original state upon resume anyway.
++ */
++static void cpuset_cpu_active(void)
++{
++	if (cpuhp_tasks_frozen) {
++		/*
++		 * num_cpus_frozen tracks how many CPUs are involved in suspend
++		 * resume sequence. As long as this is not the last online
++		 * operation in the resume sequence, just build a single sched
++		 * domain, ignoring cpusets.
++		 */
++		partition_sched_domains(1, NULL, NULL);
++		if (--num_cpus_frozen)
++			return;
++		/*
++		 * This is the last CPU online operation. So fall through and
++		 * restore the original sched domains by considering the
++		 * cpuset configurations.
++		 */
++		cpuset_force_rebuild();
++	}
++
++	cpuset_update_active_cpus();
++}
++
++static int cpuset_cpu_inactive(unsigned int cpu)
++{
++	if (!cpuhp_tasks_frozen) {
++		cpuset_update_active_cpus();
++	} else {
++		num_cpus_frozen++;
++		partition_sched_domains(1, NULL, NULL);
++	}
++	return 0;
++}
++
++static inline void sched_smt_present_inc(int cpu)
++{
++#ifdef CONFIG_SCHED_SMT
++	if (cpumask_weight(cpu_smt_mask(cpu)) == 2) {
++		static_branch_inc_cpuslocked(&sched_smt_present);
++		cpumask_or(&sched_smt_mask, &sched_smt_mask, cpu_smt_mask(cpu));
++	}
++#endif
++}
++
++static inline void sched_smt_present_dec(int cpu)
++{
++#ifdef CONFIG_SCHED_SMT
++	if (cpumask_weight(cpu_smt_mask(cpu)) == 2) {
++		static_branch_dec_cpuslocked(&sched_smt_present);
++		if (!static_branch_likely(&sched_smt_present))
++			cpumask_clear(sched_pcore_idle_mask);
++		cpumask_andnot(&sched_smt_mask, &sched_smt_mask, cpu_smt_mask(cpu));
++	}
++#endif
++}
++
++int sched_cpu_activate(unsigned int cpu)
++{
++	struct rq *rq = cpu_rq(cpu);
++
++	/*
++	 * Clear the balance_push callback and prepare to schedule
++	 * regular tasks.
++	 */
++	balance_push_set(cpu, false);
++
++	set_cpu_active(cpu, true);
++
++	if (sched_smp_initialized)
++		cpuset_cpu_active();
++
++	/*
++	 * Put the rq online, if not already. This happens:
++	 *
++	 * 1) In the early boot process, because we build the real domains
++	 *    after all cpus have been brought up.
++	 *
++	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
++	 *    domains.
++	 */
++	sched_set_rq_online(rq, cpu);
++
++	/*
++	 * When going up, increment the number of cores with SMT present.
++	 */
++	sched_smt_present_inc(cpu);
++
++	return 0;
++}
++
++int sched_cpu_deactivate(unsigned int cpu)
++{
++	struct rq *rq = cpu_rq(cpu);
++	int ret;
++
++	set_cpu_active(cpu, false);
++
++	/*
++	 * From this point forward, this CPU will refuse to run any task that
++	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
++	 * push those tasks away until this gets cleared, see
++	 * sched_cpu_dying().
++	 */
++	balance_push_set(cpu, true);
++
++	/*
++	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
++	 * users of this state to go away such that all new such users will
++	 * observe it.
++	 *
++	 * Specifically, we rely on ttwu to no longer target this CPU, see
++	 * ttwu_queue_cond() and is_cpu_allowed().
++	 *
++	 * Do sync before park smpboot threads to take care the RCU boost case.
++	 */
++	synchronize_rcu();
++
++	sched_set_rq_offline(rq, cpu);
++
++	/*
++	 * When going down, decrement the number of cores with SMT present.
++	 */
++	sched_smt_present_dec(cpu);
++
++	if (!sched_smp_initialized)
++		return 0;
++
++	ret = cpuset_cpu_inactive(cpu);
++	if (ret) {
++		sched_smt_present_inc(cpu);
++		sched_set_rq_online(rq, cpu);
++		balance_push_set(cpu, false);
++		set_cpu_active(cpu, true);
++		return ret;
++	}
++
++	return 0;
++}
++
++static void sched_rq_cpu_starting(unsigned int cpu)
++{
++	struct rq *rq = cpu_rq(cpu);
++
++	rq->calc_load_update = calc_load_update;
++}
++
++int sched_cpu_starting(unsigned int cpu)
++{
++	sched_rq_cpu_starting(cpu);
++	sched_tick_start(cpu);
++	return 0;
++}
++
++#ifdef CONFIG_HOTPLUG_CPU
++
++/*
++ * Invoked immediately before the stopper thread is invoked to bring the
++ * CPU down completely. At this point all per CPU kthreads except the
++ * hotplug thread (current) and the stopper thread (inactive) have been
++ * either parked or have been unbound from the outgoing CPU. Ensure that
++ * any of those which might be on the way out are gone.
++ *
++ * If after this point a bound task is being woken on this CPU then the
++ * responsible hotplug callback has failed to do it's job.
++ * sched_cpu_dying() will catch it with the appropriate fireworks.
++ */
++int sched_cpu_wait_empty(unsigned int cpu)
++{
++	balance_hotplug_wait();
++	return 0;
++}
++
++/*
++ * Since this CPU is going 'away' for a while, fold any nr_active delta we
++ * might have. Called from the CPU stopper task after ensuring that the
++ * stopper is the last running task on the CPU, so nr_active count is
++ * stable. We need to take the tear-down thread which is calling this into
++ * account, so we hand in adjust = 1 to the load calculation.
++ *
++ * Also see the comment "Global load-average calculations".
++ */
++static void calc_load_migrate(struct rq *rq)
++{
++	long delta = calc_load_fold_active(rq, 1);
++
++	if (delta)
++		atomic_long_add(delta, &calc_load_tasks);
++}
++
++static void dump_rq_tasks(struct rq *rq, const char *loglvl)
++{
++	struct task_struct *g, *p;
++	int cpu = cpu_of(rq);
++
++	lockdep_assert_held(&rq->lock);
++
++	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
++	for_each_process_thread(g, p) {
++		if (task_cpu(p) != cpu)
++			continue;
++
++		if (!task_on_rq_queued(p))
++			continue;
++
++		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
++	}
++}
++
++int sched_cpu_dying(unsigned int cpu)
++{
++	struct rq *rq = cpu_rq(cpu);
++	unsigned long flags;
++
++	/* Handle pending wakeups and then migrate everything off */
++	sched_tick_stop(cpu);
++
++	raw_spin_lock_irqsave(&rq->lock, flags);
++	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
++		WARN(true, "Dying CPU not properly vacated!");
++		dump_rq_tasks(rq, KERN_WARNING);
++	}
++	raw_spin_unlock_irqrestore(&rq->lock, flags);
++
++	calc_load_migrate(rq);
++	hrtick_clear(rq);
++	return 0;
++}
++#endif
++
++#ifdef CONFIG_SMP
++static void sched_init_topology_cpumask_early(void)
++{
++	int cpu;
++	cpumask_t *tmp;
++
++	for_each_possible_cpu(cpu) {
++		/* init topo masks */
++		tmp = per_cpu(sched_cpu_topo_masks, cpu);
++
++		cpumask_copy(tmp, cpu_possible_mask);
++		per_cpu(sched_cpu_llc_mask, cpu) = tmp;
++		per_cpu(sched_cpu_topo_end_mask, cpu) = ++tmp;
++	}
++}
++
++#define TOPOLOGY_CPUMASK(name, mask, last)\
++	if (cpumask_and(topo, topo, mask)) {					\
++		cpumask_copy(topo, mask);					\
++		printk(KERN_INFO "sched: cpu#%02d topo: 0x%08lx - "#name,	\
++		       cpu, (topo++)->bits[0]);					\
++	}									\
++	if (!last)								\
++		bitmap_complement(cpumask_bits(topo), cpumask_bits(mask),	\
++				  nr_cpumask_bits);
++
++static void sched_init_topology_cpumask(void)
++{
++	int cpu;
++	cpumask_t *topo;
++
++	for_each_online_cpu(cpu) {
++		topo = per_cpu(sched_cpu_topo_masks, cpu);
++
++		bitmap_complement(cpumask_bits(topo), cpumask_bits(cpumask_of(cpu)),
++				  nr_cpumask_bits);
++#ifdef CONFIG_SCHED_SMT
++		TOPOLOGY_CPUMASK(smt, topology_sibling_cpumask(cpu), false);
++#endif
++		TOPOLOGY_CPUMASK(cluster, topology_cluster_cpumask(cpu), false);
++
++		per_cpu(sd_llc_id, cpu) = cpumask_first(cpu_coregroup_mask(cpu));
++		per_cpu(sched_cpu_llc_mask, cpu) = topo;
++		TOPOLOGY_CPUMASK(coregroup, cpu_coregroup_mask(cpu), false);
++
++		TOPOLOGY_CPUMASK(core, topology_core_cpumask(cpu), false);
++
++		TOPOLOGY_CPUMASK(others, cpu_online_mask, true);
++
++		per_cpu(sched_cpu_topo_end_mask, cpu) = topo;
++		printk(KERN_INFO "sched: cpu#%02d llc_id = %d, llc_mask idx = %d\n",
++		       cpu, per_cpu(sd_llc_id, cpu),
++		       (int) (per_cpu(sched_cpu_llc_mask, cpu) -
++			      per_cpu(sched_cpu_topo_masks, cpu)));
++	}
++}
++#endif
++
++void __init sched_init_smp(void)
++{
++	/* Move init over to a non-isolated CPU */
++	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
++		BUG();
++	current->flags &= ~PF_NO_SETAFFINITY;
++
++	sched_init_topology();
++	sched_init_topology_cpumask();
++
++	sched_smp_initialized = true;
++}
++
++static int __init migration_init(void)
++{
++	sched_cpu_starting(smp_processor_id());
++	return 0;
++}
++early_initcall(migration_init);
++
++#else
++void __init sched_init_smp(void)
++{
++	cpu_rq(0)->idle->time_slice = sysctl_sched_base_slice;
++}
++#endif /* CONFIG_SMP */
++
++int in_sched_functions(unsigned long addr)
++{
++	return in_lock_functions(addr) ||
++		(addr >= (unsigned long)__sched_text_start
++		&& addr < (unsigned long)__sched_text_end);
++}
++
++#ifdef CONFIG_CGROUP_SCHED
++/*
++ * Default task group.
++ * Every task in system belongs to this group at bootup.
++ */
++struct task_group root_task_group;
++LIST_HEAD(task_groups);
++
++/* Cacheline aligned slab cache for task_group */
++static struct kmem_cache *task_group_cache __ro_after_init;
++#endif /* CONFIG_CGROUP_SCHED */
++
++void __init sched_init(void)
++{
++	int i;
++	struct rq *rq;
++
++	printk(KERN_INFO "sched/alt: "ALT_SCHED_NAME" CPU Scheduler "ALT_SCHED_VERSION\
++			 " by Alfred Chen.\n");
++
++	wait_bit_init();
++
++#ifdef CONFIG_SMP
++	for (i = 0; i < SCHED_QUEUE_BITS; i++)
++		cpumask_copy(sched_preempt_mask + i, cpu_present_mask);
++#endif
++
++#ifdef CONFIG_CGROUP_SCHED
++	task_group_cache = KMEM_CACHE(task_group, 0);
++
++	list_add(&root_task_group.list, &task_groups);
++	INIT_LIST_HEAD(&root_task_group.children);
++	INIT_LIST_HEAD(&root_task_group.siblings);
++#endif /* CONFIG_CGROUP_SCHED */
++	for_each_possible_cpu(i) {
++		rq = cpu_rq(i);
++
++		sched_queue_init(&rq->queue);
++		rq->prio = IDLE_TASK_SCHED_PRIO;
++#ifdef CONFIG_SCHED_PDS
++		rq->prio_idx = rq->prio;
++#endif
++
++		raw_spin_lock_init(&rq->lock);
++		rq->nr_running = rq->nr_uninterruptible = 0;
++		rq->calc_load_active = 0;
++		rq->calc_load_update = jiffies + LOAD_FREQ;
++#ifdef CONFIG_SMP
++		rq->online = false;
++		rq->cpu = i;
++
++		rq->clear_idle_mask_func = cpumask_clear_cpu;
++		rq->set_idle_mask_func = cpumask_set_cpu;
++		rq->balance_func = NULL;
++		rq->active_balance_arg.active = 0;
++
++#ifdef CONFIG_NO_HZ_COMMON
++		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
++#endif
++		rq->balance_callback = &balance_push_callback;
++#ifdef CONFIG_HOTPLUG_CPU
++		rcuwait_init(&rq->hotplug_wait);
++#endif
++#endif /* CONFIG_SMP */
++		rq->nr_switches = 0;
++
++		hrtick_rq_init(rq);
++		atomic_set(&rq->nr_iowait, 0);
++
++		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
++	}
++#ifdef CONFIG_SMP
++	/* Set rq->online for cpu 0 */
++	cpu_rq(0)->online = true;
++#endif
++	/*
++	 * The boot idle thread does lazy MMU switching as well:
++	 */
++	mmgrab(&init_mm);
++	enter_lazy_tlb(&init_mm, current);
++
++	/*
++	 * The idle task doesn't need the kthread struct to function, but it
++	 * is dressed up as a per-CPU kthread and thus needs to play the part
++	 * if we want to avoid special-casing it in code that deals with per-CPU
++	 * kthreads.
++	 */
++	WARN_ON(!set_kthread_struct(current));
++
++	/*
++	 * Make us the idle thread. Technically, schedule() should not be
++	 * called from this thread, however somewhere below it might be,
++	 * but because we are the idle thread, we just pick up running again
++	 * when this runqueue becomes "idle".
++	 */
++	init_idle(current, smp_processor_id());
++
++	calc_load_update = jiffies + LOAD_FREQ;
++
++#ifdef CONFIG_SMP
++	idle_thread_set_boot_cpu();
++	balance_push_set(smp_processor_id(), false);
++
++	sched_init_topology_cpumask_early();
++#endif /* SMP */
++
++	preempt_dynamic_init();
++}
++
++#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
++
++void __might_sleep(const char *file, int line)
++{
++	unsigned int state = get_current_state();
++	/*
++	 * Blocking primitives will set (and therefore destroy) current->state,
++	 * since we will exit with TASK_RUNNING make sure we enter with it,
++	 * otherwise we will destroy state.
++	 */
++	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
++			"do not call blocking ops when !TASK_RUNNING; "
++			"state=%x set at [<%p>] %pS\n", state,
++			(void *)current->task_state_change,
++			(void *)current->task_state_change);
++
++	__might_resched(file, line, 0);
++}
++EXPORT_SYMBOL(__might_sleep);
++
++static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
++{
++	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
++		return;
++
++	if (preempt_count() == preempt_offset)
++		return;
++
++	pr_err("Preemption disabled at:");
++	print_ip_sym(KERN_ERR, ip);
++}
++
++static inline bool resched_offsets_ok(unsigned int offsets)
++{
++	unsigned int nested = preempt_count();
++
++	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
++
++	return nested == offsets;
++}
++
++void __might_resched(const char *file, int line, unsigned int offsets)
++{
++	/* Ratelimiting timestamp: */
++	static unsigned long prev_jiffy;
++
++	unsigned long preempt_disable_ip;
++
++	/* WARN_ON_ONCE() by default, no rate limit required: */
++	rcu_sleep_check();
++
++	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
++	     !is_idle_task(current) && !current->non_block_count) ||
++	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
++	    oops_in_progress)
++		return;
++	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
++		return;
++	prev_jiffy = jiffies;
++
++	/* Save this before calling printk(), since that will clobber it: */
++	preempt_disable_ip = get_preempt_disable_ip(current);
++
++	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
++	       file, line);
++	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
++	       in_atomic(), irqs_disabled(), current->non_block_count,
++	       current->pid, current->comm);
++	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
++	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
++
++	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
++		pr_err("RCU nest depth: %d, expected: %u\n",
++		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
++	}
++
++	if (task_stack_end_corrupted(current))
++		pr_emerg("Thread overran stack, or stack corrupted\n");
++
++	debug_show_held_locks(current);
++	if (irqs_disabled())
++		print_irqtrace_events(current);
++
++	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
++				 preempt_disable_ip);
++
++	dump_stack();
++	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
++}
++EXPORT_SYMBOL(__might_resched);
++
++void __cant_sleep(const char *file, int line, int preempt_offset)
++{
++	static unsigned long prev_jiffy;
++
++	if (irqs_disabled())
++		return;
++
++	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
++		return;
++
++	if (preempt_count() > preempt_offset)
++		return;
++
++	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
++		return;
++	prev_jiffy = jiffies;
++
++	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
++	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
++			in_atomic(), irqs_disabled(),
++			current->pid, current->comm);
++
++	debug_show_held_locks(current);
++	dump_stack();
++	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
++}
++EXPORT_SYMBOL_GPL(__cant_sleep);
++
++#ifdef CONFIG_SMP
++void __cant_migrate(const char *file, int line)
++{
++	static unsigned long prev_jiffy;
++
++	if (irqs_disabled())
++		return;
++
++	if (is_migration_disabled(current))
++		return;
++
++	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
++		return;
++
++	if (preempt_count() > 0)
++		return;
++
++	if (current->migration_flags & MDF_FORCE_ENABLED)
++		return;
++
++	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
++		return;
++	prev_jiffy = jiffies;
++
++	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
++	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
++	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
++	       current->pid, current->comm);
++
++	debug_show_held_locks(current);
++	dump_stack();
++	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
++}
++EXPORT_SYMBOL_GPL(__cant_migrate);
++#endif
++#endif
++
++#ifdef CONFIG_MAGIC_SYSRQ
++void normalize_rt_tasks(void)
++{
++	struct task_struct *g, *p;
++	struct sched_attr attr = {
++		.sched_policy = SCHED_NORMAL,
++	};
++
++	read_lock(&tasklist_lock);
++	for_each_process_thread(g, p) {
++		/*
++		 * Only normalize user tasks:
++		 */
++		if (p->flags & PF_KTHREAD)
++			continue;
++
++		schedstat_set(p->stats.wait_start,  0);
++		schedstat_set(p->stats.sleep_start, 0);
++		schedstat_set(p->stats.block_start, 0);
++
++		if (!rt_or_dl_task(p)) {
++			/*
++			 * Renice negative nice level userspace
++			 * tasks back to 0:
++			 */
++			if (task_nice(p) < 0)
++				set_user_nice(p, 0);
++			continue;
++		}
++
++		__sched_setscheduler(p, &attr, false, false);
++	}
++	read_unlock(&tasklist_lock);
++}
++#endif /* CONFIG_MAGIC_SYSRQ */
++
++#if defined(CONFIG_KGDB_KDB)
++/*
++ * These functions are only useful for KDB.
++ *
++ * They can only be called when the whole system has been
++ * stopped - every CPU needs to be quiescent, and no scheduling
++ * activity can take place. Using them for anything else would
++ * be a serious bug, and as a result, they aren't even visible
++ * under any other configuration.
++ */
++
++/**
++ * curr_task - return the current task for a given CPU.
++ * @cpu: the processor in question.
++ *
++ * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
++ *
++ * Return: The current task for @cpu.
++ */
++struct task_struct *curr_task(int cpu)
++{
++	return cpu_curr(cpu);
++}
++
++#endif /* defined(CONFIG_KGDB_KDB) */
++
++#ifdef CONFIG_CGROUP_SCHED
++static void sched_free_group(struct task_group *tg)
++{
++	kmem_cache_free(task_group_cache, tg);
++}
++
++static void sched_free_group_rcu(struct rcu_head *rhp)
++{
++	sched_free_group(container_of(rhp, struct task_group, rcu));
++}
++
++static void sched_unregister_group(struct task_group *tg)
++{
++	/*
++	 * We have to wait for yet another RCU grace period to expire, as
++	 * print_cfs_stats() might run concurrently.
++	 */
++	call_rcu(&tg->rcu, sched_free_group_rcu);
++}
++
++/* allocate runqueue etc for a new task group */
++struct task_group *sched_create_group(struct task_group *parent)
++{
++	struct task_group *tg;
