* [gentoo-commits] proj/linux-patches:4.11 commit in: /
@ 2017-03-08 19:29 Mike Pagano
0 siblings, 0 replies; 5+ messages in thread
From: Mike Pagano @ 2017-03-08 19:29 UTC (permalink / raw
To: gentoo-commits
commit: 296ce1499f60054d8e2bc7aa4a0b5fb897fc28a3
Author: Mike Pagano <mpagano <AT> gentoo <DOT> org>
AuthorDate: Wed Mar 8 19:29:21 2017 +0000
Commit: Mike Pagano <mpagano <AT> gentoo <DOT> org>
CommitDate: Wed Mar 8 19:29:21 2017 +0000
URL: https://gitweb.gentoo.org/proj/linux-patches.git/commit/?id=296ce149
Gentoo Linux support config settings and defaults. Patch to add support for namespace user.pax.* on tmpfs. Patch to enable link security restrictions by default. Patch to ensure that /dev/root doesn't appear in /proc/mounts when booting without an initramfs. Patch to enable control of the unaligned access control policy from sysctl. Workaround to enable poweroff on Mac Pro 11. See bug #601964. Kernel patch enables gcc >= v4.9 optimizations for additional CPUs. fbcondecor bootsplash patch.
0000_README | 28 +
1500_XATTR_USER_PREFIX.patch | 69 +
...ble-link-security-restrictions-by-default.patch | 22 +
2300_enable-poweroff-on-Mac-Pro-11.patch | 76 +
2900_dev-root-proc-mount-fix.patch | 38 +
4200_fbcondecor.patch | 2095 ++++++++++++++++++++
4400_alpha-sysctl-uac.patch | 142 ++
...able-additional-cpu-optimizations-for-gcc.patch | 426 ++++
8 files changed, 2896 insertions(+)
diff --git a/0000_README b/0000_README
index 9018993..58e3c74 100644
--- a/0000_README
+++ b/0000_README
@@ -43,6 +43,34 @@ EXPERIMENTAL
Individual Patch Descriptions:
--------------------------------------------------------------------------
+Patch: 1500_XATTR_USER_PREFIX.patch
+From: https://bugs.gentoo.org/show_bug.cgi?id=470644
+Desc: Support for namespace user.pax.* on tmpfs.
+
+Patch: 1510_fs-enable-link-security-restrictions-by-default.patch
+From: http://sources.debian.net/src/linux/3.16.7-ckt4-3/debian/patches/debian/fs-enable-link-security-restrictions-by-default.patch/
+Desc: Enable link security restrictions by default.
+
+Patch: 2300_enable-poweroff-on-Mac-Pro-11.patch
+From: http://kernel.ubuntu.com/git/ubuntu/ubuntu-xenial.git/patch/drivers/pci/quirks.c?id=5080ff61a438f3dd80b88b423e1a20791d8a774c
+Desc: Workaround to enable poweroff on Mac Pro 11. See bug #601964.
+
+Patch: 2900_dev-root-proc-mount-fix.patch
+From: https://bugs.gentoo.org/show_bug.cgi?id=438380
+Desc: Ensure that /dev/root doesn't appear in /proc/mounts when bootint without an initramfs.
+
+Patch: 4200_fbcondecor.patch
+From: http://www.mepiscommunity.org/fbcondecor
+Desc: Bootsplash ported by Uladzimir Bely. (Bug #596126)
+
+Patch: 4400_alpha-sysctl-uac.patch
+From: Tobias Klausmann (klausman@gentoo.org) and http://bugs.gentoo.org/show_bug.cgi?id=217323
+Desc: Enable control of the unaligned access control policy from sysctl
+
Patch: 4567_distro-Gentoo-Kconfig.patch
From: Tom Wijsman <TomWij@gentoo.org>
Desc: Add Gentoo Linux support config settings and defaults.
+
+Patch: 5010_enable-additional-cpu-optimizations-for-gcc.patch
+From: https://github.com/graysky2/kernel_gcc_patch/
+Desc: Kernel patch enables gcc >= v4.9 optimizations for additional CPUs.
diff --git a/1500_XATTR_USER_PREFIX.patch b/1500_XATTR_USER_PREFIX.patch
new file mode 100644
index 0000000..bacd032
--- /dev/null
+++ b/1500_XATTR_USER_PREFIX.patch
@@ -0,0 +1,69 @@
+From: Anthony G. Basile <blueness@gentoo.org>
+
+This patch adds support for a restricted user-controlled namespace on
+tmpfs filesystem used to house PaX flags. The namespace must be of the
+form user.pax.* and its value cannot exceed a size of 8 bytes.
+
+This is needed even on all Gentoo systems so that XATTR_PAX flags
+are preserved for users who might build packages using portage on
+a tmpfs system with a non-hardened kernel and then switch to a
+hardened kernel with XATTR_PAX enabled.
+
+The namespace is added to any user with Extended Attribute support
+enabled for tmpfs. Users who do not enable xattrs will not have
+the XATTR_PAX flags preserved.
+
+diff --git a/include/uapi/linux/xattr.h b/include/uapi/linux/xattr.h
+index 1590c49..5eab462 100644
+--- a/include/uapi/linux/xattr.h
++++ b/include/uapi/linux/xattr.h
+@@ -73,5 +73,9 @@
+ #define XATTR_POSIX_ACL_DEFAULT "posix_acl_default"
+ #define XATTR_NAME_POSIX_ACL_DEFAULT XATTR_SYSTEM_PREFIX XATTR_POSIX_ACL_DEFAULT
+
++/* User namespace */
++#define XATTR_PAX_PREFIX XATTR_USER_PREFIX "pax."
++#define XATTR_PAX_FLAGS_SUFFIX "flags"
++#define XATTR_NAME_PAX_FLAGS XATTR_PAX_PREFIX XATTR_PAX_FLAGS_SUFFIX
+
+ #endif /* _UAPI_LINUX_XATTR_H */
+diff --git a/mm/shmem.c b/mm/shmem.c
+index 440e2a7..c377172 100644
+--- a/mm/shmem.c
++++ b/mm/shmem.c
+@@ -2667,6 +2667,14 @@ static int shmem_xattr_handler_set(const struct xattr_handler *handler,
+ struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
+
+ name = xattr_full_name(handler, name);
++
++ if (!strncmp(name, XATTR_USER_PREFIX, XATTR_USER_PREFIX_LEN)) {
++ if (strcmp(name, XATTR_NAME_PAX_FLAGS))
++ return -EOPNOTSUPP;
++ if (size > 8)
++ return -EINVAL;
++ }
++
+ return simple_xattr_set(&info->xattrs, name, value, size, flags);
+ }
+
+@@ -2682,6 +2690,12 @@ static const struct xattr_handler shmem_trusted_xattr_handler = {
+ .set = shmem_xattr_handler_set,
+ };
+
++static const struct xattr_handler shmem_user_xattr_handler = {
++ .prefix = XATTR_USER_PREFIX,
++ .get = shmem_xattr_handler_get,
++ .set = shmem_xattr_handler_set,
++};
++
+ static const struct xattr_handler *shmem_xattr_handlers[] = {
+ #ifdef CONFIG_TMPFS_POSIX_ACL
+ &posix_acl_access_xattr_handler,
+@@ -2689,6 +2703,7 @@ static const struct xattr_handler *shmem_xattr_handlers[] = {
+ #endif
+ &shmem_security_xattr_handler,
+ &shmem_trusted_xattr_handler,
++ &shmem_user_xattr_handler,
+ NULL
+ };
+
diff --git a/1510_fs-enable-link-security-restrictions-by-default.patch b/1510_fs-enable-link-security-restrictions-by-default.patch
new file mode 100644
index 0000000..639fb3c
--- /dev/null
+++ b/1510_fs-enable-link-security-restrictions-by-default.patch
@@ -0,0 +1,22 @@
+From: Ben Hutchings <ben@decadent.org.uk>
+Subject: fs: Enable link security restrictions by default
+Date: Fri, 02 Nov 2012 05:32:06 +0000
+Bug-Debian: https://bugs.debian.org/609455
+Forwarded: not-needed
+
+This reverts commit 561ec64ae67ef25cac8d72bb9c4bfc955edfd415
+('VFS: don't do protected {sym,hard}links by default').