++
++	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
++	if (!tg)
++		return ERR_PTR(-ENOMEM);
++
++	return tg;
++}
++
++void sched_online_group(struct task_group *tg, struct task_group *parent)
++{
++}
++
++/* RCU callback to free various structures associated with a task group */
++static void sched_unregister_group_rcu(struct rcu_head *rhp)
++{
++	/* Now it should be safe to free those cfs_rqs: */
++	sched_unregister_group(container_of(rhp, struct task_group, rcu));
++}
++
++void sched_destroy_group(struct task_group *tg)
++{
++	/* Wait for possible concurrent references to cfs_rqs complete: */
++	call_rcu(&tg->rcu, sched_unregister_group_rcu);
++}
++
++void sched_release_group(struct task_group *tg)
++{
++}
++
++static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
++{
++	return css ? container_of(css, struct task_group, css) : NULL;
++}
++
++static struct cgroup_subsys_state *
++cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
++{
++	struct task_group *parent = css_tg(parent_css);
++	struct task_group *tg;
++
++	if (!parent) {
++		/* This is early initialization for the top cgroup */
++		return &root_task_group.css;
++	}
++
++	tg = sched_create_group(parent);
++	if (IS_ERR(tg))
++		return ERR_PTR(-ENOMEM);
++	return &tg->css;
++}
++
++/* Expose task group only after completing cgroup initialization */
++static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
++{
++	struct task_group *tg = css_tg(css);
++	struct task_group *parent = css_tg(css->parent);
++
++	if (parent)
++		sched_online_group(tg, parent);
++	return 0;
++}
++
++static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
++{
++	struct task_group *tg = css_tg(css);
++
++	sched_release_group(tg);
++}
++
++static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
++{
++	struct task_group *tg = css_tg(css);
++
++	/*
++	 * Relies on the RCU grace period between css_released() and this.
++	 */
++	sched_unregister_group(tg);
++}
++
++#ifdef CONFIG_RT_GROUP_SCHED
++static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
++{
++	return 0;
++}
++#endif
++
++static void cpu_cgroup_attach(struct cgroup_taskset *tset)
++{
++}
++
++static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
++				  struct cftype *cft)
++{
++	return 0;
++}
++
++static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
++				   struct cftype *cftype, s64 cfs_quota_us)
++{
++	return 0;
++}
++
++static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
++				   struct cftype *cft)
++{
++	return 0;
++}
++
++static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
++				    struct cftype *cftype, u64 cfs_period_us)
++{
++	return 0;
++}
++
++static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
++				  struct cftype *cft)
++{
++	return 0;
++}
++
++static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
++				   struct cftype *cftype, u64 cfs_burst_us)
++{
++	return 0;
++}
++
++static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
++{
++	return 0;
++}
++
++static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
++{
++	return 0;
++}
++
++static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
++				struct cftype *cft, s64 val)
++{
++	return 0;
++}
++
++static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
++			       struct cftype *cft)
++{
++	return 0;
++}
++
++static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
++				    struct cftype *cftype, u64 rt_period_us)
++{
++	return 0;
++}
++
++static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
++				   struct cftype *cft)
++{
++	return 0;
++}
++
++static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
++{
++	return 0;
++}
++
++static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
++{
++	return 0;
++}
++
++static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
++				    char *buf, size_t nbytes,
++				    loff_t off)
++{
++	return nbytes;
++}
++
++static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
++				    char *buf, size_t nbytes,
++				    loff_t off)
++{
++	return nbytes;
++}
++
++static struct cftype cpu_legacy_files[] = {
++	{
++		.name = "cfs_quota_us",
++		.read_s64 = cpu_cfs_quota_read_s64,
++		.write_s64 = cpu_cfs_quota_write_s64,
++	},
++	{
++		.name = "cfs_period_us",
++		.read_u64 = cpu_cfs_period_read_u64,
++		.write_u64 = cpu_cfs_period_write_u64,
++	},
++	{
++		.name = "cfs_burst_us",
++		.read_u64 = cpu_cfs_burst_read_u64,
++		.write_u64 = cpu_cfs_burst_write_u64,
++	},
++	{
++		.name = "stat",
++		.seq_show = cpu_cfs_stat_show,
++	},
++	{
++		.name = "stat.local",
++		.seq_show = cpu_cfs_local_stat_show,
++	},
++	{
++		.name = "rt_runtime_us",
++		.read_s64 = cpu_rt_runtime_read,
++		.write_s64 = cpu_rt_runtime_write,
++	},
++	{
++		.name = "rt_period_us",
++		.read_u64 = cpu_rt_period_read_uint,
++		.write_u64 = cpu_rt_period_write_uint,
++	},
++	{
++		.name = "uclamp.min",
++		.flags = CFTYPE_NOT_ON_ROOT,
++		.seq_show = cpu_uclamp_min_show,
++		.write = cpu_uclamp_min_write,
++	},
++	{
++		.name = "uclamp.max",
++		.flags = CFTYPE_NOT_ON_ROOT,
++		.seq_show = cpu_uclamp_max_show,
++		.write = cpu_uclamp_max_write,
++	},
++	{ }	/* Terminate */
++};
++
++static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
++			       struct cftype *cft)
++{
++	return 0;
++}
++
++static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
++				struct cftype *cft, u64 weight)
++{
++	return 0;
++}
++
++static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
++				    struct cftype *cft)
++{
++	return 0;
++}
++
++static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
++				     struct cftype *cft, s64 nice)
++{
++	return 0;
++}
++
++static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
++			       struct cftype *cft)
++{
++	return 0;
++}
++
++static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
++				struct cftype *cft, s64 idle)
++{
++	return 0;
++}
++
++static int cpu_max_show(struct seq_file *sf, void *v)
++{
++	return 0;
++}
++
++static ssize_t cpu_max_write(struct kernfs_open_file *of,
++			     char *buf, size_t nbytes, loff_t off)
++{
++	return nbytes;
++}
++
++static struct cftype cpu_files[] = {
++	{
++		.name = "weight",
++		.flags = CFTYPE_NOT_ON_ROOT,
++		.read_u64 = cpu_weight_read_u64,
++		.write_u64 = cpu_weight_write_u64,
++	},
++	{
++		.name = "weight.nice",
++		.flags = CFTYPE_NOT_ON_ROOT,
++		.read_s64 = cpu_weight_nice_read_s64,
++		.write_s64 = cpu_weight_nice_write_s64,
++	},
++	{
++		.name = "idle",
++		.flags = CFTYPE_NOT_ON_ROOT,
++		.read_s64 = cpu_idle_read_s64,
++		.write_s64 = cpu_idle_write_s64,
++	},
++	{
++		.name = "max",
++		.flags = CFTYPE_NOT_ON_ROOT,
++		.seq_show = cpu_max_show,
++		.write = cpu_max_write,
++	},
++	{
++		.name = "max.burst",
++		.flags = CFTYPE_NOT_ON_ROOT,
++		.read_u64 = cpu_cfs_burst_read_u64,
++		.write_u64 = cpu_cfs_burst_write_u64,
++	},
++	{
++		.name = "uclamp.min",
++		.flags = CFTYPE_NOT_ON_ROOT,
++		.seq_show = cpu_uclamp_min_show,
++		.write = cpu_uclamp_min_write,
++	},
++	{
++		.name = "uclamp.max",
++		.flags = CFTYPE_NOT_ON_ROOT,
++		.seq_show = cpu_uclamp_max_show,
++		.write = cpu_uclamp_max_write,
++	},
++	{ }	/* terminate */
++};
++
++static int cpu_extra_stat_show(struct seq_file *sf,
++			       struct cgroup_subsys_state *css)
++{
++	return 0;
++}
++
++static int cpu_local_stat_show(struct seq_file *sf,
++			       struct cgroup_subsys_state *css)
++{
++	return 0;
++}
++
++struct cgroup_subsys cpu_cgrp_subsys = {
++	.css_alloc	= cpu_cgroup_css_alloc,
++	.css_online	= cpu_cgroup_css_online,
++	.css_released	= cpu_cgroup_css_released,
++	.css_free	= cpu_cgroup_css_free,
++	.css_extra_stat_show = cpu_extra_stat_show,
++	.css_local_stat_show = cpu_local_stat_show,
++#ifdef CONFIG_RT_GROUP_SCHED
++	.can_attach	= cpu_cgroup_can_attach,
++#endif
++	.attach		= cpu_cgroup_attach,
++	.legacy_cftypes	= cpu_legacy_files,
++	.dfl_cftypes	= cpu_files,
++	.early_init	= true,
++	.threaded	= true,
++};
++#endif	/* CONFIG_CGROUP_SCHED */
++
++#undef CREATE_TRACE_POINTS
++
++#ifdef CONFIG_SCHED_MM_CID
++
++#
++/*
++ * @cid_lock: Guarantee forward-progress of cid allocation.
++ *
++ * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
++ * is only used when contention is detected by the lock-free allocation so
++ * forward progress can be guaranteed.
++ */
++DEFINE_RAW_SPINLOCK(cid_lock);
++
++/*
++ * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
++ *
++ * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
++ * detected, it is set to 1 to ensure that all newly coming allocations are
++ * serialized by @cid_lock until the allocation which detected contention
++ * completes and sets @use_cid_lock back to 0. This guarantees forward progress
++ * of a cid allocation.
++ */
++int use_cid_lock;
++
++/*
++ * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
++ * concurrently with respect to the execution of the source runqueue context
++ * switch.
++ *
++ * There is one basic properties we want to guarantee here:
++ *
++ * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
++ * used by a task. That would lead to concurrent allocation of the cid and
++ * userspace corruption.
++ *
++ * Provide this guarantee by introducing a Dekker memory ordering to guarantee
++ * that a pair of loads observe at least one of a pair of stores, which can be
++ * shown as:
++ *
++ *      X = Y = 0
++ *
++ *      w[X]=1          w[Y]=1
++ *      MB              MB
++ *      r[Y]=y          r[X]=x
++ *
++ * Which guarantees that x==0 && y==0 is impossible. But rather than using
++ * values 0 and 1, this algorithm cares about specific state transitions of the
++ * runqueue current task (as updated by the scheduler context switch), and the
++ * per-mm/cpu cid value.
++ *
++ * Let's introduce task (Y) which has task->mm == mm and task (N) which has
++ * task->mm != mm for the rest of the discussion. There are two scheduler state
++ * transitions on context switch we care about:
++ *
++ * (TSA) Store to rq->curr with transition from (N) to (Y)
++ *
++ * (TSB) Store to rq->curr with transition from (Y) to (N)
++ *
++ * On the remote-clear side, there is one transition we care about:
++ *
++ * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
++ *
++ * There is also a transition to UNSET state which can be performed from all
++ * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
++ * guarantees that only a single thread will succeed:
++ *
++ * (TMB) cmpxchg to *pcpu_cid to mark UNSET
++ *
++ * Just to be clear, what we do _not_ want to happen is a transition to UNSET
++ * when a thread is actively using the cid (property (1)).
++ *
++ * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
++ *
++ * Scenario A) (TSA)+(TMA) (from next task perspective)
++ *
++ * CPU0                                      CPU1
++ *
++ * Context switch CS-1                       Remote-clear
++ *   - store to rq->curr: (N)->(Y) (TSA)     - cmpxchg to *pcpu_id to LAZY (TMA)
++ *                                             (implied barrier after cmpxchg)
++ *   - switch_mm_cid()
++ *     - memory barrier (see switch_mm_cid()
++ *       comment explaining how this barrier
++ *       is combined with other scheduler
++ *       barriers)
++ *     - mm_cid_get (next)
++ *       - READ_ONCE(*pcpu_cid)              - rcu_dereference(src_rq->curr)
++ *
++ * This Dekker ensures that either task (Y) is observed by the
++ * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
++ * observed.
++ *
++ * If task (Y) store is observed by rcu_dereference(), it means that there is
++ * still an active task on the cpu. Remote-clear will therefore not transition
++ * to UNSET, which fulfills property (1).
++ *
++ * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
++ * it will move its state to UNSET, which clears the percpu cid perhaps
++ * uselessly (which is not an issue for correctness). Because task (Y) is not
++ * observed, CPU1 can move ahead to set the state to UNSET. Because moving
++ * state to UNSET is done with a cmpxchg expecting that the old state has the
++ * LAZY flag set, only one thread will successfully UNSET.
++ *
++ * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
++ * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
++ * CPU1 will observe task (Y) and do nothing more, which is fine.
++ *
++ * What we are effectively preventing with this Dekker is a scenario where
++ * neither LAZY flag nor store (Y) are observed, which would fail property (1)
++ * because this would UNSET a cid which is actively used.
++ */
++
++void sched_mm_cid_migrate_from(struct task_struct *t)
++{
++	t->migrate_from_cpu = task_cpu(t);
++}
++
++static
++int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
++					  struct task_struct *t,
++					  struct mm_cid *src_pcpu_cid)
++{
++	struct mm_struct *mm = t->mm;
++	struct task_struct *src_task;
++	int src_cid, last_mm_cid;
++
++	if (!mm)
++		return -1;
++
++	last_mm_cid = t->last_mm_cid;
++	/*
++	 * If the migrated task has no last cid, or if the current
++	 * task on src rq uses the cid, it means the source cid does not need
++	 * to be moved to the destination cpu.
++	 */
++	if (last_mm_cid == -1)
++		return -1;
++	src_cid = READ_ONCE(src_pcpu_cid->cid);
++	if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
++		return -1;
++
++	/*
++	 * If we observe an active task using the mm on this rq, it means we
++	 * are not the last task to be migrated from this cpu for this mm, so
++	 * there is no need to move src_cid to the destination cpu.
++	 */
++	guard(rcu)();
++	src_task = rcu_dereference(src_rq->curr);
++	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
++		t->last_mm_cid = -1;
++		return -1;
++	}
++
++	return src_cid;
++}
++
++static
++int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
++					      struct task_struct *t,
++					      struct mm_cid *src_pcpu_cid,
++					      int src_cid)
++{
++	struct task_struct *src_task;
++	struct mm_struct *mm = t->mm;
++	int lazy_cid;
++
++	if (src_cid == -1)
++		return -1;
++
++	/*
++	 * Attempt to clear the source cpu cid to move it to the destination
++	 * cpu.
++	 */
++	lazy_cid = mm_cid_set_lazy_put(src_cid);
++	if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
++		return -1;
++
++	/*
++	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
++	 * rq->curr->mm matches the scheduler barrier in context_switch()
++	 * between store to rq->curr and load of prev and next task's
++	 * per-mm/cpu cid.
++	 *
++	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
++	 * rq->curr->mm_cid_active matches the barrier in
++	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
++	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
++	 * load of per-mm/cpu cid.
++	 */
++
++	/*
++	 * If we observe an active task using the mm on this rq after setting
++	 * the lazy-put flag, this task will be responsible for transitioning
++	 * from lazy-put flag set to MM_CID_UNSET.
++	 */
++	scoped_guard (rcu) {
++		src_task = rcu_dereference(src_rq->curr);
++		if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
++			rcu_read_unlock();
++			/*
++			 * We observed an active task for this mm, there is therefore
++			 * no point in moving this cid to the destination cpu.
++			 */
++			t->last_mm_cid = -1;
++			return -1;
++		}
++	}
++
++	/*
++	 * The src_cid is unused, so it can be unset.
++	 */
++	if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
++		return -1;
++	return src_cid;
++}
++
++/*
++ * Migration to dst cpu. Called with dst_rq lock held.
++ * Interrupts are disabled, which keeps the window of cid ownership without the
++ * source rq lock held small.
++ */
++void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
++{
++	struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
++	struct mm_struct *mm = t->mm;
++	int src_cid, dst_cid, src_cpu;
++	struct rq *src_rq;
++
++	lockdep_assert_rq_held(dst_rq);
++
++	if (!mm)
++		return;
++	src_cpu = t->migrate_from_cpu;
++	if (src_cpu == -1) {
++		t->last_mm_cid = -1;
++		return;
++	}
++	/*
++	 * Move the src cid if the dst cid is unset. This keeps id
++	 * allocation closest to 0 in cases where few threads migrate around
++	 * many CPUs.
++	 *
++	 * If destination cid is already set, we may have to just clear
++	 * the src cid to ensure compactness in frequent migrations
++	 * scenarios.
++	 *
++	 * It is not useful to clear the src cid when the number of threads is
++	 * greater or equal to the number of allowed CPUs, because user-space
++	 * can expect that the number of allowed cids can reach the number of
++	 * allowed CPUs.
++	 */
++	dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
++	dst_cid = READ_ONCE(dst_pcpu_cid->cid);
++	if (!mm_cid_is_unset(dst_cid) &&
++	    atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
++		return;
++	src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
++	src_rq = cpu_rq(src_cpu);
++	src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
++	if (src_cid == -1)
++		return;
++	src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
++							    src_cid);
++	if (src_cid == -1)
++		return;
++	if (!mm_cid_is_unset(dst_cid)) {
++		__mm_cid_put(mm, src_cid);
++		return;
++	}
++	/* Move src_cid to dst cpu. */
++	mm_cid_snapshot_time(dst_rq, mm);
++	WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
++}
++
++static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
++				      int cpu)
++{
++	struct rq *rq = cpu_rq(cpu);
++	struct task_struct *t;
++	int cid, lazy_cid;
++
++	cid = READ_ONCE(pcpu_cid->cid);
++	if (!mm_cid_is_valid(cid))
++		return;
++
++	/*
++	 * Clear the cpu cid if it is set to keep cid allocation compact.  If
++	 * there happens to be other tasks left on the source cpu using this
++	 * mm, the next task using this mm will reallocate its cid on context
++	 * switch.
++	 */
++	lazy_cid = mm_cid_set_lazy_put(cid);
++	if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
++		return;
++
++	/*
++	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
++	 * rq->curr->mm matches the scheduler barrier in context_switch()
++	 * between store to rq->curr and load of prev and next task's
++	 * per-mm/cpu cid.
++	 *
++	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
++	 * rq->curr->mm_cid_active matches the barrier in
++	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
++	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
++	 * load of per-mm/cpu cid.
++	 */
++
++	/*
++	 * If we observe an active task using the mm on this rq after setting
++	 * the lazy-put flag, that task will be responsible for transitioning
++	 * from lazy-put flag set to MM_CID_UNSET.
++	 */
++	scoped_guard (rcu) {
++		t = rcu_dereference(rq->curr);
++		if (READ_ONCE(t->mm_cid_active) && t->mm == mm)
++			return;
++	}
++
++	/*
++	 * The cid is unused, so it can be unset.
++	 * Disable interrupts to keep the window of cid ownership without rq
++	 * lock small.
++	 */
++	scoped_guard (irqsave) {
++		if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
++			__mm_cid_put(mm, cid);
++	}
++}
++
++static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
++{
++	struct rq *rq = cpu_rq(cpu);
++	struct mm_cid *pcpu_cid;
++	struct task_struct *curr;
++	u64 rq_clock;
++
++	/*
++	 * rq->clock load is racy on 32-bit but one spurious clear once in a
++	 * while is irrelevant.
++	 */
++	rq_clock = READ_ONCE(rq->clock);
++	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
++
++	/*
++	 * In order to take care of infrequently scheduled tasks, bump the time
++	 * snapshot associated with this cid if an active task using the mm is
++	 * observed on this rq.
++	 */
++	scoped_guard (rcu) {
++		curr = rcu_dereference(rq->curr);
++		if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
++			WRITE_ONCE(pcpu_cid->time, rq_clock);
++			return;
++		}
++	}
++
++	if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
++		return;
++	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
++}
++
++static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
++					     int weight)
++{
++	struct mm_cid *pcpu_cid;
++	int cid;
++
++	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
++	cid = READ_ONCE(pcpu_cid->cid);
++	if (!mm_cid_is_valid(cid) || cid < weight)
++		return;
++	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
++}
++
++static void task_mm_cid_work(struct callback_head *work)
++{
++	unsigned long now = jiffies, old_scan, next_scan;
++	struct task_struct *t = current;
++	struct cpumask *cidmask;
++	struct mm_struct *mm;
++	int weight, cpu;
++
++	SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
++
++	work->next = work;	/* Prevent double-add */
++	if (t->flags & PF_EXITING)
++		return;
++	mm = t->mm;
++	if (!mm)
++		return;
++	old_scan = READ_ONCE(mm->mm_cid_next_scan);
++	next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
++	if (!old_scan) {
++		unsigned long res;
++
++		res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
++		if (res != old_scan)
++			old_scan = res;
++		else
++			old_scan = next_scan;
++	}
++	if (time_before(now, old_scan))
++		return;
++	if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
++		return;
++	cidmask = mm_cidmask(mm);
++	/* Clear cids that were not recently used. */
++	for_each_possible_cpu(cpu)
++		sched_mm_cid_remote_clear_old(mm, cpu);
++	weight = cpumask_weight(cidmask);
++	/*
++	 * Clear cids that are greater or equal to the cidmask weight to
++	 * recompact it.
++	 */
++	for_each_possible_cpu(cpu)
++		sched_mm_cid_remote_clear_weight(mm, cpu, weight);
++}
++
++void init_sched_mm_cid(struct task_struct *t)
++{
++	struct mm_struct *mm = t->mm;
++	int mm_users = 0;
++
++	if (mm) {
++		mm_users = atomic_read(&mm->mm_users);
++		if (mm_users == 1)
++			mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
++	}
++	t->cid_work.next = &t->cid_work;	/* Protect against double add */
++	init_task_work(&t->cid_work, task_mm_cid_work);
++}
++
++void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
++{
++	struct callback_head *work = &curr->cid_work;
++	unsigned long now = jiffies;
++
++	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
++	    work->next != work)
++		return;
++	if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
++		return;
++
++	/* No page allocation under rq lock */
++	task_work_add(curr, work, TWA_RESUME | TWAF_NO_ALLOC);
++}
++
++void sched_mm_cid_exit_signals(struct task_struct *t)
++{
++	struct mm_struct *mm = t->mm;
++	struct rq *rq;
++
++	if (!mm)
++		return;
++
++	preempt_disable();
++	rq = this_rq();
++	guard(rq_lock_irqsave)(rq);
++	preempt_enable_no_resched();	/* holding spinlock */
++	WRITE_ONCE(t->mm_cid_active, 0);
++	/*
++	 * Store t->mm_cid_active before loading per-mm/cpu cid.
++	 * Matches barrier in sched_mm_cid_remote_clear_old().
++	 */
++	smp_mb();
++	mm_cid_put(mm);
++	t->last_mm_cid = t->mm_cid = -1;
++}
++
++void sched_mm_cid_before_execve(struct task_struct *t)
++{
++	struct mm_struct *mm = t->mm;
++	struct rq *rq;
++
++	if (!mm)
++		return;
++
++	preempt_disable();
++	rq = this_rq();
++	guard(rq_lock_irqsave)(rq);
++	preempt_enable_no_resched();	/* holding spinlock */
++	WRITE_ONCE(t->mm_cid_active, 0);
++	/*
++	 * Store t->mm_cid_active before loading per-mm/cpu cid.
++	 * Matches barrier in sched_mm_cid_remote_clear_old().
++	 */
++	smp_mb();
++	mm_cid_put(mm);
++	t->last_mm_cid = t->mm_cid = -1;
++}
++
++void sched_mm_cid_after_execve(struct task_struct *t)
++{
++	struct mm_struct *mm = t->mm;
++	struct rq *rq;
++
++	if (!mm)
++		return;
++
++	preempt_disable();
++	rq = this_rq();
++	scoped_guard (rq_lock_irqsave, rq) {
++		preempt_enable_no_resched();	/* holding spinlock */
++		WRITE_ONCE(t->mm_cid_active, 1);
++		/*
++		 * Store t->mm_cid_active before loading per-mm/cpu cid.
++		 * Matches barrier in sched_mm_cid_remote_clear_old().
++		 */
++		smp_mb();
++		t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
++	}
++	rseq_set_notify_resume(t);
++}
++
++void sched_mm_cid_fork(struct task_struct *t)
++{
++	WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
++	t->mm_cid_active = 1;
++}
++#endif
+diff --git a/kernel/sched/alt_core.h b/kernel/sched/alt_core.h
+new file mode 100644
+index 000000000000..12d76d9d290e
+--- /dev/null
++++ b/kernel/sched/alt_core.h
+@@ -0,0 +1,213 @@
++#ifndef _KERNEL_SCHED_ALT_CORE_H
++#define _KERNEL_SCHED_ALT_CORE_H
++
++/*
++ * Compile time debug macro
++ * #define ALT_SCHED_DEBUG
++ */
++
++/*
++ * Task related inlined functions
++ */
++static inline bool is_migration_disabled(struct task_struct *p)
++{
++#ifdef CONFIG_SMP
++	return p->migration_disabled;
++#else
++	return false;
++#endif
++}
++
++/* rt_prio(prio) defined in include/linux/sched/rt.h */
++#define rt_task(p)		rt_prio((p)->prio)
++#define rt_policy(policy)	((policy) == SCHED_FIFO || (policy) == SCHED_RR)
++#define task_has_rt_policy(p)	(rt_policy((p)->policy))
++
++struct affinity_context {
++	const struct cpumask	*new_mask;
++	struct cpumask		*user_mask;
++	unsigned int		flags;
++};
++
++/* CONFIG_SCHED_CLASS_EXT is not supported */
++#define scx_switched_all()	false
++
++#define SCA_CHECK		0x01
++#define SCA_MIGRATE_DISABLE	0x02
++#define SCA_MIGRATE_ENABLE	0x04
++#define SCA_USER		0x08
++
++#ifdef CONFIG_SMP
++
++extern int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx);
++
++static inline cpumask_t *alloc_user_cpus_ptr(int node)
++{
++	/*
++	 * See do_set_cpus_allowed() above for the rcu_head usage.
++	 */
++	int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
++
++	return kmalloc_node(size, GFP_KERNEL, node);
++}
++
++#else /* !CONFIG_SMP: */
++
++static inline int __set_cpus_allowed_ptr(struct task_struct *p,
++					 struct affinity_context *ctx)
++{
++	return set_cpus_allowed_ptr(p, ctx->new_mask);
++}
++
++static inline cpumask_t *alloc_user_cpus_ptr(int node)
++{
++	return NULL;
++}
++
++#endif /* !CONFIG_SMP */
++
++#ifdef CONFIG_RT_MUTEXES
++
++static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
++{
++	if (pi_task)
++		prio = min(prio, pi_task->prio);
++
++	return prio;
++}
++
++static inline int rt_effective_prio(struct task_struct *p, int prio)
++{
++	struct task_struct *pi_task = rt_mutex_get_top_task(p);
++
++	return __rt_effective_prio(pi_task, prio);
++}
++
++#else /* !CONFIG_RT_MUTEXES: */
++
++static inline int rt_effective_prio(struct task_struct *p, int prio)
++{
++	return prio;
++}
++
++#endif /* !CONFIG_RT_MUTEXES */
++
++extern int __sched_setscheduler(struct task_struct *p, const struct sched_attr *attr, bool user, bool pi);
++extern int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
++extern void __setscheduler_prio(struct task_struct *p, int prio);
++
++/*
++ * Context API
++ */
++static inline struct rq *__task_access_lock(struct task_struct *p, raw_spinlock_t **plock)
++{
++	struct rq *rq;
++	for (;;) {
++		rq = task_rq(p);
++		if (p->on_cpu || task_on_rq_queued(p)) {
++			raw_spin_lock(&rq->lock);
++			if (likely((p->on_cpu || task_on_rq_queued(p)) && rq == task_rq(p))) {
++				*plock = &rq->lock;
++				return rq;
++			}
++			raw_spin_unlock(&rq->lock);
++		} else if (task_on_rq_migrating(p)) {
++			do {
++				cpu_relax();
++			} while (unlikely(task_on_rq_migrating(p)));
++		} else {
++			*plock = NULL;
++			return rq;
++		}
++	}
++}
++
++static inline void __task_access_unlock(struct task_struct *p, raw_spinlock_t *lock)
++{
++	if (NULL != lock)
++		raw_spin_unlock(lock);
++}
++
++void check_task_changed(struct task_struct *p, struct rq *rq);
++
++/*
++ * RQ related inlined functions
++ */
++
++/*
++ * This routine assume that the idle task always in queue
++ */
++static inline struct task_struct *sched_rq_first_task(struct rq *rq)
++{
++	const struct list_head *head = &rq->queue.heads[sched_rq_prio_idx(rq)];
++
++	return list_first_entry(head, struct task_struct, sq_node);
++}
++
++static inline struct task_struct * sched_rq_next_task(struct task_struct *p, struct rq *rq)
++{
++	struct list_head *next = p->sq_node.next;
++
++	if (&rq->queue.heads[0] <= next && next < &rq->queue.heads[SCHED_LEVELS]) {
++		struct list_head *head;
++		unsigned long idx = next - &rq->queue.heads[0];
++
++		idx = find_next_bit(rq->queue.bitmap, SCHED_QUEUE_BITS,
++				    sched_idx2prio(idx, rq) + 1);
++		head = &rq->queue.heads[sched_prio2idx(idx, rq)];
++
++		return list_first_entry(head, struct task_struct, sq_node);
++	}
++
++	return list_next_entry(p, sq_node);
++}
++
++extern void requeue_task(struct task_struct *p, struct rq *rq);
++
++#ifdef ALT_SCHED_DEBUG
++extern void alt_sched_debug(void);
++#else
++static inline void alt_sched_debug(void) {}
++#endif
++
++extern int sched_yield_type;
++
++#ifdef CONFIG_SMP
++extern cpumask_t sched_rq_pending_mask ____cacheline_aligned_in_smp;
++
++DECLARE_STATIC_KEY_FALSE(sched_smt_present);
++DECLARE_PER_CPU_ALIGNED(cpumask_t *, sched_cpu_llc_mask);
++
++extern cpumask_t sched_smt_mask ____cacheline_aligned_in_smp;
++
++extern cpumask_t *const sched_idle_mask;
++extern cpumask_t *const sched_sg_idle_mask;
++extern cpumask_t *const sched_pcore_idle_mask;
++extern cpumask_t *const sched_ecore_idle_mask;
++
++extern struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu);
++
++typedef bool (*idle_select_func_t)(struct cpumask *dstp, const struct cpumask *src1p,
++				   const struct cpumask *src2p);
++
++extern idle_select_func_t idle_select_func;
++#endif
++
++/* balance callback */
++#ifdef CONFIG_SMP
++extern struct balance_callback *splice_balance_callbacks(struct rq *rq);
++extern void balance_callbacks(struct rq *rq, struct balance_callback *head);
++#else
++
++static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
++{
++	return NULL;
++}
++
++static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
++{
++}
++
++#endif
++
++#endif /* _KERNEL_SCHED_ALT_CORE_H */
+diff --git a/kernel/sched/alt_debug.c b/kernel/sched/alt_debug.c
+new file mode 100644
+index 000000000000..1dbd7eb6a434
+--- /dev/null
++++ b/kernel/sched/alt_debug.c
+@@ -0,0 +1,32 @@
++/*
++ * kernel/sched/alt_debug.c
++ *
++ * Print the alt scheduler debugging details
++ *
++ * Author: Alfred Chen
++ * Date  : 2020
++ */
++#include "sched.h"
++#include "linux/sched/debug.h"
++
++/*
++ * This allows printing both to /proc/sched_debug and
++ * to the console
++ */
++#define SEQ_printf(m, x...)			\
++ do {						\
++	if (m)					\
++		seq_printf(m, x);		\
++	else					\
++		pr_cont(x);			\
++ } while (0)
++
++void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
++			  struct seq_file *m)
++{
++	SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
++						get_nr_threads(p));
++}
++
++void proc_sched_set_task(struct task_struct *p)
++{}
+diff --git a/kernel/sched/alt_sched.h b/kernel/sched/alt_sched.h
+new file mode 100644
+index 000000000000..09c9e9f80bf4
+--- /dev/null
++++ b/kernel/sched/alt_sched.h
+@@ -0,0 +1,971 @@
++#ifndef _KERNEL_SCHED_ALT_SCHED_H
++#define _KERNEL_SCHED_ALT_SCHED_H
++
++#include <linux/context_tracking.h>
++#include <linux/profile.h>
++#include <linux/stop_machine.h>
++#include <linux/syscalls.h>
++#include <linux/tick.h>
++
++#include <trace/events/power.h>
++#include <trace/events/sched.h>
++
++#include "../workqueue_internal.h"
++
++#include "cpupri.h"
++
++#ifdef CONFIG_CGROUP_SCHED
++/* task group related information */
++struct task_group {
++	struct cgroup_subsys_state css;
++
++	struct rcu_head rcu;
++	struct list_head list;
++
++	struct task_group *parent;
++	struct list_head siblings;
++	struct list_head children;
++};
++
++extern struct task_group *sched_create_group(struct task_group *parent);
++extern void sched_online_group(struct task_group *tg,
++			       struct task_group *parent);
++extern void sched_destroy_group(struct task_group *tg);
++extern void sched_release_group(struct task_group *tg);
++#endif /* CONFIG_CGROUP_SCHED */
++
++#define MIN_SCHED_NORMAL_PRIO	(32)
++/*
++ * levels: RT(0-24), reserved(25-31), NORMAL(32-63), cpu idle task(64)
++ *
++ * -- BMQ --
++ * NORMAL: (lower boost range 12, NICE_WIDTH 40, higher boost range 12) / 2
++ * -- PDS --
++ * NORMAL: SCHED_EDGE_DELTA + ((NICE_WIDTH 40) / 2)
++ */
++#define SCHED_LEVELS		(64 + 1)
++
++#define IDLE_TASK_SCHED_PRIO	(SCHED_LEVELS - 1)
++
++#ifdef CONFIG_SCHED_DEBUG
++# define SCHED_WARN_ON(x)	WARN_ONCE(x, #x)
++extern void resched_latency_warn(int cpu, u64 latency);
++#else
++# define SCHED_WARN_ON(x)	({ (void)(x), 0; })
++static inline void resched_latency_warn(int cpu, u64 latency) {}
++#endif
++
++/*
++ * Increase resolution of nice-level calculations for 64-bit architectures.
++ * The extra resolution improves shares distribution and load balancing of
++ * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
++ * hierarchies, especially on larger systems. This is not a user-visible change
++ * and does not change the user-interface for setting shares/weights.
++ *
++ * We increase resolution only if we have enough bits to allow this increased
++ * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
++ * are pretty high and the returns do not justify the increased costs.
++ *
++ * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
++ * increase coverage and consistency always enable it on 64-bit platforms.
++ */
++#ifdef CONFIG_64BIT
++# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
++# define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
++# define scale_load_down(w) \
++({ \
++	unsigned long __w = (w); \
++	if (__w) \
++		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
++	__w; \
++})
++#else
++# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
++# define scale_load(w)		(w)
++# define scale_load_down(w)	(w)
++#endif
++
++/*
++ * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
++ */
++#ifdef CONFIG_SCHED_DEBUG
++# define const_debug __read_mostly
++#else
++# define const_debug const
++#endif
++
++/* task_struct::on_rq states: */
++#define TASK_ON_RQ_QUEUED	1
++#define TASK_ON_RQ_MIGRATING	2
++
++static inline int task_on_rq_queued(struct task_struct *p)
++{
++	return p->on_rq == TASK_ON_RQ_QUEUED;
++}
++
++static inline int task_on_rq_migrating(struct task_struct *p)
++{
++	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
++}
++
++/* Wake flags. The first three directly map to some SD flag value */
++#define WF_EXEC         0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
++#define WF_FORK         0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
++#define WF_TTWU         0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
++
++#define WF_SYNC         0x10 /* Waker goes to sleep after wakeup */
++#define WF_MIGRATED     0x20 /* Internal use, task got migrated */
++#define WF_CURRENT_CPU  0x40 /* Prefer to move the wakee to the current CPU. */
++
++#ifdef CONFIG_SMP
++static_assert(WF_EXEC == SD_BALANCE_EXEC);
++static_assert(WF_FORK == SD_BALANCE_FORK);
++static_assert(WF_TTWU == SD_BALANCE_WAKE);
++#endif
++
++#define SCHED_QUEUE_BITS	(SCHED_LEVELS - 1)
++
++struct sched_queue {
++	DECLARE_BITMAP(bitmap, SCHED_QUEUE_BITS);
++	struct list_head heads[SCHED_LEVELS];
++};
++
++struct rq;
++struct cpuidle_state;
++
++struct balance_callback {
++	struct balance_callback *next;
++	void (*func)(struct rq *rq);
++};
++
++typedef void (*balance_func_t)(struct rq *rq, int cpu);
++typedef void (*set_idle_mask_func_t)(unsigned int cpu, struct cpumask *dstp);
++typedef void (*clear_idle_mask_func_t)(int cpu, struct cpumask *dstp);
++
++struct balance_arg {
++	struct task_struct	*task;
++	int			active;
++	cpumask_t		*cpumask;
++};
++
++/*
++ * This is the main, per-CPU runqueue data structure.
++ * This data should only be modified by the local cpu.
++ */
++struct rq {
++	/* runqueue lock: */
++	raw_spinlock_t			lock;
++
++	struct task_struct __rcu	*curr;
++	struct task_struct		*idle;
++	struct task_struct		*stop;
++	struct mm_struct		*prev_mm;
++
++	struct sched_queue		queue		____cacheline_aligned;
++
++	int				prio;
++#ifdef CONFIG_SCHED_PDS
++	int				prio_idx;
++	u64				time_edge;
++#endif
++
++	/* switch count */
++	u64 nr_switches;
++
++	atomic_t nr_iowait;
++
++#ifdef CONFIG_SCHED_DEBUG
++	u64 last_seen_need_resched_ns;
++	int ticks_without_resched;
++#endif
++
++#ifdef CONFIG_MEMBARRIER
++	int membarrier_state;
++#endif
++
++	set_idle_mask_func_t	set_idle_mask_func;
++	clear_idle_mask_func_t	clear_idle_mask_func;
++
++#ifdef CONFIG_SMP
++	int cpu;		/* cpu of this runqueue */
++	bool online;