+
+--- a/fs/namei.c
++++ b/fs/namei.c
+@@ -651,8 +651,8 @@ static inline void put_link(struct namei
+ path_put(link);
+ }
+
+-int sysctl_protected_symlinks __read_mostly = 0;
+-int sysctl_protected_hardlinks __read_mostly = 0;
++int sysctl_protected_symlinks __read_mostly = 1;
++int sysctl_protected_hardlinks __read_mostly = 1;
+
+ /**
+ * may_follow_link - Check symlink following for unsafe situations
diff --git a/2300_enable-poweroff-on-Mac-Pro-11.patch b/2300_enable-poweroff-on-Mac-Pro-11.patch
new file mode 100644
index 0000000..063f2a1
--- /dev/null
+++ b/2300_enable-poweroff-on-Mac-Pro-11.patch
@@ -0,0 +1,76 @@
+From 5080ff61a438f3dd80b88b423e1a20791d8a774c Mon Sep 17 00:00:00 2001
+From: Chen Yu <yu.c.chen@intel.com>
+Date: Fri, 19 Aug 2016 10:25:57 -0700
+Subject: UBUNTU: SAUCE: PCI: Workaround to enable poweroff on Mac Pro 11
+
+BugLink: http://bugs.launchpad.net/bugs/1587714
+
+People reported that they can not do a poweroff nor a
+suspend to ram on their Mac Pro 11. After some investigations
+it was found that, once the PCI bridge 0000:00:1c.0 reassigns its
+mm windows to ([mem 0x7fa00000-0x7fbfffff] and
+[mem 0x7fc00000-0x7fdfffff 64bit pref]), the region of ACPI
+io resource 0x1804 becomes unaccessible immediately, where the
+ACPI Sleep register is located, as a result neither poweroff(S5)
+nor suspend to ram(S3) works.
+
+As suggested by Bjorn, further testing shows that, there is an
+unreported device may be (using) conflict with above aperture,
+which brings unpredictable result such as the failure of accessing
+the io port, which blocks the poweroff(S5). Besides if we reassign
+the memory aperture to the other place, the poweroff works again.
+
+As we do not find any resource declared in _CRS which contain above
+memory aperture, and Mac OS does not use this pci bridge neither, we
+choose a simple workaround to clear the hotplug flag(suggested by
+Yinghai Lu), thus do not allocate any resource for this pci bridge,
+and thereby no conflict anymore.
+
+Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=103211
+Cc: Bjorn Helgaas <bhelgaas@google.com>
+Cc: Rafael J. Wysocki <rafael@kernel.org>
+Cc: Lukas Wunner <lukas@wunner.de>
+Signed-off-by: Chen Yu <yu.c.chen@intel.com>
+Reference: https://patchwork.kernel.org/patch/9289777/
+Signed-off-by: Kamal Mostafa <kamal@canonical.com>
+Acked-by: Brad Figg <brad.figg@canonical.com>
+Acked-by: Stefan Bader <stefan.bader@canonical.com>
+Signed-off-by: Tim Gardner <tim.gardner@canonical.com>
+---
+ drivers/pci/quirks.c | 20 ++++++++++++++++++++
+ 1 file changed, 20 insertions(+)
+
+diff --git a/drivers/pci/quirks.c b/drivers/pci/quirks.c
+index 48cfaa0..23968b6 100644
+--- a/drivers/pci/quirks.c
++++ b/drivers/pci/quirks.c
+@@ -2750,6 +2750,26 @@ static void quirk_hotplug_bridge(struct pci_dev *dev)
+ DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_HINT, 0x0020, quirk_hotplug_bridge);
+
+ /*
++ * Apple: Avoid programming the memory/io aperture of 00:1c.0
++ *
++ * BIOS does not declare any resource for 00:1c.0, but with
++ * hotplug flag set, thus the OS allocates:
++ * [mem 0x7fa00000 - 0x7fbfffff]
++ * [mem 0x7fc00000-0x7fdfffff 64bit pref]
++ * which is conflict with an unreported device, which
++ * causes unpredictable result such as accessing io port.
++ * So clear the hotplug flag to work around it.
++ */
++static void quirk_apple_mbp_poweroff(struct pci_dev *dev)
++{
++ if (dmi_match(DMI_PRODUCT_NAME, "MacBookPro11,4") ||
++ dmi_match(DMI_PRODUCT_NAME, "MacBookPro11,5"))
++ dev->is_hotplug_bridge = 0;
++}
++
++DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x8c10, quirk_apple_mbp_poweroff);
++
++/*
+ * This is a quirk for the Ricoh MMC controller found as a part of
+ * some mulifunction chips.
+
+--
+cgit v0.11.2
+
diff --git a/2900_dev-root-proc-mount-fix.patch b/2900_dev-root-proc-mount-fix.patch
new file mode 100644
index 0000000..60af1eb
--- /dev/null
+++ b/2900_dev-root-proc-mount-fix.patch
@@ -0,0 +1,38 @@
+--- a/init/do_mounts.c 2015-08-19 10:27:16.753852576 -0400
++++ b/init/do_mounts.c 2015-08-19 10:34:25.473850353 -0400
+@@ -490,7 +490,11 @@ void __init change_floppy(char *fmt, ...
+ va_start(args, fmt);
+ vsprintf(buf, fmt, args);
+ va_end(args);
+- fd = sys_open("/dev/root", O_RDWR | O_NDELAY, 0);
++ if (saved_root_name[0])
++ fd = sys_open(saved_root_name, O_RDWR | O_NDELAY, 0);
++ else
++ fd = sys_open("/dev/root", O_RDWR | O_NDELAY, 0);
++
+ if (fd >= 0) {
+ sys_ioctl(fd, FDEJECT, 0);
+ sys_close(fd);
+@@ -534,11 +538,17 @@ void __init mount_root(void)
+ #endif
+ #ifdef CONFIG_BLOCK
+ {
+- int err = create_dev("/dev/root", ROOT_DEV);
+-
+- if (err < 0)
+- pr_emerg("Failed to create /dev/root: %d\n", err);
+- mount_block_root("/dev/root", root_mountflags);
++ if (saved_root_name[0] == '/') {
++ int err = create_dev(saved_root_name, ROOT_DEV);
++ if (err < 0)
++ pr_emerg("Failed to create %s: %d\n", saved_root_name, err);
++ mount_block_root(saved_root_name, root_mountflags);
++ } else {
++ int err = create_dev("/dev/root", ROOT_DEV);
++ if (err < 0)
++ pr_emerg("Failed to create /dev/root: %d\n", err);
++ mount_block_root("/dev/root", root_mountflags);
++ }
+ }
+ #endif
+ }
diff --git a/4200_fbcondecor.patch b/4200_fbcondecor.patch
new file mode 100644
index 0000000..f7d9879
--- /dev/null
+++ b/4200_fbcondecor.patch
@@ -0,0 +1,2095 @@
+diff --git a/Documentation/fb/00-INDEX b/Documentation/fb/00-INDEX
+index fe85e7c..2230930 100644
+--- a/Documentation/fb/00-INDEX
++++ b/Documentation/fb/00-INDEX
+@@ -23,6 +23,8 @@ ep93xx-fb.txt
+ - info on the driver for EP93xx LCD controller.
+ fbcon.txt
+ - intro to and usage guide for the framebuffer console (fbcon).
++fbcondecor.txt
++ - info on the Framebuffer Console Decoration
+ framebuffer.txt
+ - introduction to frame buffer devices.
+ gxfb.txt
+diff --git a/Documentation/fb/fbcondecor.txt b/Documentation/fb/fbcondecor.txt
+new file mode 100644
+index 0000000..637209e
+--- /dev/null
++++ b/Documentation/fb/fbcondecor.txt
+@@ -0,0 +1,207 @@
++What is it?
++-----------
++
++The framebuffer decorations are a kernel feature which allows displaying a
++background picture on selected consoles.
++
++What do I need to get it to work?
++---------------------------------
++
++To get fbcondecor up-and-running you will have to:
++ 1) get a copy of splashutils [1] or a similar program
++ 2) get some fbcondecor themes
++ 3) build the kernel helper program
++ 4) build your kernel with the FB_CON_DECOR option enabled.
++
++To get fbcondecor operational right after fbcon initialization is finished, you
++will have to include a theme and the kernel helper into your initramfs image.
++Please refer to splashutils documentation for instructions on how to do that.
++
++[1] The splashutils package can be downloaded from:
++ http://github.com/alanhaggai/fbsplash
++
++The userspace helper
++--------------------
++
++The userspace fbcondecor helper (by default: /sbin/fbcondecor_helper) is called by the
++kernel whenever an important event occurs and the kernel needs some kind of
++job to be carried out. Important events include console switches and video
++mode switches (the kernel requests background images and configuration
++parameters for the current console). The fbcondecor helper must be accessible at
++all times. If it's not, fbcondecor will be switched off automatically.
++
++It's possible to set path to the fbcondecor helper by writing it to
++/proc/sys/kernel/fbcondecor.
++
++*****************************************************************************
++
++The information below is mostly technical stuff. There's probably no need to
++read it unless you plan to develop a userspace helper.
++
++The fbcondecor protocol
++-----------------------
++
++The fbcondecor protocol defines a communication interface between the kernel and
++the userspace fbcondecor helper.
++
++The kernel side is responsible for:
++
++ * rendering console text, using an image as a background (instead of a
++ standard solid color fbcon uses),
++ * accepting commands from the user via ioctls on the fbcondecor device,
++ * calling the userspace helper to set things up as soon as the fb subsystem
++ is initialized.
++
++The userspace helper is responsible for everything else, including parsing
++configuration files, decompressing the image files whenever the kernel needs
++it, and communicating with the kernel if necessary.
++
++The fbcondecor protocol specifies how communication is done in both ways:
++kernel->userspace and userspace->helper.
++
++Kernel -> Userspace
++-------------------
++
++The kernel communicates with the userspace helper by calling it and specifying
++the task to be done in a series of arguments.
++
++The arguments follow the pattern:
++<fbcondecor protocol version> <command> <parameters>
++
++All commands defined in fbcondecor protocol v2 have the following parameters:
++ virtual console
++ framebuffer number
++ theme
++
++Fbcondecor protocol v1 specified an additional 'fbcondecor mode' after the
++framebuffer number. Fbcondecor protocol v1 is deprecated and should not be used.
++
++Fbcondecor protocol v2 specifies the following commands:
++
++getpic
++------
++ The kernel issues this command to request image data. It's up to the
++ userspace helper to find a background image appropriate for the specified
++ theme and the current resolution. The userspace helper should respond by
++ issuing the FBIOCONDECOR_SETPIC ioctl.
++
++init
++----
++ The kernel issues this command after the fbcondecor device is created and
++ the fbcondecor interface is initialized. Upon receiving 'init', the userspace
++ helper should parse the kernel command line (/proc/cmdline) or otherwise
++ decide whether fbcondecor is to be activated.
++
++ To activate fbcondecor on the first console the helper should issue the
++ FBIOCONDECOR_SETCFG, FBIOCONDECOR_SETPIC and FBIOCONDECOR_SETSTATE commands,
++ in the above-mentioned order.
++
++ When the userspace helper is called in an early phase of the boot process
++ (right after the initialization of fbcon), no filesystems will be mounted.
++ The helper program should mount sysfs and then create the appropriate
++ framebuffer, fbcondecor and tty0 devices (if they don't already exist) to get
++ current display settings and to be able to communicate with the kernel side.
++ It should probably also mount the procfs to be able to parse the kernel
++ command line parameters.
++
++ Note that the console sem is not held when the kernel calls fbcondecor_helper
++ with the 'init' command. The fbcondecor helper should perform all ioctls with
++ origin set to FBCON_DECOR_IO_ORIG_USER.
++
++modechange
++----------
++ The kernel issues this command on a mode change. The helper's response should
++ be similar to the response to the 'init' command. Note that this time the
++ console sem is held and all ioctls must be performed with origin set to
++ FBCON_DECOR_IO_ORIG_KERNEL.
++
++
++Userspace -> Kernel
++-------------------
++
++Userspace programs can communicate with fbcondecor via ioctls on the
++fbcondecor device. These ioctls are to be used by both the userspace helper
++(called only by the kernel) and userspace configuration tools (run by the users).
++
++The fbcondecor helper should set the origin field to FBCON_DECOR_IO_ORIG_KERNEL
++when doing the appropriate ioctls. All userspace configuration tools should
++use FBCON_DECOR_IO_ORIG_USER. Failure to set the appropriate value in the origin
++field when performing ioctls from the kernel helper will most likely result
++in a console deadlock.
++
++FBCON_DECOR_IO_ORIG_KERNEL instructs fbcondecor not to try to acquire the console
++semaphore. Not surprisingly, FBCON_DECOR_IO_ORIG_USER instructs it to acquire
++the console sem.
++
++The framebuffer console decoration provides the following ioctls (all defined in
++linux/fb.h):
++
++FBIOCONDECOR_SETPIC
++description: loads a background picture for a virtual console
++argument: struct fbcon_decor_iowrapper*; data: struct fb_image*
++notes:
++If called for consoles other than the current foreground one, the picture data
++will be ignored.
++
++If the current virtual console is running in a 8-bpp mode, the cmap substruct
++of fb_image has to be filled appropriately: start should be set to 16 (first
++16 colors are reserved for fbcon), len to a value <= 240 and red, green and
++blue should point to valid cmap data. The transp field is ingored. The fields
++dx, dy, bg_color, fg_color in fb_image are ignored as well.
++
++FBIOCONDECOR_SETCFG
++description: sets the fbcondecor config for a virtual console
++argument: struct fbcon_decor_iowrapper*; data: struct vc_decor*
++notes: The structure has to be filled with valid data.
++
++FBIOCONDECOR_GETCFG
++description: gets the fbcondecor config for a virtual console
++argument: struct fbcon_decor_iowrapper*; data: struct vc_decor*
++
++FBIOCONDECOR_SETSTATE
++description: sets the fbcondecor state for a virtual console
++argument: struct fbcon_decor_iowrapper*; data: unsigned int*
++ values: 0 = disabled, 1 = enabled.