++
++	unsigned int		ttwu_pending;
++	unsigned char		nohz_idle_balance;
++	unsigned char		idle_balance;
++
++#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
++	struct sched_avg	avg_irq;
++#endif
++
++	balance_func_t		balance_func;
++	struct balance_arg	active_balance_arg		____cacheline_aligned;
++	struct cpu_stop_work	active_balance_work;
++
++	struct balance_callback	*balance_callback;
++#ifdef CONFIG_HOTPLUG_CPU
++	struct rcuwait		hotplug_wait;
++#endif
++	unsigned int		nr_pinned;
++
++#endif /* CONFIG_SMP */
++#ifdef CONFIG_IRQ_TIME_ACCOUNTING
++	u64 prev_irq_time;
++#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
++#ifdef CONFIG_PARAVIRT
++	u64 prev_steal_time;
++#endif /* CONFIG_PARAVIRT */
++#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
++	u64 prev_steal_time_rq;
++#endif /* CONFIG_PARAVIRT_TIME_ACCOUNTING */
++
++	/* For genenal cpu load util */
++	s32 load_history;
++	u64 load_block;
++	u64 load_stamp;
++
++	/* calc_load related fields */
++	unsigned long calc_load_update;
++	long calc_load_active;
++
++	/* Ensure that all clocks are in the same cache line */
++	u64			clock ____cacheline_aligned;
++	u64			clock_task;
++
++	unsigned int  nr_running;
++	unsigned long nr_uninterruptible;
++
++#ifdef CONFIG_SCHED_HRTICK
++#ifdef CONFIG_SMP
++	call_single_data_t hrtick_csd;
++#endif
++	struct hrtimer		hrtick_timer;
++	ktime_t			hrtick_time;
++#endif
++
++#ifdef CONFIG_SCHEDSTATS
++
++	/* latency stats */
++	struct sched_info rq_sched_info;
++	unsigned long long rq_cpu_time;
++	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
++
++	/* sys_sched_yield() stats */
++	unsigned int yld_count;
++
++	/* schedule() stats */
++	unsigned int sched_switch;
++	unsigned int sched_count;
++	unsigned int sched_goidle;
++
++	/* try_to_wake_up() stats */
++	unsigned int ttwu_count;
++	unsigned int ttwu_local;
++#endif /* CONFIG_SCHEDSTATS */
++
++#ifdef CONFIG_CPU_IDLE
++	/* Must be inspected within a rcu lock section */
++	struct cpuidle_state *idle_state;
++#endif
++
++#ifdef CONFIG_NO_HZ_COMMON
++#ifdef CONFIG_SMP
++	call_single_data_t	nohz_csd;
++#endif
++	atomic_t		nohz_flags;
++#endif /* CONFIG_NO_HZ_COMMON */
++
++	/* Scratch cpumask to be temporarily used under rq_lock */
++	cpumask_var_t		scratch_mask;
++};
++
++extern unsigned int sysctl_sched_base_slice;
++
++extern unsigned long rq_load_util(struct rq *rq, unsigned long max);
++
++extern unsigned long calc_load_update;
++extern atomic_long_t calc_load_tasks;
++
++extern void calc_global_load_tick(struct rq *this_rq);
++extern long calc_load_fold_active(struct rq *this_rq, long adjust);
++
++DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
++#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
++#define this_rq()		this_cpu_ptr(&runqueues)
++#define task_rq(p)		cpu_rq(task_cpu(p))
++#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
++#define raw_rq()		raw_cpu_ptr(&runqueues)
++
++#ifdef CONFIG_SMP
++#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
++void register_sched_domain_sysctl(void);
++void unregister_sched_domain_sysctl(void);
++#else
++static inline void register_sched_domain_sysctl(void)
++{
++}
++static inline void unregister_sched_domain_sysctl(void)
++{
++}
++#endif
++
++extern bool sched_smp_initialized;
++
++enum {
++#ifdef CONFIG_SCHED_SMT
++	SMT_LEVEL_SPACE_HOLDER,
++#endif
++	COREGROUP_LEVEL_SPACE_HOLDER,
++	CORE_LEVEL_SPACE_HOLDER,
++	OTHER_LEVEL_SPACE_HOLDER,
++	NR_CPU_AFFINITY_LEVELS
++};
++
++DECLARE_PER_CPU_ALIGNED(cpumask_t [NR_CPU_AFFINITY_LEVELS], sched_cpu_topo_masks);
++
++static inline int
++__best_mask_cpu(const cpumask_t *cpumask, const cpumask_t *mask)
++{
++	int cpu;
++
++	while ((cpu = cpumask_any_and(cpumask, mask)) >= nr_cpu_ids)
++		mask++;
++
++	return cpu;
++}
++
++static inline int best_mask_cpu(int cpu, const cpumask_t *mask)
++{
++	return __best_mask_cpu(mask, per_cpu(sched_cpu_topo_masks, cpu));
++}
++
++#endif
++
++#ifndef arch_scale_freq_tick
++static __always_inline
++void arch_scale_freq_tick(void)
++{
++}
++#endif
++
++#ifndef arch_scale_freq_capacity
++static __always_inline
++unsigned long arch_scale_freq_capacity(int cpu)
++{
++	return SCHED_CAPACITY_SCALE;
++}
++#endif
++
++static inline u64 __rq_clock_broken(struct rq *rq)
++{
++	return READ_ONCE(rq->clock);
++}
++
++static inline u64 rq_clock(struct rq *rq)
++{
++	/*
++	 * Relax lockdep_assert_held() checking as in VRQ, call to
++	 * sched_info_xxxx() may not held rq->lock
++	 * lockdep_assert_held(&rq->lock);
++	 */
++	return rq->clock;
++}
++
++static inline u64 rq_clock_task(struct rq *rq)
++{
++	/*
++	 * Relax lockdep_assert_held() checking as in VRQ, call to
++	 * sched_info_xxxx() may not held rq->lock
++	 * lockdep_assert_held(&rq->lock);
++	 */
++	return rq->clock_task;
++}
++
++/*
++ * {de,en}queue flags:
++ *
++ * DEQUEUE_SLEEP  - task is no longer runnable
++ * ENQUEUE_WAKEUP - task just became runnable
++ *
++ */
++
++#define DEQUEUE_SLEEP		0x01
++
++#define ENQUEUE_WAKEUP		0x01
++
++
++/*
++ * Below are scheduler API which using in other kernel code
++ * It use the dummy rq_flags
++ * ToDo : BMQ need to support these APIs for compatibility with mainline
++ * scheduler code.
++ */
++struct rq_flags {
++	unsigned long flags;
++};
++
++struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
++	__acquires(rq->lock);
++
++struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
++	__acquires(p->pi_lock)
++	__acquires(rq->lock);
++
++static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
++	__releases(rq->lock)
++{
++	raw_spin_unlock(&rq->lock);
++}
++
++static inline void
++task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
++	__releases(rq->lock)
++	__releases(p->pi_lock)
++{
++	raw_spin_unlock(&rq->lock);
++	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
++}
++
++static inline void
++rq_lock(struct rq *rq, struct rq_flags *rf)
++	__acquires(rq->lock)
++{
++	raw_spin_lock(&rq->lock);
++}
++
++static inline void
++rq_unlock(struct rq *rq, struct rq_flags *rf)
++	__releases(rq->lock)
++{
++	raw_spin_unlock(&rq->lock);
++}
++
++static inline void
++rq_lock_irq(struct rq *rq, struct rq_flags *rf)
++	__acquires(rq->lock)
++{
++	raw_spin_lock_irq(&rq->lock);
++}
++
++static inline void
++rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
++	__releases(rq->lock)
++{
++	raw_spin_unlock_irq(&rq->lock);
++}
++
++static inline struct rq *
++this_rq_lock_irq(struct rq_flags *rf)
++	__acquires(rq->lock)
++{
++	struct rq *rq;
++
++	local_irq_disable();
++	rq = this_rq();
++	raw_spin_lock(&rq->lock);
++
++	return rq;
++}
++
++static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
++{
++	return &rq->lock;
++}
++
++static inline raw_spinlock_t *rq_lockp(struct rq *rq)
++{
++	return __rq_lockp(rq);
++}
++
++static inline void lockdep_assert_rq_held(struct rq *rq)
++{
++	lockdep_assert_held(__rq_lockp(rq));
++}
++
++extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
++extern void raw_spin_rq_unlock(struct rq *rq);
++
++static inline void raw_spin_rq_lock(struct rq *rq)
++{
++	raw_spin_rq_lock_nested(rq, 0);
++}
++
++static inline void raw_spin_rq_lock_irq(struct rq *rq)
++{
++	local_irq_disable();
++	raw_spin_rq_lock(rq);
++}
++
++static inline void raw_spin_rq_unlock_irq(struct rq *rq)
++{
++	raw_spin_rq_unlock(rq);
++	local_irq_enable();
++}
++
++static inline int task_current(struct rq *rq, struct task_struct *p)
++{
++	return rq->curr == p;
++}
++
++static inline bool task_on_cpu(struct task_struct *p)
++{
++	return p->on_cpu;
++}
++
++extern struct static_key_false sched_schedstats;
++
++#ifdef CONFIG_CPU_IDLE
++static inline void idle_set_state(struct rq *rq,
++				  struct cpuidle_state *idle_state)
++{
++	rq->idle_state = idle_state;
++}
++
++static inline struct cpuidle_state *idle_get_state(struct rq *rq)
++{
++	WARN_ON(!rcu_read_lock_held());
++	return rq->idle_state;
++}
++#else
++static inline void idle_set_state(struct rq *rq,
++				  struct cpuidle_state *idle_state)
++{
++}
++
++static inline struct cpuidle_state *idle_get_state(struct rq *rq)
++{
++	return NULL;
++}
++#endif
++
++static inline int cpu_of(const struct rq *rq)
++{
++#ifdef CONFIG_SMP
++	return rq->cpu;
++#else
++	return 0;
++#endif
++}
++
++extern void resched_cpu(int cpu);
++
++#include "stats.h"
++
++#ifdef CONFIG_NO_HZ_COMMON
++#define NOHZ_BALANCE_KICK_BIT	0
++#define NOHZ_STATS_KICK_BIT	1
++
++#define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
++#define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
++
++#define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
++
++#define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
++
++/* TODO: needed?
++extern void nohz_balance_exit_idle(struct rq *rq);
++#else
++static inline void nohz_balance_exit_idle(struct rq *rq) { }
++*/
++#endif
++
++#ifdef CONFIG_IRQ_TIME_ACCOUNTING
++struct irqtime {
++	u64			total;
++	u64			tick_delta;
++	u64			irq_start_time;
++	struct u64_stats_sync	sync;
++};
++
++DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
++
++/*
++ * Returns the irqtime minus the softirq time computed by ksoftirqd.
++ * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
++ * and never move forward.
++ */
++static inline u64 irq_time_read(int cpu)
++{
++	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
++	unsigned int seq;
++	u64 total;
++
++	do {
++		seq = __u64_stats_fetch_begin(&irqtime->sync);
++		total = irqtime->total;
++	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
++
++	return total;
++}
++#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
++
++#ifdef CONFIG_CPU_FREQ
++DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
++#endif /* CONFIG_CPU_FREQ */
++
++#ifdef CONFIG_NO_HZ_FULL
++extern int __init sched_tick_offload_init(void);
++#else
++static inline int sched_tick_offload_init(void) { return 0; }
++#endif
++
++#ifdef arch_scale_freq_capacity
++#ifndef arch_scale_freq_invariant
++#define arch_scale_freq_invariant()	(true)
++#endif
++#else /* arch_scale_freq_capacity */
++#define arch_scale_freq_invariant()	(false)
++#endif
++
++#ifdef CONFIG_SMP
++unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual,
++				 unsigned long min,
++				 unsigned long max);
++#endif /* CONFIG_SMP */
++
++extern void schedule_idle(void);
++
++#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
++
++/*
++ * !! For sched_setattr_nocheck() (kernel) only !!
++ *
++ * This is actually gross. :(
++ *
++ * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
++ * tasks, but still be able to sleep. We need this on platforms that cannot
++ * atomically change clock frequency. Remove once fast switching will be
++ * available on such platforms.
++ *
++ * SUGOV stands for SchedUtil GOVernor.
++ */
++#define SCHED_FLAG_SUGOV	0x10000000
++
++#ifdef CONFIG_MEMBARRIER
++/*
++ * The scheduler provides memory barriers required by membarrier between:
++ * - prior user-space memory accesses and store to rq->membarrier_state,
++ * - store to rq->membarrier_state and following user-space memory accesses.
++ * In the same way it provides those guarantees around store to rq->curr.
++ */
++static inline void membarrier_switch_mm(struct rq *rq,
++					struct mm_struct *prev_mm,
++					struct mm_struct *next_mm)
++{
++	int membarrier_state;
++
++	if (prev_mm == next_mm)
++		return;
++
++	membarrier_state = atomic_read(&next_mm->membarrier_state);
++	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
++		return;
++
++	WRITE_ONCE(rq->membarrier_state, membarrier_state);
++}
++#else
++static inline void membarrier_switch_mm(struct rq *rq,
++					struct mm_struct *prev_mm,
++					struct mm_struct *next_mm)
++{
++}
++#endif
++
++#ifdef CONFIG_NUMA
++extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
++#else
++static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
++{
++	return nr_cpu_ids;
++}
++#endif
++
++extern void swake_up_all_locked(struct swait_queue_head *q);
++extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
++
++extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags);
++
++#ifdef CONFIG_PREEMPT_DYNAMIC
++extern int preempt_dynamic_mode;
++extern int sched_dynamic_mode(const char *str);
++extern void sched_dynamic_update(int mode);
++#endif
++
++static inline void nohz_run_idle_balance(int cpu) { }
++
++static inline
++unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
++				  struct task_struct *p)
++{
++	return util;
++}
++
++static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
++
++#ifdef CONFIG_SCHED_MM_CID
++
++#define SCHED_MM_CID_PERIOD_NS	(100ULL * 1000000)	/* 100ms */
++#define MM_CID_SCAN_DELAY	100			/* 100ms */
++
++extern raw_spinlock_t cid_lock;
++extern int use_cid_lock;
++
++extern void sched_mm_cid_migrate_from(struct task_struct *t);
++extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t);
++extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr);
++extern void init_sched_mm_cid(struct task_struct *t);
++
++static inline void __mm_cid_put(struct mm_struct *mm, int cid)
++{
++	if (cid < 0)
++		return;
++	cpumask_clear_cpu(cid, mm_cidmask(mm));
++}
++
++/*
++ * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to
++ * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to
++ * be held to transition to other states.
++ *
++ * State transitions synchronized with cmpxchg or try_cmpxchg need to be
++ * consistent across cpus, which prevents use of this_cpu_cmpxchg.
++ */
++static inline void mm_cid_put_lazy(struct task_struct *t)
++{
++	struct mm_struct *mm = t->mm;
++	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
++	int cid;
++
++	lockdep_assert_irqs_disabled();
++	cid = __this_cpu_read(pcpu_cid->cid);
++	if (!mm_cid_is_lazy_put(cid) ||
++	    !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
++		return;
++	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
++}
++
++static inline int mm_cid_pcpu_unset(struct mm_struct *mm)
++{
++	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
++	int cid, res;
++
++	lockdep_assert_irqs_disabled();
++	cid = __this_cpu_read(pcpu_cid->cid);
++	for (;;) {
++		if (mm_cid_is_unset(cid))
++			return MM_CID_UNSET;
++		/*
++		 * Attempt transition from valid or lazy-put to unset.
++		 */
++		res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET);
++		if (res == cid)
++			break;
++		cid = res;
++	}
++	return cid;
++}
++
++static inline void mm_cid_put(struct mm_struct *mm)
++{
++	int cid;
++
++	lockdep_assert_irqs_disabled();
++	cid = mm_cid_pcpu_unset(mm);
++	if (cid == MM_CID_UNSET)
++		return;
++	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
++}
++
++static inline int __mm_cid_try_get(struct mm_struct *mm)
++{
++	struct cpumask *cpumask;
++	int cid;
++
++	cpumask = mm_cidmask(mm);
++	/*
++	 * Retry finding first zero bit if the mask is temporarily
++	 * filled. This only happens during concurrent remote-clear
++	 * which owns a cid without holding a rq lock.
++	 */
++	for (;;) {
++		cid = cpumask_first_zero(cpumask);
++		if (cid < nr_cpu_ids)
++			break;
++		cpu_relax();
++	}
++	if (cpumask_test_and_set_cpu(cid, cpumask))
++		return -1;
++	return cid;
++}
++
++/*
++ * Save a snapshot of the current runqueue time of this cpu
++ * with the per-cpu cid value, allowing to estimate how recently it was used.
++ */
++static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm)
++{
++	struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq));
++
++	lockdep_assert_rq_held(rq);
++	WRITE_ONCE(pcpu_cid->time, rq->clock);
++}
++
++static inline int __mm_cid_get(struct rq *rq, struct mm_struct *mm)
++{
++	int cid;
++
++	/*
++	 * All allocations (even those using the cid_lock) are lock-free. If
++	 * use_cid_lock is set, hold the cid_lock to perform cid allocation to
++	 * guarantee forward progress.
++	 */
++	if (!READ_ONCE(use_cid_lock)) {
++		cid = __mm_cid_try_get(mm);
++		if (cid >= 0)
++			goto end;
++		raw_spin_lock(&cid_lock);
++	} else {
++		raw_spin_lock(&cid_lock);
++		cid = __mm_cid_try_get(mm);
++		if (cid >= 0)
++			goto unlock;
++	}
++
++	/*
++	 * cid concurrently allocated. Retry while forcing following
++	 * allocations to use the cid_lock to ensure forward progress.
++	 */
++	WRITE_ONCE(use_cid_lock, 1);
++	/*
++	 * Set use_cid_lock before allocation. Only care about program order
++	 * because this is only required for forward progress.
++	 */
++	barrier();
++	/*
++	 * Retry until it succeeds. It is guaranteed to eventually succeed once
++	 * all newcoming allocations observe the use_cid_lock flag set.
++	 */
++	do {
++		cid = __mm_cid_try_get(mm);
++		cpu_relax();
++	} while (cid < 0);
++	/*
++	 * Allocate before clearing use_cid_lock. Only care about
++	 * program order because this is for forward progress.
++	 */
++	barrier();
++	WRITE_ONCE(use_cid_lock, 0);
++unlock:
++	raw_spin_unlock(&cid_lock);
++end:
++	mm_cid_snapshot_time(rq, mm);
++	return cid;
++}
++
++static inline int mm_cid_get(struct rq *rq, struct mm_struct *mm)
++{
++	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
++	struct cpumask *cpumask;
++	int cid;
++
++	lockdep_assert_rq_held(rq);
++	cpumask = mm_cidmask(mm);
++	cid = __this_cpu_read(pcpu_cid->cid);
++	if (mm_cid_is_valid(cid)) {
++		mm_cid_snapshot_time(rq, mm);
++		return cid;
++	}
++	if (mm_cid_is_lazy_put(cid)) {
++		if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
++			__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
++	}
++	cid = __mm_cid_get(rq, mm);
++	__this_cpu_write(pcpu_cid->cid, cid);
++	return cid;
++}
++
++static inline void switch_mm_cid(struct rq *rq,
++				 struct task_struct *prev,
++				 struct task_struct *next)
++{
++	/*
++	 * Provide a memory barrier between rq->curr store and load of
++	 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition.
++	 *
++	 * Should be adapted if context_switch() is modified.
++	 */
++	if (!next->mm) {                                // to kernel
++		/*
++		 * user -> kernel transition does not guarantee a barrier, but
++		 * we can use the fact that it performs an atomic operation in
++		 * mmgrab().
++		 */
++		if (prev->mm)                           // from user
++			smp_mb__after_mmgrab();
++		/*
++		 * kernel -> kernel transition does not change rq->curr->mm