++
++FBIOCONDECOR_GETSTATE
++description: gets the fbcondecor state for a virtual console
++argument: struct fbcon_decor_iowrapper*; data: unsigned int*
++ values: as in FBIOCONDECOR_SETSTATE
++
++Info on used structures:
++
++Definition of struct vc_decor can be found in linux/console_decor.h. It's
++heavily commented. Note that the 'theme' field should point to a string
++no longer than FBCON_DECOR_THEME_LEN. When FBIOCONDECOR_GETCFG call is
++performed, the theme field should point to a char buffer of length
++FBCON_DECOR_THEME_LEN.
++
++Definition of struct fbcon_decor_iowrapper can be found in linux/fb.h.
++The fields in this struct have the following meaning:
++
++vc:
++Virtual console number.
++
++origin:
++Specifies if the ioctl is performed as a response to a kernel request. The
++fbcondecor helper should set this field to FBCON_DECOR_IO_ORIG_KERNEL, userspace
++programs should set it to FBCON_DECOR_IO_ORIG_USER. This field is necessary to
++avoid console semaphore deadlocks.
++
++data:
++Pointer to a data structure appropriate for the performed ioctl. Type of
++the data struct is specified in the ioctls description.
++
++*****************************************************************************
++
++Credit
++------
++
++Original 'bootsplash' project & implementation by:
++ Volker Poplawski <volker@poplawski.de>, Stefan Reinauer <stepan@suse.de>,
++ Steffen Winterfeldt <snwint@suse.de>, Michael Schroeder <mls@suse.de>,
++ Ken Wimer <wimer@suse.de>.
++
++Fbcondecor, fbcondecor protocol design, current implementation & docs by:
++ Michal Januszewski <michalj+fbcondecor@gmail.com>
++
+diff --git a/drivers/Makefile b/drivers/Makefile
+index 53abb4a..1721aee 100644
+--- a/drivers/Makefile
++++ b/drivers/Makefile
+@@ -17,6 +17,10 @@ obj-y += pwm/
+ obj-$(CONFIG_PCI) += pci/
+ obj-$(CONFIG_PARISC) += parisc/
+ obj-$(CONFIG_RAPIDIO) += rapidio/
++# tty/ comes before char/ so that the VT console is the boot-time
++# default.
++obj-y += tty/
++obj-y += char/
+ obj-y += video/
+ obj-y += idle/
+
+@@ -45,11 +49,6 @@ obj-$(CONFIG_REGULATOR) += regulator/
+ # reset controllers early, since gpu drivers might rely on them to initialize
+ obj-$(CONFIG_RESET_CONTROLLER) += reset/
+
+-# tty/ comes before char/ so that the VT console is the boot-time
+-# default.
+-obj-y += tty/
+-obj-y += char/
+-
+ # iommu/ comes before gpu as gpu are using iommu controllers
+ obj-$(CONFIG_IOMMU_SUPPORT) += iommu/
+
+diff --git a/drivers/video/console/Kconfig b/drivers/video/console/Kconfig
+index 38da6e2..fe58152 100644
+--- a/drivers/video/console/Kconfig
++++ b/drivers/video/console/Kconfig
+@@ -130,6 +130,19 @@ config FRAMEBUFFER_CONSOLE_ROTATION
+ such that other users of the framebuffer will remain normally
+ oriented.
+
++config FB_CON_DECOR
++ bool "Support for the Framebuffer Console Decorations"
++ depends on FRAMEBUFFER_CONSOLE=y && !FB_TILEBLITTING
++ default n
++ ---help---
++ This option enables support for framebuffer console decorations which
++ makes it possible to display images in the background of the system
++ consoles. Note that userspace utilities are necessary in order to take
++ advantage of these features. Refer to Documentation/fb/fbcondecor.txt
++ for more information.
++
++ If unsure, say N.
++
+ config STI_CONSOLE
+ bool "STI text console"
+ depends on PARISC
+diff --git a/drivers/video/console/Makefile b/drivers/video/console/Makefile
+index 43bfa48..cc104b6 100644
+--- a/drivers/video/console/Makefile
++++ b/drivers/video/console/Makefile
+@@ -16,4 +16,5 @@ obj-$(CONFIG_FRAMEBUFFER_CONSOLE) += fbcon_rotate.o fbcon_cw.o fbcon_ud.o \
+ fbcon_ccw.o
+ endif
+
++obj-$(CONFIG_FB_CON_DECOR) += fbcondecor.o cfbcondecor.o
+ obj-$(CONFIG_FB_STI) += sticore.o
+diff --git a/drivers/video/console/bitblit.c b/drivers/video/console/bitblit.c
+index dbfe4ee..14da307 100644
+--- a/drivers/video/console/bitblit.c
++++ b/drivers/video/console/bitblit.c
+@@ -18,6 +18,7 @@
+ #include <linux/console.h>
+ #include <asm/types.h>
+ #include "fbcon.h"
++#include "fbcondecor.h"
+
+ /*
+ * Accelerated handlers.
+@@ -55,6 +56,13 @@ static void bit_bmove(struct vc_data *vc, struct fb_info *info, int sy,
+ area.height = height * vc->vc_font.height;
+ area.width = width * vc->vc_font.width;
+
++ if (fbcon_decor_active(info, vc)) {
++ area.sx += vc->vc_decor.tx;
++ area.sy += vc->vc_decor.ty;
++ area.dx += vc->vc_decor.tx;
++ area.dy += vc->vc_decor.ty;
++ }
++
+ info->fbops->fb_copyarea(info, &area);
+ }
+
+@@ -379,11 +387,15 @@ static void bit_cursor(struct vc_data *vc, struct fb_info *info, int mode,
+ cursor.image.depth = 1;
+ cursor.rop = ROP_XOR;
+
+- if (info->fbops->fb_cursor)
+- err = info->fbops->fb_cursor(info, &cursor);
++ if (fbcon_decor_active(info, vc)) {
++ fbcon_decor_cursor(info, &cursor);
++ } else {
++ if (info->fbops->fb_cursor)
++ err = info->fbops->fb_cursor(info, &cursor);
+
+- if (err)
+- soft_cursor(info, &cursor);
++ if (err)
++ soft_cursor(info, &cursor);
++ }
+
+ ops->cursor_reset = 0;
+ }
+diff --git a/drivers/video/console/cfbcondecor.c b/drivers/video/console/cfbcondecor.c
+new file mode 100644
+index 0000000..c262540
+--- /dev/null
++++ b/drivers/video/console/cfbcondecor.c
+@@ -0,0 +1,473 @@
++/*
++ * linux/drivers/video/cfbcon_decor.c -- Framebuffer decor render functions
++ *
++ * Copyright (C) 2004 Michal Januszewski <michalj+fbcondecor@gmail.com>
++ *
++ * Code based upon "Bootdecor" (C) 2001-2003
++ * Volker Poplawski <volker@poplawski.de>,
++ * Stefan Reinauer <stepan@suse.de>,
++ * Steffen Winterfeldt <snwint@suse.de>,
++ * Michael Schroeder <mls@suse.de>,
++ * Ken Wimer <wimer@suse.de>.
++ *
++ * This file is subject to the terms and conditions of the GNU General Public
++ * License. See the file COPYING in the main directory of this archive for
++ * more details.
++ */
++#include <linux/module.h>
++#include <linux/types.h>
++#include <linux/fb.h>
++#include <linux/selection.h>
++#include <linux/slab.h>
++#include <linux/vt_kern.h>
++#include <asm/irq.h>
++
++#include "fbcon.h"
++#include "fbcondecor.h"
++
++#define parse_pixel(shift, bpp, type) \
++ do { \
++ if (d & (0x80 >> (shift))) \
++ dd2[(shift)] = fgx; \
++ else \
++ dd2[(shift)] = transparent ? *(type *)decor_src : bgx; \
++ decor_src += (bpp); \
++ } while (0) \
++
++extern int get_color(struct vc_data *vc, struct fb_info *info,
++ u16 c, int is_fg);
++
++void fbcon_decor_fix_pseudo_pal(struct fb_info *info, struct vc_data *vc)
++{
++ int i, j, k;
++ int minlen = min(min(info->var.red.length, info->var.green.length),
++ info->var.blue.length);
++ u32 col;
++
++ for (j = i = 0; i < 16; i++) {
++ k = color_table[i];
++
++ col = ((vc->vc_palette[j++] >> (8-minlen))
++ << info->var.red.offset);
++ col |= ((vc->vc_palette[j++] >> (8-minlen))
++ << info->var.green.offset);
++ col |= ((vc->vc_palette[j++] >> (8-minlen))
++ << info->var.blue.offset);
++ ((u32 *)info->pseudo_palette)[k] = col;
++ }
++}
++
++void fbcon_decor_renderc(struct fb_info *info, int ypos, int xpos, int height,
++ int width, u8 *src, u32 fgx, u32 bgx, u8 transparent)
++{
++ unsigned int x, y;
++ u32 dd;
++ int bytespp = ((info->var.bits_per_pixel + 7) >> 3);
++ unsigned int d = ypos * info->fix.line_length + xpos * bytespp;
++ unsigned int ds = (ypos * info->var.xres + xpos) * bytespp;
++ u16 dd2[4];
++
++ u8 *decor_src = (u8 *)(info->bgdecor.data + ds);
++ u8 *dst = (u8 *)(info->screen_base + d);
++
++ if ((ypos + height) > info->var.yres || (xpos + width) > info->var.xres)
++ return;
++
++ for (y = 0; y < height; y++) {
++ switch (info->var.bits_per_pixel) {
++
++ case 32:
++ for (x = 0; x < width; x++) {
++
++ if ((x & 7) == 0)
++ d = *src++;
++ if (d & 0x80)
++ dd = fgx;
++ else
++ dd = transparent ?
++ *(u32 *)decor_src : bgx;
++
++ d <<= 1;
++ decor_src += 4;
++ fb_writel(dd, dst);
++ dst += 4;
++ }
++ break;
++ case 24:
++ for (x = 0; x < width; x++) {
++
++ if ((x & 7) == 0)
++ d = *src++;
++ if (d & 0x80)
++ dd = fgx;
++ else
++ dd = transparent ?
++ (*(u32 *)decor_src & 0xffffff) : bgx;
++
++ d <<= 1;
++ decor_src += 3;
++#ifdef __LITTLE_ENDIAN
++ fb_writew(dd & 0xffff, dst);
++ dst += 2;
++ fb_writeb((dd >> 16), dst);
++#else
++ fb_writew(dd >> 8, dst);
++ dst += 2;
++ fb_writeb(dd & 0xff, dst);
++#endif
++ dst++;
++ }
++ break;
++ case 16:
++ for (x = 0; x < width; x += 2) {
++ if ((x & 7) == 0)
++ d = *src++;
++
++ parse_pixel(0, 2, u16);
++ parse_pixel(1, 2, u16);
++#ifdef __LITTLE_ENDIAN
++ dd = dd2[0] | (dd2[1] << 16);
++#else
++ dd = dd2[1] | (dd2[0] << 16);
++#endif
++ d <<= 2;
++ fb_writel(dd, dst);
++ dst += 4;
++ }
++ break;
++
++ case 8:
++ for (x = 0; x < width; x += 4) {
++ if ((x & 7) == 0)
++ d = *src++;
++
++ parse_pixel(0, 1, u8);
++ parse_pixel(1, 1, u8);
++ parse_pixel(2, 1, u8);
++ parse_pixel(3, 1, u8);
++
++#ifdef __LITTLE_ENDIAN
++ dd = dd2[0] | (dd2[1] << 8) | (dd2[2] << 16) | (dd2[3] << 24);
++#else
++ dd = dd2[3] | (dd2[2] << 8) | (dd2[1] << 16) | (dd2[0] << 24);
++#endif
++ d <<= 4;
++ fb_writel(dd, dst);
++ dst += 4;
++ }
++ }
++
++ dst += info->fix.line_length - width * bytespp;
++ decor_src += (info->var.xres - width) * bytespp;
++ }
++}
++
++#define cc2cx(a) \
++ ((info->fix.visual == FB_VISUAL_TRUECOLOR || \
++ info->fix.visual == FB_VISUAL_DIRECTCOLOR) ? \
++ ((u32 *)info->pseudo_palette)[a] : a)
++
++void fbcon_decor_putcs(struct vc_data *vc, struct fb_info *info,
++ const unsigned short *s, int count, int yy, int xx)
++{
++ unsigned short charmask = vc->vc_hi_font_mask ? 0x1ff : 0xff;
++ struct fbcon_ops *ops = info->fbcon_par;
++ int fg_color, bg_color, transparent;
++ u8 *src;
++ u32 bgx, fgx;
++ u16 c = scr_readw(s);
++
++ fg_color = get_color(vc, info, c, 1);
++ bg_color = get_color(vc, info, c, 0);
++
++ /* Don't paint the background image if console is blanked */
++ transparent = ops->blank_state ? 0 :
++ (vc->vc_decor.bg_color == bg_color);
++
++ xx = xx * vc->vc_font.width + vc->vc_decor.tx;
++ yy = yy * vc->vc_font.height + vc->vc_decor.ty;
++
++ fgx = cc2cx(fg_color);
++ bgx = cc2cx(bg_color);
++
++ while (count--) {
++ c = scr_readw(s++);
++ src = vc->vc_font.data + (c & charmask) * vc->vc_font.height *
++ ((vc->vc_font.width + 7) >> 3);
++
++ fbcon_decor_renderc(info, yy, xx, vc->vc_font.height,
++ vc->vc_font.width, src, fgx, bgx, transparent);
++ xx += vc->vc_font.width;
++ }
++}
++
++void fbcon_decor_cursor(struct fb_info *info, struct fb_cursor *cursor)
++{
++ int i;
++ unsigned int dsize, s_pitch;
++ struct fbcon_ops *ops = info->fbcon_par;
++ struct vc_data *vc;
++ u8 *src;
++
++ /* we really don't need any cursors while the console is blanked */
++ if (info->state != FBINFO_STATE_RUNNING || ops->blank_state)
++ return;
++
++ vc = vc_cons[ops->currcon].d;
++
++ src = kmalloc(64 + sizeof(struct fb_image), GFP_ATOMIC);
++ if (!src)
++ return;
++
++ s_pitch = (cursor->image.width + 7) >> 3;
++ dsize = s_pitch * cursor->image.height;
++ if (cursor->enable) {
++ switch (cursor->rop) {
++ case ROP_XOR:
++ for (i = 0; i < dsize; i++)
++ src[i] = cursor->image.data[i] ^ cursor->mask[i];
++ break;
++ case ROP_COPY:
++ default:
++ for (i = 0; i < dsize; i++)
++ src[i] = cursor->image.data[i] & cursor->mask[i];
++ break;
++ }
++ } else
++ memcpy(src, cursor->image.data, dsize);
++
++ fbcon_decor_renderc(info,
++ cursor->image.dy + vc->vc_decor.ty,
++ cursor->image.dx + vc->vc_decor.tx,
++ cursor->image.height,
++ cursor->image.width,