++		 * state. It stays NULL.
++		 */
++	} else {                                        // to user
++		/*
++		 * kernel -> user transition does not provide a barrier
++		 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu].
++		 * Provide it here.
++		 */
++		if (!prev->mm)                          // from kernel
++			smp_mb();
++		/*
++		 * user -> user transition guarantees a memory barrier through
++		 * switch_mm() when current->mm changes. If current->mm is
++		 * unchanged, no barrier is needed.
++		 */
++	}
++	if (prev->mm_cid_active) {
++		mm_cid_snapshot_time(rq, prev->mm);
++		mm_cid_put_lazy(prev);
++		prev->mm_cid = -1;
++	}
++	if (next->mm_cid_active)
++		next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next->mm);
++}
++
++#else
++static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { }
++static inline void sched_mm_cid_migrate_from(struct task_struct *t) { }
++static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { }
++static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { }
++static inline void init_sched_mm_cid(struct task_struct *t) { }
++#endif
++
++#ifdef CONFIG_SMP
++extern struct balance_callback balance_push_callback;
++
++static inline void
++queue_balance_callback(struct rq *rq,
++		       struct balance_callback *head,
++		       void (*func)(struct rq *rq))
++{
++	lockdep_assert_rq_held(rq);
++
++	/*
++	 * Don't (re)queue an already queued item; nor queue anything when
++	 * balance_push() is active, see the comment with
++	 * balance_push_callback.
++	 */
++	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
++		return;
++
++	head->func = func;
++	head->next = rq->balance_callback;
++	rq->balance_callback = head;
++}
++#endif /* CONFIG_SMP */
++
++#ifdef CONFIG_SCHED_BMQ
++#include "bmq.h"
++#endif
++#ifdef CONFIG_SCHED_PDS
++#include "pds.h"
++#endif
++
++#endif /* _KERNEL_SCHED_ALT_SCHED_H */
+diff --git a/kernel/sched/alt_topology.c b/kernel/sched/alt_topology.c
+new file mode 100644
+index 000000000000..2266138ee783
+--- /dev/null
++++ b/kernel/sched/alt_topology.c
+@@ -0,0 +1,350 @@
++#include "alt_core.h"
++#include "alt_topology.h"
++
++#ifdef CONFIG_SMP
++
++static cpumask_t sched_pcore_mask ____cacheline_aligned_in_smp;
++
++static int __init sched_pcore_mask_setup(char *str)
++{
++	if (cpulist_parse(str, &sched_pcore_mask))
++		pr_warn("sched/alt: pcore_cpus= incorrect CPU range\n");
++
++	return 0;
++}
++__setup("pcore_cpus=", sched_pcore_mask_setup);
++
++/*
++ * set/clear idle mask functions
++ */
++#ifdef CONFIG_SCHED_SMT
++static void set_idle_mask_smt(unsigned int cpu, struct cpumask *dstp)
++{
++	cpumask_set_cpu(cpu, dstp);
++	if (cpumask_subset(cpu_smt_mask(cpu), sched_idle_mask))
++		cpumask_or(sched_sg_idle_mask, sched_sg_idle_mask, cpu_smt_mask(cpu));
++}
++
++static void clear_idle_mask_smt(int cpu, struct cpumask *dstp)
++{
++	cpumask_clear_cpu(cpu, dstp);
++	cpumask_andnot(sched_sg_idle_mask, sched_sg_idle_mask, cpu_smt_mask(cpu));
++}
++#endif
++
++static void set_idle_mask_pcore(unsigned int cpu, struct cpumask *dstp)
++{
++	cpumask_set_cpu(cpu, dstp);
++	cpumask_set_cpu(cpu, sched_pcore_idle_mask);
++}
++
++static void clear_idle_mask_pcore(int cpu, struct cpumask *dstp)
++{
++	cpumask_clear_cpu(cpu, dstp);
++	cpumask_clear_cpu(cpu, sched_pcore_idle_mask);
++}
++
++static void set_idle_mask_ecore(unsigned int cpu, struct cpumask *dstp)
++{
++	cpumask_set_cpu(cpu, dstp);
++	cpumask_set_cpu(cpu, sched_ecore_idle_mask);
++}
++
++static void clear_idle_mask_ecore(int cpu, struct cpumask *dstp)
++{
++	cpumask_clear_cpu(cpu, dstp);
++	cpumask_clear_cpu(cpu, sched_ecore_idle_mask);
++}
++
++/*
++ * Idle cpu/rq selection functions
++ */
++#ifdef CONFIG_SCHED_SMT
++static bool p1_idle_select_func(struct cpumask *dstp, const struct cpumask *src1p,
++				 const struct cpumask *src2p)
++{
++	return cpumask_and(dstp, src1p, src2p + 1)	||
++	       cpumask_and(dstp, src1p, src2p);
++}
++#endif
++
++static bool p1p2_idle_select_func(struct cpumask *dstp, const struct cpumask *src1p,
++					const struct cpumask *src2p)
++{
++	return cpumask_and(dstp, src1p, src2p + 1)	||
++	       cpumask_and(dstp, src1p, src2p + 2)	||
++	       cpumask_and(dstp, src1p, src2p);
++}
++
++/* common balance functions */
++static int active_balance_cpu_stop(void *data)
++{
++	struct balance_arg *arg = data;
++	struct task_struct *p = arg->task;
++	struct rq *rq = this_rq();
++	unsigned long flags;
++	cpumask_t tmp;
++
++	local_irq_save(flags);
++
++	raw_spin_lock(&p->pi_lock);
++	raw_spin_lock(&rq->lock);
++
++	arg->active = 0;
++
++	if (task_on_rq_queued(p) && task_rq(p) == rq &&
++	    cpumask_and(&tmp, p->cpus_ptr, arg->cpumask) &&
++	    !is_migration_disabled(p)) {
++		int dcpu = __best_mask_cpu(&tmp, per_cpu(sched_cpu_llc_mask, cpu_of(rq)));
++		rq = move_queued_task(rq, p, dcpu);
++	}
++
++	raw_spin_unlock(&rq->lock);
++	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
++
++	return 0;
++}
++
++/* trigger_active_balance - for @rq */
++static inline int
++trigger_active_balance(struct rq *src_rq, struct rq *rq, cpumask_t *target_mask)
++{
++	struct balance_arg *arg;
++	unsigned long flags;
++	struct task_struct *p;
++	int res;
++
++	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
++		return 0;
++
++	arg = &rq->active_balance_arg;
++	res = (1 == rq->nr_running) &&					\
++	      !is_migration_disabled((p = sched_rq_first_task(rq))) &&	\
++	      cpumask_intersects(p->cpus_ptr, target_mask) &&		\
++	      !arg->active;
++	if (res) {
++		arg->task = p;
++		arg->cpumask = target_mask;
++
++		arg->active = 1;
++	}
++
++	raw_spin_unlock_irqrestore(&rq->lock, flags);
++
++	if (res) {
++		preempt_disable();
++		raw_spin_unlock(&src_rq->lock);
++
++		stop_one_cpu_nowait(cpu_of(rq), active_balance_cpu_stop, arg,
++				    &rq->active_balance_work);
++
++		preempt_enable();
++		raw_spin_lock(&src_rq->lock);
++	}
++
++	return res;
++}
++
++static inline int
++ecore_source_balance(struct rq *rq, cpumask_t *single_task_mask, cpumask_t *target_mask)
++{
++	if (cpumask_andnot(single_task_mask, single_task_mask, &sched_pcore_mask)) {
++		int i, cpu = cpu_of(rq);
++
++		for_each_cpu_wrap(i, single_task_mask, cpu)
++			if (trigger_active_balance(rq, cpu_rq(i), target_mask))
++				return 1;
++	}
++
++	return 0;
++}
++
++static DEFINE_PER_CPU(struct balance_callback, active_balance_head);
++
++#ifdef CONFIG_SCHED_SMT
++static inline int
++smt_pcore_source_balance(struct rq *rq, cpumask_t *single_task_mask, cpumask_t *target_mask)
++{
++	cpumask_t smt_single_mask;
++
++	if (cpumask_and(&smt_single_mask, single_task_mask, &sched_smt_mask)) {
++		int i, cpu = cpu_of(rq);
++
++		for_each_cpu_wrap(i, &smt_single_mask, cpu) {
++			if (cpumask_subset(cpu_smt_mask(i), &smt_single_mask) &&
++			    trigger_active_balance(rq, cpu_rq(i), target_mask))
++				return 1;
++		}
++	}
++
++	return 0;
++}
++
++/* smt p core balance functions */
++static inline void smt_pcore_balance(struct rq *rq)
++{
++	cpumask_t single_task_mask;
++
++	if (cpumask_andnot(&single_task_mask, cpu_active_mask, sched_idle_mask) &&
++	    cpumask_andnot(&single_task_mask, &single_task_mask, &sched_rq_pending_mask) &&
++	    (/* smt core group balance */
++	     (static_key_count(&sched_smt_present.key) > 1 &&
++	      smt_pcore_source_balance(rq, &single_task_mask, sched_sg_idle_mask)
++	     ) ||
++	     /* e core to idle smt core balance */
++	     ecore_source_balance(rq, &single_task_mask, sched_sg_idle_mask)))
++		return;
++}
++
++static void smt_pcore_balance_func(struct rq *rq, const int cpu)
++{
++	if (cpumask_test_cpu(cpu, sched_sg_idle_mask))
++		queue_balance_callback(rq, &per_cpu(active_balance_head, cpu), smt_pcore_balance);
++}
++
++/* smt balance functions */
++static inline void smt_balance(struct rq *rq)
++{
++	cpumask_t single_task_mask;
++
++	if (cpumask_andnot(&single_task_mask, cpu_active_mask, sched_idle_mask) &&
++	    cpumask_andnot(&single_task_mask, &single_task_mask, &sched_rq_pending_mask) &&
++	    static_key_count(&sched_smt_present.key) > 1 &&
++	    smt_pcore_source_balance(rq, &single_task_mask, sched_sg_idle_mask))
++		return;
++}
++
++static void smt_balance_func(struct rq *rq, const int cpu)
++{
++	if (cpumask_test_cpu(cpu, sched_sg_idle_mask))
++		queue_balance_callback(rq, &per_cpu(active_balance_head, cpu), smt_balance);
++}
++
++/* e core balance functions */
++static inline void ecore_balance(struct rq *rq)
++{
++	cpumask_t single_task_mask;
++
++	if (cpumask_andnot(&single_task_mask, cpu_active_mask, sched_idle_mask) &&
++	    cpumask_andnot(&single_task_mask, &single_task_mask, &sched_rq_pending_mask) &&
++	    /* smt occupied p core to idle e core balance */
++	    smt_pcore_source_balance(rq, &single_task_mask, sched_ecore_idle_mask))
++		return;
++}
++
++static void ecore_balance_func(struct rq *rq, const int cpu)
++{
++	queue_balance_callback(rq, &per_cpu(active_balance_head, cpu), ecore_balance);
++}
++#endif /* CONFIG_SCHED_SMT */
++
++/* p core balance functions */
++static inline void pcore_balance(struct rq *rq)
++{
++	cpumask_t single_task_mask;
++
++	if (cpumask_andnot(&single_task_mask, cpu_active_mask, sched_idle_mask) &&
++	    cpumask_andnot(&single_task_mask, &single_task_mask, &sched_rq_pending_mask) &&
++	    /* idle e core to p core balance */
++	    ecore_source_balance(rq, &single_task_mask, sched_pcore_idle_mask))
++		return;
++}
++
++static void pcore_balance_func(struct rq *rq, const int cpu)
++{
++	queue_balance_callback(rq, &per_cpu(active_balance_head, cpu), pcore_balance);
++}
++
++#ifdef ALT_SCHED_DEBUG
++#define SCHED_DEBUG_INFO(...)	printk(KERN_INFO __VA_ARGS__)
++#else
++#define SCHED_DEBUG_INFO(...)	do { } while(0)
++#endif
++
++#define SET_IDLE_SELECT_FUNC(func)						\
++{										\
++	idle_select_func = func;						\
++	printk(KERN_INFO "sched: "#func);					\
++}
++
++#define SET_RQ_BALANCE_FUNC(rq, cpu, func)					\
++{										\
++	rq->balance_func = func;						\
++	SCHED_DEBUG_INFO("sched: cpu#%02d -> "#func, cpu);			\
++}
++
++#define SET_RQ_IDLE_MASK_FUNC(rq, cpu, set_func, clear_func)			\
++{										\
++	rq->set_idle_mask_func		= set_func;				\
++	rq->clear_idle_mask_func	= clear_func;				\
++	SCHED_DEBUG_INFO("sched: cpu#%02d -> "#set_func" "#clear_func, cpu);	\
++}
++
++void sched_init_topology(void)
++{
++	int cpu;
++	struct rq *rq;
++	cpumask_t sched_ecore_mask = { CPU_BITS_NONE };
++	int ecore_present = 0;
++
++#ifdef CONFIG_SCHED_SMT
++	if (!cpumask_empty(&sched_smt_mask))
++		printk(KERN_INFO "sched: smt mask: 0x%08lx\n", sched_smt_mask.bits[0]);
++#endif
++
++	if (!cpumask_empty(&sched_pcore_mask)) {
++		cpumask_andnot(&sched_ecore_mask, cpu_online_mask, &sched_pcore_mask);
++		printk(KERN_INFO "sched: pcore mask: 0x%08lx, ecore mask: 0x%08lx\n",
++		       sched_pcore_mask.bits[0], sched_ecore_mask.bits[0]);
++
++		ecore_present = !cpumask_empty(&sched_ecore_mask);
++	}
++
++#ifdef CONFIG_SCHED_SMT
++	/* idle select function */
++	if (cpumask_equal(&sched_smt_mask, cpu_online_mask)) {
++		SET_IDLE_SELECT_FUNC(p1_idle_select_func);
++	} else
++#endif
++	if (!cpumask_empty(&sched_pcore_mask)) {
++		SET_IDLE_SELECT_FUNC(p1p2_idle_select_func);
++	}
++
++	for_each_online_cpu(cpu) {
++		rq = cpu_rq(cpu);
++		/* take chance to reset time slice for idle tasks */
++		rq->idle->time_slice = sysctl_sched_base_slice;
++
++#ifdef CONFIG_SCHED_SMT
++		if (cpumask_weight(cpu_smt_mask(cpu)) > 1) {
++			SET_RQ_IDLE_MASK_FUNC(rq, cpu, set_idle_mask_smt, clear_idle_mask_smt);
++
++			if (cpumask_test_cpu(cpu, &sched_pcore_mask) &&
++			    !cpumask_intersects(&sched_ecore_mask, &sched_smt_mask)) {
++				SET_RQ_BALANCE_FUNC(rq, cpu, smt_pcore_balance_func);
++			} else {
++				SET_RQ_BALANCE_FUNC(rq, cpu, smt_balance_func);
++			}
++
++			continue;
++		}
++#endif
++		/* !SMT or only one cpu in sg */
++		if (cpumask_test_cpu(cpu, &sched_pcore_mask)) {
++			SET_RQ_IDLE_MASK_FUNC(rq, cpu, set_idle_mask_pcore, clear_idle_mask_pcore);
++
++			if (ecore_present)
++				SET_RQ_BALANCE_FUNC(rq, cpu, pcore_balance_func);
++
++			continue;
++		}
++		if (cpumask_test_cpu(cpu, &sched_ecore_mask)) {
++			SET_RQ_IDLE_MASK_FUNC(rq, cpu, set_idle_mask_ecore, clear_idle_mask_ecore);
++#ifdef CONFIG_SCHED_SMT
++			if (cpumask_intersects(&sched_pcore_mask, &sched_smt_mask))
++				SET_RQ_BALANCE_FUNC(rq, cpu, ecore_balance_func);
++#endif
++		}
++	}
++}
++#endif /* CONFIG_SMP */
+diff --git a/kernel/sched/alt_topology.h b/kernel/sched/alt_topology.h
+new file mode 100644
+index 000000000000..076174cd2bc6
+--- /dev/null
++++ b/kernel/sched/alt_topology.h
+@@ -0,0 +1,6 @@
++#ifndef _KERNEL_SCHED_ALT_TOPOLOGY_H
++#define _KERNEL_SCHED_ALT_TOPOLOGY_H
++
++extern void sched_init_topology(void);
++
++#endif /* _KERNEL_SCHED_ALT_TOPOLOGY_H */
+diff --git a/kernel/sched/bmq.h b/kernel/sched/bmq.h
+new file mode 100644
+index 000000000000..5a7835246ec3
+--- /dev/null
++++ b/kernel/sched/bmq.h
+@@ -0,0 +1,103 @@
++#ifndef _KERNEL_SCHED_BMQ_H
++#define _KERNEL_SCHED_BMQ_H
++
++#define ALT_SCHED_NAME "BMQ"
++
++/*
++ * BMQ only routines
++ */
++static inline void boost_task(struct task_struct *p, int n)
++{
++	int limit;
++
++	switch (p->policy) {
++	case SCHED_NORMAL:
++		limit = -MAX_PRIORITY_ADJ;
++		break;
++	case SCHED_BATCH:
++		limit = 0;
++		break;
++	default:
++		return;
++	}
++
++	p->boost_prio = max(limit, p->boost_prio - n);
++}
++
++static inline void deboost_task(struct task_struct *p)
++{
++	if (p->boost_prio < MAX_PRIORITY_ADJ)
++		p->boost_prio++;
++}
++
++/*
++ * Common interfaces
++ */
++static inline void sched_timeslice_imp(const int timeslice_ms) {}
++
++/* This API is used in task_prio(), return value readed by human users */
++static inline int
++task_sched_prio_normal(const struct task_struct *p, const struct rq *rq)
++{
++	return p->prio + p->boost_prio - MIN_NORMAL_PRIO;
++}
++
++static inline int task_sched_prio(const struct task_struct *p)
++{
++	return (p->prio < MIN_NORMAL_PRIO)? (p->prio >> 2) :
++		MIN_SCHED_NORMAL_PRIO + (p->prio + p->boost_prio - MIN_NORMAL_PRIO) / 2;
++}
++
++#define TASK_SCHED_PRIO_IDX(p, rq, idx, prio)	\
++	prio = task_sched_prio(p);		\
++	idx = prio;
++
++static inline int sched_prio2idx(int prio, struct rq *rq)
++{
++	return prio;
++}
++
++static inline int sched_idx2prio(int idx, struct rq *rq)
++{
++	return idx;
++}
++
++static inline int sched_rq_prio_idx(struct rq *rq)
++{
++	return rq->prio;
++}
++
++static inline int task_running_nice(struct task_struct *p)
++{
++	return (p->prio + p->boost_prio > DEFAULT_PRIO);
++}
++
++static inline void sched_update_rq_clock(struct rq *rq) {}
++
++static inline void sched_task_renew(struct task_struct *p, const struct rq *rq)
++{
++	deboost_task(p);
++}
++
++static inline void sched_task_sanity_check(struct task_struct *p, struct rq *rq) {}
++static inline void sched_task_fork(struct task_struct *p, struct rq *rq) {}
++
++static inline void do_sched_yield_type_1(struct task_struct *p, struct rq *rq)
++{
++	p->boost_prio = MAX_PRIORITY_ADJ;
++}
++
++static inline void sched_task_ttwu(struct task_struct *p)
++{
++	s64 delta = this_rq()->clock_task > p->last_ran;
++
++	if (likely(delta > 0))
++		boost_task(p, delta  >> 22);
++}
++
++static inline void sched_task_deactivate(struct task_struct *p, struct rq *rq)
++{
++	boost_task(p, 1);
++}
++
++#endif /* _KERNEL_SCHED_BMQ_H */
+diff --git a/kernel/sched/build_policy.c b/kernel/sched/build_policy.c
+index fae1f5c921eb..1e06434b5b9b 100644
+--- a/kernel/sched/build_policy.c
++++ b/kernel/sched/build_policy.c
+@@ -49,15 +49,21 @@
+ 
+ #include "idle.c"
+ 
++#ifndef CONFIG_SCHED_ALT
+ #include "rt.c"
++#endif
+ 
+ #ifdef CONFIG_SMP
++#ifndef CONFIG_SCHED_ALT
+ # include "cpudeadline.c"
++#endif
+ # include "pelt.c"
+ #endif
+ 
+ #include "cputime.c"
++#ifndef CONFIG_SCHED_ALT
+ #include "deadline.c"
++#endif
+ 
+ #ifdef CONFIG_SCHED_CLASS_EXT
+ # include "ext.c"
+diff --git a/kernel/sched/build_utility.c b/kernel/sched/build_utility.c
+index 80a3df49ab47..58d04aa73634 100644
+--- a/kernel/sched/build_utility.c
++++ b/kernel/sched/build_utility.c
+@@ -56,6 +56,10 @@
+ 
+ #include "clock.c"
+ 
++#ifdef CONFIG_SCHED_ALT
++# include "alt_topology.c"
++#endif
++
+ #ifdef CONFIG_CGROUP_CPUACCT
+ # include "cpuacct.c"
+ #endif
+@@ -84,7 +88,9 @@
+ 
+ #ifdef CONFIG_SMP
+ # include "cpupri.c"
++#ifndef CONFIG_SCHED_ALT
+ # include "stop_task.c"
++#endif
+ # include "topology.c"
+ #endif
+ 
+diff --git a/kernel/sched/cpufreq_schedutil.c b/kernel/sched/cpufreq_schedutil.c
+index c6ba15388ea7..56590821f074 100644
+--- a/kernel/sched/cpufreq_schedutil.c
++++ b/kernel/sched/cpufreq_schedutil.c
+@@ -197,6 +197,7 @@ unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual,
+ 
+ static void sugov_get_util(struct sugov_cpu *sg_cpu, unsigned long boost)
+ {
++#ifndef CONFIG_SCHED_ALT
+ 	unsigned long min, max, util = scx_cpuperf_target(sg_cpu->cpu);
+ 
+ 	if (!scx_switched_all())
+@@ -205,6 +206,10 @@ static void sugov_get_util(struct sugov_cpu *sg_cpu, unsigned long boost)
+ 	util = max(util, boost);
+ 	sg_cpu->bw_min = min;
+ 	sg_cpu->util = sugov_effective_cpu_perf(sg_cpu->cpu, util, min, max);
++#else /* CONFIG_SCHED_ALT */
++	sg_cpu->bw_min = 0;
++	sg_cpu->util = rq_load_util(cpu_rq(sg_cpu->cpu), arch_scale_cpu_capacity(sg_cpu->cpu));
++#endif /* CONFIG_SCHED_ALT */
+ }
+ 
+ /**
+@@ -364,8 +369,10 @@ static inline bool sugov_hold_freq(struct sugov_cpu *sg_cpu) { return false; }
+  */
+ static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu)
+ {
++#ifndef CONFIG_SCHED_ALT
+ 	if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_min)
+ 		sg_cpu->sg_policy->limits_changed = true;
++#endif
+ }
+ 
+ static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu,
+@@ -684,6 +691,7 @@ static int sugov_kthread_create(struct sugov_policy *sg_policy)
+ 	}
+ 
+ 	ret = sched_setattr_nocheck(thread, &attr);
++
+ 	if (ret) {
+ 		kthread_stop(thread);
+ 		pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
+diff --git a/kernel/sched/cputime.c b/kernel/sched/cputime.c
+index 0bed0fa1acd9..031affa09446 100644
+--- a/kernel/sched/cputime.c
++++ b/kernel/sched/cputime.c