++ (u8 *)src,
++ cc2cx(cursor->image.fg_color),
++ cc2cx(cursor->image.bg_color),
++ cursor->image.bg_color == vc->vc_decor.bg_color);
++
++ kfree(src);
++}
++
++static void decorset(u8 *dst, int height, int width, int dstbytes,
++ u32 bgx, int bpp)
++{
++ int i;
++
++ if (bpp == 8)
++ bgx |= bgx << 8;
++ if (bpp == 16 || bpp == 8)
++ bgx |= bgx << 16;
++
++ while (height-- > 0) {
++ u8 *p = dst;
++
++ switch (bpp) {
++
++ case 32:
++ for (i = 0; i < width; i++) {
++ fb_writel(bgx, p); p += 4;
++ }
++ break;
++ case 24:
++ for (i = 0; i < width; i++) {
++#ifdef __LITTLE_ENDIAN
++ fb_writew((bgx & 0xffff), (u16 *)p); p += 2;
++ fb_writeb((bgx >> 16), p++);
++#else
++ fb_writew((bgx >> 8), (u16 *)p); p += 2;
++ fb_writeb((bgx & 0xff), p++);
++#endif
++ }
++ break;
++ case 16:
++ for (i = 0; i < width/4; i++) {
++ fb_writel(bgx, p); p += 4;
++ fb_writel(bgx, p); p += 4;
++ }
++ if (width & 2) {
++ fb_writel(bgx, p); p += 4;
++ }
++ if (width & 1)
++ fb_writew(bgx, (u16 *)p);
++ break;
++ case 8:
++ for (i = 0; i < width/4; i++) {
++ fb_writel(bgx, p); p += 4;
++ }
++
++ if (width & 2) {
++ fb_writew(bgx, p); p += 2;
++ }
++ if (width & 1)
++ fb_writeb(bgx, (u8 *)p);
++ break;
++
++ }
++ dst += dstbytes;
++ }
++}
++
++void fbcon_decor_copy(u8 *dst, u8 *src, int height, int width, int linebytes,
++ int srclinebytes, int bpp)
++{
++ int i;
++
++ while (height-- > 0) {
++ u32 *p = (u32 *)dst;
++ u32 *q = (u32 *)src;
++
++ switch (bpp) {
++
++ case 32:
++ for (i = 0; i < width; i++)
++ fb_writel(*q++, p++);
++ break;
++ case 24:
++ for (i = 0; i < (width * 3 / 4); i++)
++ fb_writel(*q++, p++);
++ if ((width * 3) % 4) {
++ if (width & 2) {
++ fb_writeb(*(u8 *)q, (u8 *)p);
++ } else if (width & 1) {
++ fb_writew(*(u16 *)q, (u16 *)p);
++ fb_writeb(*(u8 *)((u16 *)q + 1),
++ (u8 *)((u16 *)p + 2));
++ }
++ }
++ break;
++ case 16:
++ for (i = 0; i < width/4; i++) {
++ fb_writel(*q++, p++);
++ fb_writel(*q++, p++);
++ }
++ if (width & 2)
++ fb_writel(*q++, p++);
++ if (width & 1)
++ fb_writew(*(u16 *)q, (u16 *)p);
++ break;
++ case 8:
++ for (i = 0; i < width/4; i++)
++ fb_writel(*q++, p++);
++
++ if (width & 2) {
++ fb_writew(*(u16 *)q, (u16 *)p);
++ q = (u32 *) ((u16 *)q + 1);
++ p = (u32 *) ((u16 *)p + 1);
++ }
++ if (width & 1)
++ fb_writeb(*(u8 *)q, (u8 *)p);
++ break;
++ }
++
++ dst += linebytes;
++ src += srclinebytes;
++ }
++}
++
++static void decorfill(struct fb_info *info, int sy, int sx, int height,
++ int width)
++{
++ int bytespp = ((info->var.bits_per_pixel + 7) >> 3);
++ int d = sy * info->fix.line_length + sx * bytespp;
++ int ds = (sy * info->var.xres + sx) * bytespp;
++
++ fbcon_decor_copy((u8 *)(info->screen_base + d), (u8 *)(info->bgdecor.data + ds),
++ height, width, info->fix.line_length, info->var.xres * bytespp,
++ info->var.bits_per_pixel);
++}
++
++void fbcon_decor_clear(struct vc_data *vc, struct fb_info *info, int sy, int sx,
++ int height, int width)
++{
++ int bgshift = (vc->vc_hi_font_mask) ? 13 : 12;
++ struct fbcon_ops *ops = info->fbcon_par;
++ u8 *dst;
++ int transparent, bg_color = attr_bgcol_ec(bgshift, vc, info);
++
++ transparent = (vc->vc_decor.bg_color == bg_color);
++ sy = sy * vc->vc_font.height + vc->vc_decor.ty;
++ sx = sx * vc->vc_font.width + vc->vc_decor.tx;
++ height *= vc->vc_font.height;
++ width *= vc->vc_font.width;
++
++ /* Don't paint the background image if console is blanked */
++ if (transparent && !ops->blank_state) {
++ decorfill(info, sy, sx, height, width);
++ } else {
++ dst = (u8 *)(info->screen_base + sy * info->fix.line_length +
++ sx * ((info->var.bits_per_pixel + 7) >> 3));
++ decorset(dst, height, width, info->fix.line_length, cc2cx(bg_color),
++ info->var.bits_per_pixel);
++ }
++}
++
++void fbcon_decor_clear_margins(struct vc_data *vc, struct fb_info *info,
++ int bottom_only)
++{
++ unsigned int tw = vc->vc_cols*vc->vc_font.width;
++ unsigned int th = vc->vc_rows*vc->vc_font.height;
++
++ if (!bottom_only) {
++ /* top margin */
++ decorfill(info, 0, 0, vc->vc_decor.ty, info->var.xres);
++ /* left margin */
++ decorfill(info, vc->vc_decor.ty, 0, th, vc->vc_decor.tx);
++ /* right margin */
++ decorfill(info, vc->vc_decor.ty, vc->vc_decor.tx + tw, th,
++ info->var.xres - vc->vc_decor.tx - tw);
++ }
++ decorfill(info, vc->vc_decor.ty + th, 0,
++ info->var.yres - vc->vc_decor.ty - th, info->var.xres);
++}
++
++void fbcon_decor_bmove_redraw(struct vc_data *vc, struct fb_info *info, int y,
++ int sx, int dx, int width)
++{
++ u16 *d = (u16 *) (vc->vc_origin + vc->vc_size_row * y + dx * 2);
++ u16 *s = d + (dx - sx);
++ u16 *start = d;
++ u16 *ls = d;
++ u16 *le = d + width;
++ u16 c;
++ int x = dx;
++ u16 attr = 1;
++
++ do {
++ c = scr_readw(d);
++ if (attr != (c & 0xff00)) {
++ attr = c & 0xff00;
++ if (d > start) {
++ fbcon_decor_putcs(vc, info, start, d - start, y, x);
++ x += d - start;
++ start = d;
++ }
++ }
++ if (s >= ls && s < le && c == scr_readw(s)) {
++ if (d > start) {
++ fbcon_decor_putcs(vc, info, start, d - start, y, x);
++ x += d - start + 1;
++ start = d + 1;
++ } else {
++ x++;
++ start++;
++ }
++ }
++ s++;
++ d++;
++ } while (d < le);
++ if (d > start)
++ fbcon_decor_putcs(vc, info, start, d - start, y, x);
++}
++
++void fbcon_decor_blank(struct vc_data *vc, struct fb_info *info, int blank)
++{
++ if (blank) {
++ decorset((u8 *)info->screen_base, info->var.yres, info->var.xres,
++ info->fix.line_length, 0, info->var.bits_per_pixel);
++ } else {
++ update_screen(vc);
++ fbcon_decor_clear_margins(vc, info, 0);
++ }
++}
++
+diff --git a/drivers/video/console/fbcon.c b/drivers/video/console/fbcon.c
+index b87f5cf..ce44538 100644
+--- a/drivers/video/console/fbcon.c
++++ b/drivers/video/console/fbcon.c
+@@ -79,6 +79,7 @@
+ #include <asm/irq.h>
+
+ #include "fbcon.h"
++#include "../console/fbcondecor.h"
+
+ #ifdef FBCONDEBUG
+ # define DPRINTK(fmt, args...) printk(KERN_DEBUG "%s: " fmt, __func__ , ## args)
+@@ -94,7 +95,7 @@ enum {
+
+ static struct display fb_display[MAX_NR_CONSOLES];
+
+-static signed char con2fb_map[MAX_NR_CONSOLES];
++signed char con2fb_map[MAX_NR_CONSOLES];
+ static signed char con2fb_map_boot[MAX_NR_CONSOLES];
+
+ static int logo_lines;
+@@ -282,7 +283,7 @@ static inline int fbcon_is_inactive(struct vc_data *vc, struct fb_info *info)
+ !vt_force_oops_output(vc);
+ }
+
+-static int get_color(struct vc_data *vc, struct fb_info *info,
++int get_color(struct vc_data *vc, struct fb_info *info,
+ u16 c, int is_fg)
+ {
+ int depth = fb_get_color_depth(&info->var, &info->fix);
+@@ -546,6 +547,9 @@ static int do_fbcon_takeover(int show_logo)
+ info_idx = -1;
+ } else {
+ fbcon_has_console_bind = 1;
++#ifdef CONFIG_FB_CON_DECOR
++ fbcon_decor_init();
++#endif
+ }
+
+ return err;
+@@ -1005,6 +1009,12 @@ static const char *fbcon_startup(void)
+ rows = FBCON_SWAP(ops->rotate, info->var.yres, info->var.xres);
+ cols /= vc->vc_font.width;
+ rows /= vc->vc_font.height;
++
++ if (fbcon_decor_active(info, vc)) {
++ cols = vc->vc_decor.twidth / vc->vc_font.width;
++ rows = vc->vc_decor.theight / vc->vc_font.height;
++ }
++
+ vc_resize(vc, cols, rows);
+
+ DPRINTK("mode: %s\n", info->fix.id);
+@@ -1034,7 +1044,7 @@ static void fbcon_init(struct vc_data *vc, int init)
+ cap = info->flags;
+
+ if (vc != svc || logo_shown == FBCON_LOGO_DONTSHOW ||
+- (info->fix.type == FB_TYPE_TEXT))
++ (info->fix.type == FB_TYPE_TEXT) || fbcon_decor_active(info, vc))
+ logo = 0;
+
+ if (var_to_display(p, &info->var, info))
+@@ -1259,6 +1269,11 @@ static void fbcon_clear(struct vc_data *vc, int sy, int sx, int height,
+ fbcon_clear_margins(vc, 0);
+ }
+
++ if (fbcon_decor_active(info, vc)) {
++ fbcon_decor_clear(vc, info, sy, sx, height, width);
++ return;
++ }
++
+ /* Split blits that cross physical y_wrap boundary */
+
+ y_break = p->vrows - p->yscroll;
+@@ -1278,10 +1293,15 @@ static void fbcon_putcs(struct vc_data *vc, const unsigned short *s,
+ struct display *p = &fb_display[vc->vc_num];
+ struct fbcon_ops *ops = info->fbcon_par;
+
+- if (!fbcon_is_inactive(vc, info))
+- ops->putcs(vc, info, s, count, real_y(p, ypos), xpos,
+- get_color(vc, info, scr_readw(s), 1),
+- get_color(vc, info, scr_readw(s), 0));
++ if (!fbcon_is_inactive(vc, info)) {
++
++ if (fbcon_decor_active(info, vc))
++ fbcon_decor_putcs(vc, info, s, count, ypos, xpos);
++ else
++ ops->putcs(vc, info, s, count, real_y(p, ypos), xpos,
++ get_color(vc, info, scr_readw(s), 1),
++ get_color(vc, info, scr_readw(s), 0));
++ }
+ }
+
+ static void fbcon_putc(struct vc_data *vc, int c, int ypos, int xpos)
+@@ -1297,8 +1317,12 @@ static void fbcon_clear_margins(struct vc_data *vc, int bottom_only)
+ struct fb_info *info = registered_fb[con2fb_map[vc->vc_num]];
+ struct fbcon_ops *ops = info->fbcon_par;
+
+- if (!fbcon_is_inactive(vc, info))
+- ops->clear_margins(vc, info, bottom_only);
++ if (!fbcon_is_inactive(vc, info)) {
++ if (fbcon_decor_active(info, vc))
++ fbcon_decor_clear_margins(vc, info, bottom_only);
++ else
++ ops->clear_margins(vc, info, bottom_only);
++ }
+ }
+
+ static void fbcon_cursor(struct vc_data *vc, int mode)
+@@ -1819,7 +1843,7 @@ static int fbcon_scroll(struct vc_data *vc, int t, int b, int dir,
+ count = vc->vc_rows;
+ if (softback_top)
+ fbcon_softback_note(vc, t, count);
+- if (logo_shown >= 0)
++ if (logo_shown >= 0 || fbcon_decor_active(info, vc))
+ goto redraw_up;
+ switch (p->scrollmode) {
+ case SCROLL_MOVE:
+@@ -1912,6 +1936,8 @@ static int fbcon_scroll(struct vc_data *vc, int t, int b, int dir,
+ count = vc->vc_rows;
+ if (logo_shown >= 0)
+ goto redraw_down;
++ if (fbcon_decor_active(info, vc))
++ goto redraw_down;
+ switch (p->scrollmode) {
+ case SCROLL_MOVE:
+ fbcon_redraw_blit(vc, info, p, b - 1, b - t - count,
+@@ -2060,6 +2086,13 @@ static void fbcon_bmove_rec(struct vc_data *vc, struct display *p, int sy, int s
+ }
+ return;
+ }
++
++ if (fbcon_decor_active(info, vc) && sy == dy && height == 1) {
++ /* must use slower redraw bmove to keep background pic intact */
++ fbcon_decor_bmove_redraw(vc, info, sy, sx, dx, width);
++ return;
++ }
++
+ ops->bmove(vc, info, real_y(p, sy), sx, real_y(p, dy), dx,
+ height, width);
+ }
+@@ -2130,8 +2163,8 @@ static int fbcon_resize(struct vc_data *vc, unsigned int width,
+ var.yres = virt_h * virt_fh;
+ x_diff = info->var.xres - var.xres;
+ y_diff = info->var.yres - var.yres;
+- if (x_diff < 0 || x_diff > virt_fw ||
+- y_diff < 0 || y_diff > virt_fh) {
++ if ((x_diff < 0 || x_diff > virt_fw ||
++ y_diff < 0 || y_diff > virt_fh) && !vc->vc_decor.state) {
+ const struct fb_videomode *mode;
+
+ DPRINTK("attempting resize %ix%i\n", var.xres, var.yres);
+@@ -2167,6 +2200,22 @@ static int fbcon_switch(struct vc_data *vc)
+
+ info = registered_fb[con2fb_map[vc->vc_num]];
+ ops = info->fbcon_par;
++ prev_console = ops->currcon;
++ if (prev_console != -1)
++ old_info = registered_fb[con2fb_map[prev_console]];
++
++#ifdef CONFIG_FB_CON_DECOR
++ if (!fbcon_decor_active_vc(vc) && info->fix.visual == FB_VISUAL_DIRECTCOLOR) {
++ struct vc_data *vc_curr = vc_cons[prev_console].d;
++
++ if (vc_curr && fbcon_decor_active_vc(vc_curr)) {
++ // Clear the screen to avoid displaying funky colors
++ // during palette updates.