+@@ -126,7 +126,7 @@ void account_user_time(struct task_struct *p, u64 cputime)
+ 	p->utime += cputime;
+ 	account_group_user_time(p, cputime);
+ 
+-	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
++	index = task_running_nice(p) ? CPUTIME_NICE : CPUTIME_USER;
+ 
+ 	/* Add user time to cpustat. */
+ 	task_group_account_field(p, index, cputime);
+@@ -150,7 +150,7 @@ void account_guest_time(struct task_struct *p, u64 cputime)
+ 	p->gtime += cputime;
+ 
+ 	/* Add guest time to cpustat. */
+-	if (task_nice(p) > 0) {
++	if (task_running_nice(p)) {
+ 		task_group_account_field(p, CPUTIME_NICE, cputime);
+ 		cpustat[CPUTIME_GUEST_NICE] += cputime;
+ 	} else {
+@@ -288,7 +288,7 @@ static inline u64 account_other_time(u64 max)
+ #ifdef CONFIG_64BIT
+ static inline u64 read_sum_exec_runtime(struct task_struct *t)
+ {
+-	return t->se.sum_exec_runtime;
++	return tsk_seruntime(t);
+ }
+ #else
+ static u64 read_sum_exec_runtime(struct task_struct *t)
+@@ -298,7 +298,7 @@ static u64 read_sum_exec_runtime(struct task_struct *t)
+ 	struct rq *rq;
+ 
+ 	rq = task_rq_lock(t, &rf);
+-	ns = t->se.sum_exec_runtime;
++	ns = tsk_seruntime(t);
+ 	task_rq_unlock(rq, t, &rf);
+ 
+ 	return ns;
+@@ -623,7 +623,7 @@ void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
+ void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
+ {
+ 	struct task_cputime cputime = {
+-		.sum_exec_runtime = p->se.sum_exec_runtime,
++		.sum_exec_runtime = tsk_seruntime(p),
+ 	};
+ 
+ 	if (task_cputime(p, &cputime.utime, &cputime.stime))
+diff --git a/kernel/sched/debug.c b/kernel/sched/debug.c
+index f4035c7a0fa1..4df4ad88d6a9 100644
+--- a/kernel/sched/debug.c
++++ b/kernel/sched/debug.c
+@@ -7,6 +7,7 @@
+  * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
+  */
+ 
++#ifndef CONFIG_SCHED_ALT
+ /*
+  * This allows printing both to /sys/kernel/debug/sched/debug and
+  * to the console
+@@ -215,6 +216,7 @@ static const struct file_operations sched_scaling_fops = {
+ };
+ 
+ #endif /* SMP */
++#endif /* !CONFIG_SCHED_ALT */
+ 
+ #ifdef CONFIG_PREEMPT_DYNAMIC
+ 
+@@ -278,6 +280,7 @@ static const struct file_operations sched_dynamic_fops = {
+ 
+ #endif /* CONFIG_PREEMPT_DYNAMIC */
+ 
++#ifndef CONFIG_SCHED_ALT
+ __read_mostly bool sched_debug_verbose;
+ 
+ #ifdef CONFIG_SMP
+@@ -468,9 +471,11 @@ static const struct file_operations fair_server_period_fops = {
+ 	.llseek		= seq_lseek,
+ 	.release	= single_release,
+ };
++#endif /* !CONFIG_SCHED_ALT */
+ 
+ static struct dentry *debugfs_sched;
+ 
++#ifndef CONFIG_SCHED_ALT
+ static void debugfs_fair_server_init(void)
+ {
+ 	struct dentry *d_fair;
+@@ -491,6 +496,7 @@ static void debugfs_fair_server_init(void)
+ 		debugfs_create_file("period", 0644, d_cpu, (void *) cpu, &fair_server_period_fops);
+ 	}
+ }
++#endif /* !CONFIG_SCHED_ALT */
+ 
+ static __init int sched_init_debug(void)
+ {
+@@ -498,14 +504,17 @@ static __init int sched_init_debug(void)
+ 
+ 	debugfs_sched = debugfs_create_dir("sched", NULL);
+ 
++#ifndef CONFIG_SCHED_ALT
+ 	debugfs_create_file("features", 0644, debugfs_sched, NULL, &sched_feat_fops);
+ 	debugfs_create_file_unsafe("verbose", 0644, debugfs_sched, &sched_debug_verbose, &sched_verbose_fops);
++#endif /* !CONFIG_SCHED_ALT */
+ #ifdef CONFIG_PREEMPT_DYNAMIC
+ 	debugfs_create_file("preempt", 0644, debugfs_sched, NULL, &sched_dynamic_fops);
+ #endif
+ 
+ 	debugfs_create_u32("base_slice_ns", 0644, debugfs_sched, &sysctl_sched_base_slice);
+ 
++#ifndef CONFIG_SCHED_ALT
+ 	debugfs_create_u32("latency_warn_ms", 0644, debugfs_sched, &sysctl_resched_latency_warn_ms);
+ 	debugfs_create_u32("latency_warn_once", 0644, debugfs_sched, &sysctl_resched_latency_warn_once);
+ 
+@@ -530,13 +539,17 @@ static __init int sched_init_debug(void)
+ #endif
+ 
+ 	debugfs_create_file("debug", 0444, debugfs_sched, NULL, &sched_debug_fops);
++#endif /* !CONFIG_SCHED_ALT */
+ 
++#ifndef CONFIG_SCHED_ALT
+ 	debugfs_fair_server_init();
++#endif /* !CONFIG_SCHED_ALT */
+ 
+ 	return 0;
+ }
+ late_initcall(sched_init_debug);
+ 
++#ifndef CONFIG_SCHED_ALT
+ #ifdef CONFIG_SMP
+ 
+ static cpumask_var_t		sd_sysctl_cpus;
+@@ -1288,6 +1301,7 @@ void proc_sched_set_task(struct task_struct *p)
+ 	memset(&p->stats, 0, sizeof(p->stats));
+ #endif
+ }
++#endif /* !CONFIG_SCHED_ALT */
+ 
+ void resched_latency_warn(int cpu, u64 latency)
+ {
+diff --git a/kernel/sched/idle.c b/kernel/sched/idle.c
+index d2f096bb274c..36071f4b7b7f 100644
+--- a/kernel/sched/idle.c
++++ b/kernel/sched/idle.c
+@@ -424,6 +424,7 @@ void cpu_startup_entry(enum cpuhp_state state)
+ 		do_idle();
+ }
+ 
++#ifndef CONFIG_SCHED_ALT
+ /*
+  * idle-task scheduling class.
+  */
+@@ -538,3 +539,4 @@ DEFINE_SCHED_CLASS(idle) = {
+ 	.switched_to		= switched_to_idle,
+ 	.update_curr		= update_curr_idle,
+ };
++#endif
+diff --git a/kernel/sched/pds.h b/kernel/sched/pds.h
+new file mode 100644
+index 000000000000..fe3099071eb7
+--- /dev/null
++++ b/kernel/sched/pds.h
+@@ -0,0 +1,139 @@
++#ifndef _KERNEL_SCHED_PDS_H
++#define _KERNEL_SCHED_PDS_H
++
++#define ALT_SCHED_NAME "PDS"
++
++static const u64 RT_MASK = ((1ULL << MIN_SCHED_NORMAL_PRIO) - 1);
++
++#define SCHED_NORMAL_PRIO_NUM	(32)
++#define SCHED_EDGE_DELTA	(SCHED_NORMAL_PRIO_NUM - NICE_WIDTH / 2)
++
++/* PDS assume SCHED_NORMAL_PRIO_NUM is power of 2 */
++#define SCHED_NORMAL_PRIO_MOD(x)	((x) & (SCHED_NORMAL_PRIO_NUM - 1))
++
++/* default time slice 4ms -> shift 22, 2 time slice slots -> shift 23 */
++static __read_mostly int sched_timeslice_shift = 23;
++
++/*
++ * Common interfaces
++ */
++static inline int
++task_sched_prio_normal(const struct task_struct *p, const struct rq *rq)
++{
++	u64 sched_dl = max(p->deadline, rq->time_edge);
++
++#ifdef ALT_SCHED_DEBUG
++	if (WARN_ONCE(sched_dl - rq->time_edge > NORMAL_PRIO_NUM - 1,
++		      "pds: task_sched_prio_normal() delta %lld\n", sched_dl - rq->time_edge))
++		return SCHED_NORMAL_PRIO_NUM - 1;
++#endif
++
++	return sched_dl - rq->time_edge;
++}
++
++static inline int task_sched_prio(const struct task_struct *p)
++{
++	return (p->prio < MIN_NORMAL_PRIO) ? (p->prio >> 2) :
++		MIN_SCHED_NORMAL_PRIO + task_sched_prio_normal(p, task_rq(p));
++}
++
++#define TASK_SCHED_PRIO_IDX(p, rq, idx, prio)							\
++	if (p->prio < MIN_NORMAL_PRIO) {							\
++		prio = p->prio >> 2;								\
++		idx = prio;									\
++	} else {										\
++		u64 sched_dl = max(p->deadline, rq->time_edge);					\
++		prio = MIN_SCHED_NORMAL_PRIO + sched_dl - rq->time_edge;			\
++		idx = MIN_SCHED_NORMAL_PRIO + SCHED_NORMAL_PRIO_MOD(sched_dl);			\
++	}
++
++static inline int sched_prio2idx(int sched_prio, struct rq *rq)
++{
++	return (IDLE_TASK_SCHED_PRIO == sched_prio || sched_prio < MIN_SCHED_NORMAL_PRIO) ?
++		sched_prio :
++		MIN_SCHED_NORMAL_PRIO + SCHED_NORMAL_PRIO_MOD(sched_prio + rq->time_edge);
++}
++
++static inline int sched_idx2prio(int sched_idx, struct rq *rq)
++{
++	return (sched_idx < MIN_SCHED_NORMAL_PRIO) ?
++		sched_idx :
++		MIN_SCHED_NORMAL_PRIO + SCHED_NORMAL_PRIO_MOD(sched_idx - rq->time_edge);
++}
++
++static inline int sched_rq_prio_idx(struct rq *rq)
++{
++	return rq->prio_idx;
++}
++
++static inline int task_running_nice(struct task_struct *p)
++{
++	return (p->prio > DEFAULT_PRIO);
++}
++
++static inline void sched_update_rq_clock(struct rq *rq)
++{
++	struct list_head head;
++	u64 old = rq->time_edge;
++	u64 now = rq->clock >> sched_timeslice_shift;
++	u64 prio, delta;
++	DECLARE_BITMAP(normal, SCHED_QUEUE_BITS);
++
++	if (now == old)
++		return;
++
++	rq->time_edge = now;
++	delta = min_t(u64, SCHED_NORMAL_PRIO_NUM, now - old);
++	INIT_LIST_HEAD(&head);
++
++	prio = MIN_SCHED_NORMAL_PRIO;
++	for_each_set_bit_from(prio, rq->queue.bitmap, MIN_SCHED_NORMAL_PRIO + delta)
++		list_splice_tail_init(rq->queue.heads + MIN_SCHED_NORMAL_PRIO +
++				      SCHED_NORMAL_PRIO_MOD(prio + old), &head);
++
++	bitmap_shift_right(normal, rq->queue.bitmap, delta, SCHED_QUEUE_BITS);
++	if (!list_empty(&head)) {
++		u64 idx = MIN_SCHED_NORMAL_PRIO + SCHED_NORMAL_PRIO_MOD(now);
++
++		__list_splice(&head, rq->queue.heads + idx, rq->queue.heads[idx].next);
++		set_bit(MIN_SCHED_NORMAL_PRIO, normal);
++	}
++	bitmap_replace(rq->queue.bitmap, normal, rq->queue.bitmap,
++		       (const unsigned long *)&RT_MASK, SCHED_QUEUE_BITS);
++
++	if (rq->prio < MIN_SCHED_NORMAL_PRIO || IDLE_TASK_SCHED_PRIO == rq->prio)
++		return;
++
++	rq->prio = max_t(u64, MIN_SCHED_NORMAL_PRIO, rq->prio - delta);
++	rq->prio_idx = sched_prio2idx(rq->prio, rq);
++}
++
++static inline void sched_task_renew(struct task_struct *p, const struct rq *rq)
++{
++	if (p->prio >= MIN_NORMAL_PRIO)
++		p->deadline = rq->time_edge + SCHED_EDGE_DELTA +
++			      (p->static_prio - (MAX_PRIO - NICE_WIDTH)) / 2;
++}
++
++static inline void sched_task_sanity_check(struct task_struct *p, struct rq *rq)
++{
++	u64 max_dl = rq->time_edge + SCHED_EDGE_DELTA + NICE_WIDTH / 2 - 1;
++	if (unlikely(p->deadline > max_dl))
++		p->deadline = max_dl;
++}
++
++static inline void sched_task_fork(struct task_struct *p, struct rq *rq)
++{
++	sched_task_renew(p, rq);
++}
++
++static inline void do_sched_yield_type_1(struct task_struct *p, struct rq *rq)
++{
++	p->time_slice = sysctl_sched_base_slice;
++	sched_task_renew(p, rq);
++}
++
++static inline void sched_task_ttwu(struct task_struct *p) {}
++static inline void sched_task_deactivate(struct task_struct *p, struct rq *rq) {}
++
++#endif /* _KERNEL_SCHED_PDS_H */
+diff --git a/kernel/sched/pelt.c b/kernel/sched/pelt.c
+index a9c65d97b3ca..a66431e6527c 100644
+--- a/kernel/sched/pelt.c
++++ b/kernel/sched/pelt.c
+@@ -266,6 +266,7 @@ ___update_load_avg(struct sched_avg *sa, unsigned long load)
+ 	WRITE_ONCE(sa->util_avg, sa->util_sum / divider);
+ }
+ 
++#ifndef CONFIG_SCHED_ALT
+ /*
+  * sched_entity:
+  *
+@@ -383,8 +384,9 @@ int update_dl_rq_load_avg(u64 now, struct rq *rq, int running)
+ 
+ 	return 0;
+ }
++#endif
+ 
+-#ifdef CONFIG_SCHED_HW_PRESSURE
++#if defined(CONFIG_SCHED_HW_PRESSURE) && !defined(CONFIG_SCHED_ALT)
+ /*
+  * hardware:
+  *
+@@ -468,6 +470,7 @@ int update_irq_load_avg(struct rq *rq, u64 running)
+ }
+ #endif
+ 
++#ifndef CONFIG_SCHED_ALT
+ /*
+  * Load avg and utiliztion metrics need to be updated periodically and before
+  * consumption. This function updates the metrics for all subsystems except for
+@@ -487,3 +490,4 @@ bool update_other_load_avgs(struct rq *rq)
+ 		update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure) |
+ 		update_irq_load_avg(rq, 0);
+ }
++#endif /* !CONFIG_SCHED_ALT */
+diff --git a/kernel/sched/pelt.h b/kernel/sched/pelt.h
+index f4f6a0875c66..ee780f2b6c17 100644
+--- a/kernel/sched/pelt.h
++++ b/kernel/sched/pelt.h
+@@ -1,14 +1,16 @@
+ #ifdef CONFIG_SMP
+ #include "sched-pelt.h"
+ 
++#ifndef CONFIG_SCHED_ALT
+ int __update_load_avg_blocked_se(u64 now, struct sched_entity *se);
+ int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se);
+ int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq);
+ int update_rt_rq_load_avg(u64 now, struct rq *rq, int running);
+ int update_dl_rq_load_avg(u64 now, struct rq *rq, int running);
+ bool update_other_load_avgs(struct rq *rq);
++#endif
+ 
+-#ifdef CONFIG_SCHED_HW_PRESSURE
++#if defined(CONFIG_SCHED_HW_PRESSURE) && !defined(CONFIG_SCHED_ALT)
+ int update_hw_load_avg(u64 now, struct rq *rq, u64 capacity);
+ 
+ static inline u64 hw_load_avg(struct rq *rq)
+@@ -45,6 +47,7 @@ static inline u32 get_pelt_divider(struct sched_avg *avg)
+ 	return PELT_MIN_DIVIDER + avg->period_contrib;
+ }
+ 
++#ifndef CONFIG_SCHED_ALT
+ static inline void cfs_se_util_change(struct sched_avg *avg)
+ {
+ 	unsigned int enqueued;
+@@ -181,9 +184,11 @@ static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
+ 	return rq_clock_pelt(rq_of(cfs_rq));
+ }
+ #endif
++#endif /* CONFIG_SCHED_ALT */
+ 
+ #else
+ 
++#ifndef CONFIG_SCHED_ALT
+ static inline int
+ update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
+ {
+@@ -201,6 +206,7 @@ update_dl_rq_load_avg(u64 now, struct rq *rq, int running)
+ {
+ 	return 0;
+ }
++#endif
+ 
+ static inline int
+ update_hw_load_avg(u64 now, struct rq *rq, u64 capacity)
+diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
+index c03b3d7b320e..08ee4a9cd6a5 100644
+--- a/kernel/sched/sched.h
++++ b/kernel/sched/sched.h
+@@ -5,6 +5,10 @@
+ #ifndef _KERNEL_SCHED_SCHED_H
+ #define _KERNEL_SCHED_SCHED_H
+ 
++#ifdef CONFIG_SCHED_ALT
++#include "alt_sched.h"
++#else
++
+ #include <linux/sched/affinity.h>
+ #include <linux/sched/autogroup.h>
+ #include <linux/sched/cpufreq.h>
+@@ -3878,4 +3882,9 @@ void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx);
+ 
+ #include "ext.h"
+ 
++static inline int task_running_nice(struct task_struct *p)
++{
++	return (task_nice(p) > 0);
++}
++#endif /* !CONFIG_SCHED_ALT */
+ #endif /* _KERNEL_SCHED_SCHED_H */
+diff --git a/kernel/sched/stats.c b/kernel/sched/stats.c
+index eb0cdcd4d921..72224ecb5cbf 100644
+--- a/kernel/sched/stats.c
++++ b/kernel/sched/stats.c
+@@ -115,8 +115,10 @@ static int show_schedstat(struct seq_file *seq, void *v)
+ 	} else {
+ 		struct rq *rq;
+ #ifdef CONFIG_SMP
++#ifndef CONFIG_SCHED_ALT
+ 		struct sched_domain *sd;
+ 		int dcount = 0;
++#endif
+ #endif
+ 		cpu = (unsigned long)(v - 2);
+ 		rq = cpu_rq(cpu);
+@@ -133,6 +135,7 @@ static int show_schedstat(struct seq_file *seq, void *v)
+ 		seq_printf(seq, "\n");
+ 
+ #ifdef CONFIG_SMP
++#ifndef CONFIG_SCHED_ALT
+ 		/* domain-specific stats */
+ 		rcu_read_lock();
+ 		for_each_domain(cpu, sd) {
+@@ -160,6 +163,7 @@ static int show_schedstat(struct seq_file *seq, void *v)
+ 			    sd->ttwu_move_balance);
+ 		}
+ 		rcu_read_unlock();
++#endif
+ #endif
+ 	}
+ 	return 0;
+diff --git a/kernel/sched/stats.h b/kernel/sched/stats.h
+index 767e098a3bd1..4cbf4d3e611e 100644
+--- a/kernel/sched/stats.h
++++ b/kernel/sched/stats.h
+@@ -89,6 +89,7 @@ static inline void rq_sched_info_depart  (struct rq *rq, unsigned long long delt
+ 
+ #endif /* CONFIG_SCHEDSTATS */
+ 
++#ifndef CONFIG_SCHED_ALT
+ #ifdef CONFIG_FAIR_GROUP_SCHED
+ struct sched_entity_stats {
+ 	struct sched_entity     se;
+@@ -105,6 +106,7 @@ __schedstats_from_se(struct sched_entity *se)
+ #endif
+ 	return &task_of(se)->stats;
+ }
++#endif /* CONFIG_SCHED_ALT */
+ 
+ #ifdef CONFIG_PSI
+ void psi_task_change(struct task_struct *task, int clear, int set);
+diff --git a/kernel/sched/syscalls.c b/kernel/sched/syscalls.c
+index 24f9f90b6574..9aa01e45c920 100644
+--- a/kernel/sched/syscalls.c
++++ b/kernel/sched/syscalls.c
+@@ -16,6 +16,14 @@
+ #include "sched.h"
+ #include "autogroup.h"
+ 
++#ifdef CONFIG_SCHED_ALT
++#include "alt_core.h"
++
++static inline int __normal_prio(int policy, int rt_prio, int static_prio)
++{
++	return rt_policy(policy) ? (MAX_RT_PRIO - 1 - rt_prio) : static_prio;
++}
++#else /* !CONFIG_SCHED_ALT */
+ static inline int __normal_prio(int policy, int rt_prio, int nice)
+ {
+ 	int prio;
+@@ -29,6 +37,7 @@ static inline int __normal_prio(int policy, int rt_prio, int nice)
+ 
+ 	return prio;
+ }
++#endif /* !CONFIG_SCHED_ALT */
+ 
+ /*
+  * Calculate the expected normal priority: i.e. priority
+@@ -39,7 +48,11 @@ static inline int __normal_prio(int policy, int rt_prio, int nice)
+  */
+ static inline int normal_prio(struct task_struct *p)
+ {
++#ifdef CONFIG_SCHED_ALT
++	return __normal_prio(p->policy, p->rt_priority, p->static_prio);
++#else /* !CONFIG_SCHED_ALT */
+ 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
++#endif /* !CONFIG_SCHED_ALT */
+ }
+ 
+ /*
+@@ -64,6 +77,37 @@ static int effective_prio(struct task_struct *p)
+ 
+ void set_user_nice(struct task_struct *p, long nice)
+ {
++#ifdef CONFIG_SCHED_ALT
++	unsigned long flags;
++	struct rq *rq;
++	raw_spinlock_t *lock;
++
++	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
++		return;
++	/*
++	 * We have to be careful, if called from sys_setpriority(),
++	 * the task might be in the middle of scheduling on another CPU.
++	 */
++	raw_spin_lock_irqsave(&p->pi_lock, flags);
++	rq = __task_access_lock(p, &lock);
++
++	p->static_prio = NICE_TO_PRIO(nice);
++	/*
++	 * The RT priorities are set via sched_setscheduler(), but we still
++	 * allow the 'normal' nice value to be set - but as expected
++	 * it won't have any effect on scheduling until the task is
++	 * not SCHED_NORMAL/SCHED_BATCH:
++	 */
++	if (task_has_rt_policy(p))
++		goto out_unlock;
++
++	p->prio = effective_prio(p);
++
++	check_task_changed(p, rq);
++out_unlock:
++	__task_access_unlock(p, lock);
++	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
++#else
+ 	bool queued, running;
+ 	struct rq *rq;
+ 	int old_prio;
+@@ -112,6 +156,7 @@ void set_user_nice(struct task_struct *p, long nice)
+ 	 * lowered its priority, then reschedule its CPU:
+ 	 */
+ 	p->sched_class->prio_changed(rq, p, old_prio);
++#endif /* !CONFIG_SCHED_ALT */
+ }
+ EXPORT_SYMBOL(set_user_nice);
+ 
+@@ -190,7 +235,19 @@ SYSCALL_DEFINE1(nice, int, increment)
+  */
+ int task_prio(const struct task_struct *p)
+ {
++#ifdef CONFIG_SCHED_ALT
++/*
++ * sched policy         return value   kernel prio    user prio/nice
++ *
++ * (BMQ)normal, batch, idle[0 ... 53]  [100 ... 139]          0/[-20 ... 19]/[-7 ... 7]
++ * (PDS)normal, batch, idle[0 ... 39]            100          0/[-20 ... 19]
++ * fifo, rr             [-1 ... -100]     [99 ... 0]  [0 ... 99]
++ */
++	return (p->prio < MAX_RT_PRIO) ? p->prio - MAX_RT_PRIO :
++		task_sched_prio_normal(p, task_rq(p));
++#else
+ 	return p->prio - MAX_RT_PRIO;
++#endif /* !CONFIG_SCHED_ALT */
+ }
+ 
+ /**
+@@ -300,10 +357,13 @@ static void __setscheduler_params(struct task_struct *p,
+ 
+ 	p->policy = policy;
+ 
++#ifndef CONFIG_SCHED_ALT
+ 	if (dl_policy(policy)) {
+ 		__setparam_dl(p, attr);
+ 	} else if (fair_policy(policy)) {
++#endif /* !CONFIG_SCHED_ALT */
+ 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
++#ifndef CONFIG_SCHED_ALT
+ 		if (attr->sched_runtime) {
+ 			p->se.custom_slice = 1;
+ 			p->se.slice = clamp_t(u64, attr->sched_runtime,
+@@ -322,6 +382,7 @@ static void __setscheduler_params(struct task_struct *p,
+ 		/* when switching back to non-rt policy, restore timerslack */
+ 		p->timer_slack_ns = p->default_timer_slack_ns;
+ 	}
++#endif /* !CONFIG_SCHED_ALT */
+ 
+ 	/*
+ 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
+@@ -330,7 +391,9 @@ static void __setscheduler_params(struct task_struct *p,
+ 	 */
+ 	p->rt_priority = attr->sched_priority;
+ 	p->normal_prio = normal_prio(p);
++#ifndef CONFIG_SCHED_ALT
+ 	set_load_weight(p, true);
++#endif /* !CONFIG_SCHED_ALT */
+ }
+ 
+ /*
+@@ -346,6 +409,8 @@ static bool check_same_owner(struct task_struct *p)
+ 		uid_eq(cred->euid, pcred->uid));
+ }
+ 
++#ifndef CONFIG_SCHED_ALT
++
+ #ifdef CONFIG_UCLAMP_TASK
+ 
+ static int uclamp_validate(struct task_struct *p,
+@@ -459,6 +524,7 @@ static inline int uclamp_validate(struct task_struct *p,
+ static void __setscheduler_uclamp(struct task_struct *p,
+ 				  const struct sched_attr *attr) { }
+ #endif
++#endif /* !CONFIG_SCHED_ALT */
+ 
+ /*
+  * Allow unprivileged RT tasks to decrease priority.
+@@ -469,11 +535,13 @@ static int user_check_sched_setscheduler(struct task_struct *p,
+ 					 const struct sched_attr *attr,
+ 					 int policy, int reset_on_fork)
+ {
++#ifndef CONFIG_SCHED_ALT
+ 	if (fair_policy(policy)) {
+ 		if (attr->sched_nice < task_nice(p) &&
+ 		    !is_nice_reduction(p, attr->sched_nice))
+ 			goto req_priv;
+ 	}
++#endif /* !CONFIG_SCHED_ALT */
+ 
+ 	if (rt_policy(policy)) {
+ 		unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
+@@ -488,6 +556,7 @@ static int user_check_sched_setscheduler(struct task_struct *p,
+ 			goto req_priv;
+ 	}
+ 
++#ifndef CONFIG_SCHED_ALT
+ 	/*
+ 	 * Can't set/change SCHED_DEADLINE policy at all for now
+ 	 * (safest behavior); in the future we would like to allow
+@@ -505,6 +574,7 @@ static int user_check_sched_setscheduler(struct task_struct *p,
+ 		if (!is_nice_reduction(p, task_nice(p)))
+ 			goto req_priv;
+ 	}
++#endif /* !CONFIG_SCHED_ALT */
+ 
+ 	/* Can't change other user's priorities: */
+ 	if (!check_same_owner(p))
+@@ -527,6 +597,158 @@ int __sched_setscheduler(struct task_struct *p,
+ 			 const struct sched_attr *attr,
+ 			 bool user, bool pi)
+ {
++#ifdef CONFIG_SCHED_ALT
++	const struct sched_attr dl_squash_attr = {
++		.size		= sizeof(struct sched_attr),
++		.sched_policy	= SCHED_FIFO,
++		.sched_nice	= 0,
++		.sched_priority = 99,
++	};
++	int oldpolicy = -1, policy = attr->sched_policy;
++	int retval, newprio;
++	struct balance_callback *head;
++	unsigned long flags;
++	struct rq *rq;
++	int reset_on_fork;
++	raw_spinlock_t *lock;
++
++	/* The pi code expects interrupts enabled */
++	BUG_ON(pi && in_interrupt());
++
++	/*
++	 * Alt schedule FW supports SCHED_DEADLINE by squash it as prio 0 SCHED_FIFO
++	 */
++	if (unlikely(SCHED_DEADLINE == policy)) {
++		attr = &dl_squash_attr;
++		policy = attr->sched_policy;
++	}
++recheck:
++	/* Double check policy once rq lock held */
++	if (policy < 0) {
++		reset_on_fork = p->sched_reset_on_fork;
++		policy = oldpolicy = p->policy;
++	} else {
++		reset_on_fork = !!(attr->sched_flags & SCHED_RESET_ON_FORK);
++
++		if (policy > SCHED_IDLE)
++			return -EINVAL;
++	}
++
++	if (attr->sched_flags & ~(SCHED_FLAG_ALL))
++		return -EINVAL;
++
++	/*
++	 * Valid priorities for SCHED_FIFO and SCHED_RR are
++	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL and
++	 * SCHED_BATCH and SCHED_IDLE is 0.
++	 */
++	if (attr->sched_priority < 0 ||
++	    (p->mm && attr->sched_priority > MAX_RT_PRIO - 1) ||
++	    (!p->mm && attr->sched_priority > MAX_RT_PRIO - 1))
++		return -EINVAL;
++	if ((SCHED_RR == policy || SCHED_FIFO == policy) !=
++	    (attr->sched_priority != 0))
++		return -EINVAL;
++
++	if (user) {
++		retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
++		if (retval)
++			return retval;
++
++		retval = security_task_setscheduler(p);
++		if (retval)
++			return retval;
++	}
++
++	/*
++	 * Make sure no PI-waiters arrive (or leave) while we are
++	 * changing the priority of the task:
++	 */
++	raw_spin_lock_irqsave(&p->pi_lock, flags);
++
++	/*
++	 * To be able to change p->policy safely, task_access_lock()
++	 * must be called.
++	 * IF use task_access_lock() here:
++	 * For the task p which is not running, reading rq->stop is
++	 * racy but acceptable as ->stop doesn't change much.
++	 * An enhancemnet can be made to read rq->stop saftly.
++	 */
++	rq = __task_access_lock(p, &lock);
++
++	/*
++	 * Changing the policy of the stop threads its a very bad idea
++	 */
++	if (p == rq->stop) {
++		retval = -EINVAL;
++		goto unlock;
++	}
++
++	/*
++	 * If not changing anything there's no need to proceed further:
++	 */
++	if (unlikely(policy == p->policy)) {
++		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
++			goto change;
++		if (!rt_policy(policy) &&
++		    NICE_TO_PRIO(attr->sched_nice) != p->static_prio)
++			goto change;
++
++		p->sched_reset_on_fork = reset_on_fork;
++		retval = 0;
++		goto unlock;
++	}
++change:
++
++	/* Re-check policy now with rq lock held */
++	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
++		policy = oldpolicy = -1;
++		__task_access_unlock(p, lock);
++		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
++		goto recheck;
++	}
++
++	p->sched_reset_on_fork = reset_on_fork;
++
++	newprio = __normal_prio(policy, attr->sched_priority, NICE_TO_PRIO(attr->sched_nice));
++	if (pi) {
++		/*
++		 * Take priority boosted tasks into account. If the new
++		 * effective priority is unchanged, we just store the new
++		 * normal parameters and do not touch the scheduler class and
++		 * the runqueue. This will be done when the task deboost
++		 * itself.
++		 */
++		newprio = rt_effective_prio(p, newprio);
++	}
++
++	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
++		__setscheduler_params(p, attr);
++		__setscheduler_prio(p, newprio);
++	}
++
++	check_task_changed(p, rq);
++
++	/* Avoid rq from going away on us: */
++	preempt_disable();
++	head = splice_balance_callbacks(rq);
++	__task_access_unlock(p, lock);
++	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
++
++	if (pi)
++		rt_mutex_adjust_pi(p);
++
++	/* Run balance callbacks after we've adjusted the PI chain: */
++	balance_callbacks(rq, head);
++	preempt_enable();
++
++	return 0;
++
++unlock:
++	__task_access_unlock(p, lock);
++	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
++	return retval;
++#else /* !CONFIG_SCHED_ALT */
+ 	int oldpolicy = -1, policy = attr->sched_policy;
+ 	int retval, oldprio, newprio, queued, running;
+ 	const struct sched_class *prev_class, *next_class;
+@@ -764,6 +986,7 @@ int __sched_setscheduler(struct task_struct *p,
+ 	if (cpuset_locked)
+ 		cpuset_unlock();
+ 	return retval;
++#endif /* !CONFIG_SCHED_ALT */
+ }
+ 
+ static int _sched_setscheduler(struct task_struct *p, int policy,
+@@ -775,8 +998,10 @@ static int _sched_setscheduler(struct task_struct *p, int policy,
+ 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
+ 	};
+ 
++#ifndef CONFIG_SCHED_ALT
+ 	if (p->se.custom_slice)
+ 		attr.sched_runtime = p->se.slice;
++#endif /* !CONFIG_SCHED_ALT */
+ 
+ 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
+ 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
+@@ -944,13 +1169,18 @@ static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *a
+ 
+ static void get_params(struct task_struct *p, struct sched_attr *attr)
+ {
+-	if (task_has_dl_policy(p)) {
++#ifndef CONFIG_SCHED_ALT
++	if (task_has_dl_policy(p))
+ 		__getparam_dl(p, attr);
+-	} else if (task_has_rt_policy(p)) {
++	else
++#endif
++	if (task_has_rt_policy(p)) {
+ 		attr->sched_priority = p->rt_priority;
+ 	} else {
+ 		attr->sched_nice = task_nice(p);
++#ifndef CONFIG_SCHED_ALT
+ 		attr->sched_runtime = p->se.slice;
++#endif
+ 	}
+ }
+ 
+@@ -1170,6 +1400,7 @@ SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
+ #ifdef CONFIG_SMP
+ int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
+ {
++#ifndef CONFIG_SCHED_ALT
+ 	/*
+ 	 * If the task isn't a deadline task or admission control is
+ 	 * disabled then we don't care about affinity changes.
+@@ -1186,6 +1417,7 @@ int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
+ 	guard(rcu)();
+ 	if (!cpumask_subset(task_rq(p)->rd->span, mask))
+ 		return -EBUSY;
++#endif
+ 
+ 	return 0;
+ }
+@@ -1210,9 +1442,11 @@ int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
+ 	ctx->new_mask = new_mask;
+ 	ctx->flags |= SCA_CHECK;
+ 
++#ifndef CONFIG_SCHED_ALT
+ 	retval = dl_task_check_affinity(p, new_mask);
+ 	if (retval)
+ 		goto out_free_new_mask;
++#endif
+ 
+ 	retval = __set_cpus_allowed_ptr(p, ctx);
+ 	if (retval)
+@@ -1392,13 +1626,34 @@ SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
+ 
+ static void do_sched_yield(void)
+ {
+-	struct rq_flags rf;
+ 	struct rq *rq;
++	struct rq_flags rf;
++
++#ifdef CONFIG_SCHED_ALT
++	struct task_struct *p;
++
++	if (!sched_yield_type)
++		return;
+ 
+ 	rq = this_rq_lock_irq(&rf);
+ 
++	schedstat_inc(rq->yld_count);
++
++	p = current;
++	if (rt_task(p)) {
++		if (task_on_rq_queued(p))
++			requeue_task(p, rq);
++	} else if (rq->nr_running > 1) {
++		do_sched_yield_type_1(p, rq);
++		if (task_on_rq_queued(p))
++			requeue_task(p, rq);
++	}
++#else /* !CONFIG_SCHED_ALT */
++	rq = this_rq_lock_irq(&rf);
++
+ 	schedstat_inc(rq->yld_count);
+ 	current->sched_class->yield_task(rq);
++#endif /* !CONFIG_SCHED_ALT */
+ 
+ 	preempt_disable();
+ 	rq_unlock_irq(rq, &rf);
+@@ -1467,6 +1722,9 @@ EXPORT_SYMBOL(yield);
+  */
+ int __sched yield_to(struct task_struct *p, bool preempt)
+ {
++#ifdef CONFIG_SCHED_ALT
++	return 0;
++#else /* !CONFIG_SCHED_ALT */
+ 	struct task_struct *curr = current;
+ 	struct rq *rq, *p_rq;
+ 	int yielded = 0;
+@@ -1512,6 +1770,7 @@ int __sched yield_to(struct task_struct *p, bool preempt)
+ 		schedule();
+ 
+ 	return yielded;
++#endif /* !CONFIG_SCHED_ALT */
+ }
+ EXPORT_SYMBOL_GPL(yield_to);
+ 
+@@ -1532,7 +1791,9 @@ SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
+ 	case SCHED_RR:
+ 		ret = MAX_RT_PRIO-1;
+ 		break;
++#ifndef CONFIG_SCHED_ALT
+ 	case SCHED_DEADLINE:
++#endif
+ 	case SCHED_NORMAL:
+ 	case SCHED_BATCH:
+ 	case SCHED_IDLE:
+@@ -1560,7 +1821,9 @@ SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
+ 	case SCHED_RR:
+ 		ret = 1;
+ 		break;
++#ifndef CONFIG_SCHED_ALT
+ 	case SCHED_DEADLINE:
++#endif
+ 	case SCHED_NORMAL:
+ 	case SCHED_BATCH:
+ 	case SCHED_IDLE:
+@@ -1572,7 +1835,9 @@ SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
+ 
+ static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
+ {
++#ifndef CONFIG_SCHED_ALT
+ 	unsigned int time_slice = 0;
++#endif
+ 	int retval;
+ 
+ 	if (pid < 0)
+@@ -1587,6 +1852,7 @@ static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
+ 		if (retval)
+ 			return retval;
+ 
++#ifndef CONFIG_SCHED_ALT
+ 		scoped_guard (task_rq_lock, p) {
+ 			struct rq *rq = scope.rq;
+ 			if (p->sched_class->get_rr_interval)
+@@ -1595,6 +1861,13 @@ static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
+ 	}
+ 
+ 	jiffies_to_timespec64(time_slice, t);
++#else
++	}
++
++	alt_sched_debug();
++
++	*t = ns_to_timespec64(sysctl_sched_base_slice);
++#endif /* !CONFIG_SCHED_ALT */
+ 	return 0;
+ }
+ 
+diff --git a/kernel/sched/topology.c b/kernel/sched/topology.c
+index 9748a4c8d668..1e2bdd70d69a 100644
+--- a/kernel/sched/topology.c
++++ b/kernel/sched/topology.c
+@@ -3,6 +3,7 @@
+  * Scheduler topology setup/handling methods
+  */
+ 
++#ifndef CONFIG_SCHED_ALT
+ #include <linux/bsearch.h>
+ 
+ DEFINE_MUTEX(sched_domains_mutex);
+@@ -1459,8 +1460,10 @@ static void asym_cpu_capacity_scan(void)
+  */
+ 
+ static int default_relax_domain_level = -1;
++#endif /* CONFIG_SCHED_ALT */
+ int sched_domain_level_max;
+ 
++#ifndef CONFIG_SCHED_ALT
+ static int __init setup_relax_domain_level(char *str)
+ {
+ 	if (kstrtoint(str, 0, &default_relax_domain_level))
+@@ -1695,6 +1698,7 @@ sd_init(struct sched_domain_topology_level *tl,
+ 
+ 	return sd;
+ }
++#endif /* CONFIG_SCHED_ALT */
+ 
+ /*
+  * Topology list, bottom-up.
+@@ -1731,6 +1735,7 @@ void __init set_sched_topology(struct sched_domain_topology_level *tl)
+ 	sched_domain_topology_saved = NULL;
+ }
+ 
++#ifndef CONFIG_SCHED_ALT
+ #ifdef CONFIG_NUMA
+ 
+ static const struct cpumask *sd_numa_mask(int cpu)
+@@ -2797,3 +2802,28 @@ void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
+ 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
+ 	mutex_unlock(&sched_domains_mutex);
+ }
++#else /* CONFIG_SCHED_ALT */
++DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
++
++void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
++			     struct sched_domain_attr *dattr_new)
++{}
++
++#ifdef CONFIG_NUMA
++int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
++{
++	return best_mask_cpu(cpu, cpus);
++}
++
++int sched_numa_find_nth_cpu(const struct cpumask *cpus, int cpu, int node)
++{
++	return cpumask_nth(cpu, cpus);
++}
++
++const struct cpumask *sched_numa_hop_mask(unsigned int node, unsigned int hops)
++{
++	return ERR_PTR(-EOPNOTSUPP);
++}
++EXPORT_SYMBOL_GPL(sched_numa_hop_mask);
++#endif /* CONFIG_NUMA */
++#endif
+diff --git a/kernel/sysctl.c b/kernel/sysctl.c
+index 79e6cb1d5c48..61bc0352e233 100644
+--- a/kernel/sysctl.c
++++ b/kernel/sysctl.c
+@@ -92,6 +92,10 @@ EXPORT_SYMBOL_GPL(sysctl_long_vals);
+ 
+ /* Constants used for minimum and maximum */
+ 
++#ifdef CONFIG_SCHED_ALT
++extern int sched_yield_type;
++#endif
++
+ #ifdef CONFIG_PERF_EVENTS
+ static const int six_hundred_forty_kb = 640 * 1024;
+ #endif
+@@ -1907,6 +1911,17 @@ static struct ctl_table kern_table[] = {
+ 		.proc_handler	= proc_dointvec,
+ 	},
+ #endif
++#ifdef CONFIG_SCHED_ALT
++	{
++		.procname	= "yield_type",
++		.data		= &sched_yield_type,
++		.maxlen		= sizeof (int),
++		.mode		= 0644,
++		.proc_handler	= &proc_dointvec_minmax,
++		.extra1		= SYSCTL_ZERO,
++		.extra2		= SYSCTL_TWO,
++	},
++#endif
+ #if defined(CONFIG_S390) && defined(CONFIG_SMP)
+ 	{
+ 		.procname	= "spin_retry",
+diff --git a/kernel/time/posix-cpu-timers.c b/kernel/time/posix-cpu-timers.c
+index 6bcee4704059..cf88205fd4a2 100644
+--- a/kernel/time/posix-cpu-timers.c
++++ b/kernel/time/posix-cpu-timers.c
+@@ -223,7 +223,7 @@ static void task_sample_cputime(struct task_struct *p, u64 *samples)
+ 	u64 stime, utime;
+ 
+ 	task_cputime(p, &utime, &stime);
+-	store_samples(samples, stime, utime, p->se.sum_exec_runtime);
++	store_samples(samples, stime, utime, tsk_seruntime(p));
+ }
+ 
+ static void proc_sample_cputime_atomic(struct task_cputime_atomic *at,
+@@ -830,6 +830,7 @@ static void collect_posix_cputimers(struct posix_cputimers *pct, u64 *samples,
+ 	}
+ }
+ 
++#ifndef CONFIG_SCHED_ALT
+ static inline void check_dl_overrun(struct task_struct *tsk)
+ {
+ 	if (tsk->dl.dl_overrun) {
+@@ -837,6 +838,7 @@ static inline void check_dl_overrun(struct task_struct *tsk)
+ 		send_signal_locked(SIGXCPU, SEND_SIG_PRIV, tsk, PIDTYPE_TGID);
+ 	}
+ }
++#endif
+ 
+ static bool check_rlimit(u64 time, u64 limit, int signo, bool rt, bool hard)
+ {
+@@ -864,8 +866,10 @@ static void check_thread_timers(struct task_struct *tsk,
+ 	u64 samples[CPUCLOCK_MAX];
+ 	unsigned long soft;
+ 
++#ifndef CONFIG_SCHED_ALT
+ 	if (dl_task(tsk))
+ 		check_dl_overrun(tsk);
++#endif
+ 
+ 	if (expiry_cache_is_inactive(pct))
+ 		return;
+@@ -879,7 +883,7 @@ static void check_thread_timers(struct task_struct *tsk,
+ 	soft = task_rlimit(tsk, RLIMIT_RTTIME);
+ 	if (soft != RLIM_INFINITY) {
+ 		/* Task RT timeout is accounted in jiffies. RTTIME is usec */
+-		unsigned long rttime = tsk->rt.timeout * (USEC_PER_SEC / HZ);
++		unsigned long rttime = tsk_rttimeout(tsk) * (USEC_PER_SEC / HZ);
+ 		unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
+ 
+ 		/* At the hard limit, send SIGKILL. No further action. */
+@@ -1115,8 +1119,10 @@ static inline bool fastpath_timer_check(struct task_struct *tsk)
+ 			return true;
+ 	}
+ 
++#ifndef CONFIG_SCHED_ALT
+ 	if (dl_task(tsk) && tsk->dl.dl_overrun)
+ 		return true;
++#endif
+ 
+ 	return false;
+ }
+diff --git a/kernel/trace/trace_selftest.c b/kernel/trace/trace_selftest.c
+index 1469dd8075fa..803527a0e48a 100644
+--- a/kernel/trace/trace_selftest.c
++++ b/kernel/trace/trace_selftest.c
+@@ -1419,10 +1419,15 @@ static int trace_wakeup_test_thread(void *data)
+ {
+ 	/* Make this a -deadline thread */
+ 	static const struct sched_attr attr = {
++#ifdef CONFIG_SCHED_ALT
++		/* No deadline on BMQ/PDS, use RR */
++		.sched_policy = SCHED_RR,
++#else
+ 		.sched_policy = SCHED_DEADLINE,
+ 		.sched_runtime = 100000ULL,
+ 		.sched_deadline = 10000000ULL,
+ 		.sched_period = 10000000ULL
++#endif
+ 	};
+ 	struct wakeup_test_data *x = data;
+ 
+diff --git a/kernel/workqueue.c b/kernel/workqueue.c
+index 9949ffad8df0..90eac9d802a8 100644
+--- a/kernel/workqueue.c
++++ b/kernel/workqueue.c
+@@ -1247,6 +1247,7 @@ static bool kick_pool(struct worker_pool *pool)
+ 
+ 	p = worker->task;
+ 
++#ifndef CONFIG_SCHED_ALT
+ #ifdef CONFIG_SMP
+ 	/*
+ 	 * Idle @worker is about to execute @work and waking up provides an
+@@ -1276,6 +1277,8 @@ static bool kick_pool(struct worker_pool *pool)
+ 		}
+ 	}
+ #endif
++#endif /* !CONFIG_SCHED_ALT */
++
+ 	wake_up_process(p);
+ 	return true;
+ }
+@@ -1404,7 +1407,11 @@ void wq_worker_running(struct task_struct *task)
+ 	 * CPU intensive auto-detection cares about how long a work item hogged
+ 	 * CPU without sleeping. Reset the starting timestamp on wakeup.
+ 	 */
++#ifdef CONFIG_SCHED_ALT
++	worker->current_at = worker->task->sched_time;
++#else
+ 	worker->current_at = worker->task->se.sum_exec_runtime;
++#endif
+ 
+ 	WRITE_ONCE(worker->sleeping, 0);
+ }
+@@ -1489,7 +1496,11 @@ void wq_worker_tick(struct task_struct *task)
+ 	 * We probably want to make this prettier in the future.
+ 	 */
+ 	if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
++#ifdef CONFIG_SCHED_ALT
++	    worker->task->sched_time - worker->current_at <
++#else
+ 	    worker->task->se.sum_exec_runtime - worker->current_at <
++#endif
+ 	    wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
+ 		return;
+ 
+@@ -3157,7 +3168,11 @@ __acquires(&pool->lock)
+ 	worker->current_func = work->func;
+ 	worker->current_pwq = pwq;
+ 	if (worker->task)
++#ifdef CONFIG_SCHED_ALT
++		worker->current_at = worker->task->sched_time;
++#else
+ 		worker->current_at = worker->task->se.sum_exec_runtime;
++#endif
+ 	work_data = *work_data_bits(work);
+ 	worker->current_color = get_work_color(work_data);
+ 