++ memset((u8 *)info->screen_base + info->fix.line_length * info->var.yoffset,
++ 0, info->var.yres * info->fix.line_length);
++ }
++ }
++#endif
+
+ if (softback_top) {
+ if (softback_lines)
+@@ -2185,9 +2234,6 @@ static int fbcon_switch(struct vc_data *vc)
+ logo_shown = FBCON_LOGO_CANSHOW;
+ }
+
+- prev_console = ops->currcon;
+- if (prev_console != -1)
+- old_info = registered_fb[con2fb_map[prev_console]];
+ /*
+ * FIXME: If we have multiple fbdev's loaded, we need to
+ * update all info->currcon. Perhaps, we can place this
+@@ -2231,6 +2277,18 @@ static int fbcon_switch(struct vc_data *vc)
+ fbcon_del_cursor_timer(old_info);
+ }
+
++ if (fbcon_decor_active_vc(vc)) {
++ struct vc_data *vc_curr = vc_cons[prev_console].d;
++
++ if (!vc_curr->vc_decor.theme ||
++ strcmp(vc->vc_decor.theme, vc_curr->vc_decor.theme) ||
++ (fbcon_decor_active_nores(info, vc_curr) &&
++ !fbcon_decor_active(info, vc_curr))) {
++ fbcon_decor_disable(vc, 0);
++ fbcon_decor_call_helper("modechange", vc->vc_num);
++ }
++ }
++
+ if (fbcon_is_inactive(vc, info) ||
+ ops->blank_state != FB_BLANK_UNBLANK)
+ fbcon_del_cursor_timer(info);
+@@ -2339,15 +2397,20 @@ static int fbcon_blank(struct vc_data *vc, int blank, int mode_switch)
+ }
+ }
+
+- if (!fbcon_is_inactive(vc, info)) {
++ if (!fbcon_is_inactive(vc, info)) {
+ if (ops->blank_state != blank) {
+ ops->blank_state = blank;
+ fbcon_cursor(vc, blank ? CM_ERASE : CM_DRAW);
+ ops->cursor_flash = (!blank);
+
+- if (!(info->flags & FBINFO_MISC_USEREVENT))
+- if (fb_blank(info, blank))
+- fbcon_generic_blank(vc, info, blank);
++ if (!(info->flags & FBINFO_MISC_USEREVENT)) {
++ if (fb_blank(info, blank)) {
++ if (fbcon_decor_active(info, vc))
++ fbcon_decor_blank(vc, info, blank);
++ else
++ fbcon_generic_blank(vc, info, blank);
++ }
++ }
+ }
+
+ if (!blank)
+@@ -2522,13 +2585,22 @@ static int fbcon_do_set_font(struct vc_data *vc, int w, int h,
+ }
+
+ if (resize) {
++ /* reset wrap/pan */
+ int cols, rows;
+
+ cols = FBCON_SWAP(ops->rotate, info->var.xres, info->var.yres);
+ rows = FBCON_SWAP(ops->rotate, info->var.yres, info->var.xres);
++
++ if (fbcon_decor_active(info, vc)) {
++ info->var.xoffset = info->var.yoffset = p->yscroll = 0;
++ cols = vc->vc_decor.twidth;
++ rows = vc->vc_decor.theight;
++ }
+ cols /= w;
+ rows /= h;
++
+ vc_resize(vc, cols, rows);
++
+ if (con_is_visible(vc) && softback_buf)
+ fbcon_update_softback(vc);
+ } else if (con_is_visible(vc)
+@@ -2657,7 +2729,11 @@ static void fbcon_set_palette(struct vc_data *vc, const unsigned char *table)
+ int i, j, k, depth;
+ u8 val;
+
+- if (fbcon_is_inactive(vc, info))
++ if (fbcon_is_inactive(vc, info)
++#ifdef CONFIG_FB_CON_DECOR
++ || vc->vc_num != fg_console
++#endif
++ )
+ return;
+
+ if (!con_is_visible(vc))
+@@ -2683,7 +2759,47 @@ static void fbcon_set_palette(struct vc_data *vc, const unsigned char *table)
+ } else
+ fb_copy_cmap(fb_default_cmap(1 << depth), &palette_cmap);
+
+- fb_set_cmap(&palette_cmap, info);
++ if (fbcon_decor_active(info, vc_cons[fg_console].d) &&
++ info->fix.visual == FB_VISUAL_DIRECTCOLOR) {
++
++ u16 *red, *green, *blue;
++ int minlen = min(min(info->var.red.length, info->var.green.length),
++ info->var.blue.length);
++
++ struct fb_cmap cmap = {
++ .start = 0,
++ .len = (1 << minlen),
++ .red = NULL,
++ .green = NULL,
++ .blue = NULL,
++ .transp = NULL
++ };
++
++ red = kmalloc(256 * sizeof(u16) * 3, GFP_KERNEL);
++
++ if (!red)
++ goto out;
++
++ green = red + 256;
++ blue = green + 256;
++ cmap.red = red;
++ cmap.green = green;
++ cmap.blue = blue;
++
++ for (i = 0; i < cmap.len; i++)
++ red[i] = green[i] = blue[i] = (0xffff * i)/(cmap.len-1);
++
++ fb_set_cmap(&cmap, info);
++ fbcon_decor_fix_pseudo_pal(info, vc_cons[fg_console].d);
++ kfree(red);
++
++ return;
++
++ } else if (fbcon_decor_active(info, vc_cons[fg_console].d) &&
++ info->var.bits_per_pixel == 8 && info->bgdecor.cmap.red != NULL)
++ fb_set_cmap(&info->bgdecor.cmap, info);
++
++out: fb_set_cmap(&palette_cmap, info);
+ }
+
+ static u16 *fbcon_screen_pos(struct vc_data *vc, int offset)
+@@ -2908,7 +3024,14 @@ static void fbcon_modechanged(struct fb_info *info)
+ rows = FBCON_SWAP(ops->rotate, info->var.yres, info->var.xres);
+ cols /= vc->vc_font.width;
+ rows /= vc->vc_font.height;
+- vc_resize(vc, cols, rows);
++
++ if (!fbcon_decor_active_nores(info, vc)) {
++ vc_resize(vc, cols, rows);
++ } else {
++ fbcon_decor_disable(vc, 0);
++ fbcon_decor_call_helper("modechange", vc->vc_num);
++ }
++
+ updatescrollmode(p, info, vc);
+ scrollback_max = 0;
+ scrollback_current = 0;
+@@ -2953,7 +3076,8 @@ static void fbcon_set_all_vcs(struct fb_info *info)
+ rows = FBCON_SWAP(ops->rotate, info->var.yres, info->var.xres);
+ cols /= vc->vc_font.width;
+ rows /= vc->vc_font.height;
+- vc_resize(vc, cols, rows);
++ if (!fbcon_decor_active_nores(info, vc))
++ vc_resize(vc, cols, rows);
+ }
+
+ if (fg != -1)
+@@ -3594,6 +3718,7 @@ static void fbcon_exit(void)
+ }
+ }
+
++ fbcon_decor_exit();
+ fbcon_has_exited = 1;
+ }
+
+diff --git a/drivers/video/console/fbcondecor.c b/drivers/video/console/fbcondecor.c
+new file mode 100644
+index 0000000..65cc0d3
+--- /dev/null
++++ b/drivers/video/console/fbcondecor.c
+@@ -0,0 