diff --git a/5021_BMQ-and-PDS-gentoo-defaults.patch b/5021_BMQ-and-PDS-gentoo-defaults.patch
new file mode 100644
index 00000000..7748d78c
--- /dev/null
+++ b/5021_BMQ-and-PDS-gentoo-defaults.patch
@@ -0,0 +1,13 @@
+--- a/init/Kconfig	2024-11-13 14:45:36.566335895 -0500
++++ b/init/Kconfig	2024-11-13 14:47:02.670787774 -0500
+@@ -860,8 +860,9 @@ config UCLAMP_BUCKETS_COUNT
+ 	  If in doubt, use the default value.
+ 
+ menuconfig SCHED_ALT
++	depends on X86_64
+ 	bool "Alternative CPU Schedulers"
+-	default y
++	default n
+ 	help
+ 	  This feature enable alternative CPU scheduler"
+ 


^ permalink raw reply related	[flat|nested] 2+ messages in thread

* [gentoo-commits] proj/linux-patches:6.12 commit in: /
@ 2024-11-22 17:45 Mike Pagano
  0 siblings, 0 replies; 2+ messages in thread
From: Mike Pagano @ 2024-11-22 17:45 UTC (permalink / raw
  To: gentoo-commits

commit:     84e347f66f81e2e80e29676135f13f38d88cd91e
Author:     Mike Pagano <mpagano <AT> gentoo <DOT> org>
AuthorDate: Fri Nov 22 17:45:09 2024 +0000
Commit:     Mike Pagano <mpagano <AT> gentoo <DOT> org>
CommitDate: Fri Nov 22 17:45:09 2024 +0000
URL:        https://gitweb.gentoo.org/proj/linux-patches.git/commit/?id=84e347f6

Linux patch 6.12.1

Signed-off-by: Mike Pagano <mpagano <AT> gentoo.org>

 0000_README             | 12 ++++++----
 1001_linux-6.12.1.patch | 62 +++++++++++++++++++++++++++++++++++++++++++++++++
 2 files changed, 70 insertions(+), 4 deletions(-)

diff --git a/0000_README b/0000_README
index 2f20a332..4df3304e 100644
--- a/0000_README
+++ b/0000_README
@@ -43,17 +43,21 @@ EXPERIMENTAL
 Individual Patch Descriptions:
 --------------------------------------------------------------------------
 
+Patch:  1000_linux-6.12.1.patch
+From:   https://www.kernel.org
+Desc:   Linux 6.12.1
+
 Patch:  1510_fs-enable-link-security-restrictions-by-default.patch
 From:   http://sources.debian.net/src/linux/3.16.7-ckt4-3/debian/patches/debian/fs-enable-link-security-restrictions-by-default.patch/
 Desc:   Enable link security restrictions by default.
 
 Patch:  1700_sparc-address-warray-bound-warnings.patch
-From:		https://github.com/KSPP/linux/issues/109
-Desc:		Address -Warray-bounds warnings 
+From:   https://github.com/KSPP/linux/issues/109
+Desc:   Address -Warray-bounds warnings 
 
 Patch:  1730_parisc-Disable-prctl.patch
-From:	  https://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux.git
-Desc:	  prctl: Temporarily disable prctl(PR_SET_MDWE) on parisc
+From:   https://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux.git
+Desc:   prctl: Temporarily disable prctl(PR_SET_MDWE) on parisc
 
 Patch:  2000_BT-Check-key-sizes-only-if-Secure-Simple-Pairing-enabled.patch
 From:   https://lore.kernel.org/linux-bluetooth/20190522070540.48895-1-marcel@holtmann.org/raw

diff --git a/1001_linux-6.12.1.patch b/1001_linux-6.12.1.patch
new file mode 100644
index 00000000..8eed7b47
--- /dev/null
+++ b/1001_linux-6.12.1.patch
@@ -0,0 +1,62 @@
+diff --git a/Makefile b/Makefile
+index 68a8faff25432a..70070e64d267c1 100644
+--- a/Makefile
++++ b/Makefile
+@@ -1,7 +1,7 @@
+ # SPDX-License-Identifier: GPL-2.0
+ VERSION = 6
+ PATCHLEVEL = 12
+-SUBLEVEL = 0
++SUBLEVEL = 1
+ EXTRAVERSION =
+ NAME = Baby Opossum Posse
+ 
+diff --git a/drivers/media/usb/uvc/uvc_driver.c b/drivers/media/usb/uvc/uvc_driver.c
+index 0fac689c6350b2..13db0026dc1aad 100644
+--- a/drivers/media/usb/uvc/uvc_driver.c
++++ b/drivers/media/usb/uvc/uvc_driver.c
+@@ -371,7 +371,7 @@ static int uvc_parse_format(struct uvc_device *dev,
+ 	 * Parse the frame descriptors. Only uncompressed, MJPEG and frame
+ 	 * based formats have frame descriptors.
+ 	 */
+-	while (buflen > 2 && buffer[1] == USB_DT_CS_INTERFACE &&
++	while (ftype && buflen > 2 && buffer[1] == USB_DT_CS_INTERFACE &&
+ 	       buffer[2] == ftype) {
+ 		unsigned int maxIntervalIndex;
+ 
+diff --git a/mm/mmap.c b/mm/mmap.c
+index 79d541f1502b22..4f6e566d52faa6 100644
+--- a/mm/mmap.c
++++ b/mm/mmap.c
+@@ -1491,7 +1491,18 @@ static unsigned long __mmap_region(struct file *file, unsigned long addr,
+ 				vm_flags = vma->vm_flags;
+ 				goto file_expanded;
+ 			}
+-			vma_iter_config(&vmi, addr, end);
++
++			/*
++			 * In the unlikely even that more memory was needed, but
++			 * not available for the vma merge, the vma iterator
++			 * will have no memory reserved for the write we told
++			 * the driver was happening.  To keep up the ruse,
++			 * ensure the allocation for the store succeeds.
++			 */
++			if (vmg_nomem(&vmg)) {
++				mas_preallocate(&vmi.mas, vma,
++						GFP_KERNEL|__GFP_NOFAIL);
++			}
+ 		}
+ 
+ 		vm_flags = vma->vm_flags;
+diff --git a/net/vmw_vsock/hyperv_transport.c b/net/vmw_vsock/hyperv_transport.c
+index e2157e38721770..56c232cf5b0f4f 100644
+--- a/net/vmw_vsock/hyperv_transport.c
++++ b/net/vmw_vsock/hyperv_transport.c
+@@ -549,6 +549,7 @@ static void hvs_destruct(struct vsock_sock *vsk)
+ 		vmbus_hvsock_device_unregister(chan);
+ 
+ 	kfree(hvs);
++	vsk->trans = NULL;
+ }
+ 
+ static int hvs_dgram_bind(struct vsock_sock *vsk, struct sockaddr_vm *addr)


^ permalink raw reply related	[flat|nested] 2+ messages in thread

end of thread, other threads:[~2024-11-22 17:45 UTC | newest]

Thread overview: 2+ messages (download: mbox.gz follow: Atom feed
-- links below jump to the message on this page --
2024-11-22 17:45 [gentoo-commits] proj/linux-patches:6.12 commit in: / Mike Pagano
  -- strict thread matches above, loose matches on Subject: below --
2024-11-21 13:12 Mike Pagano

This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox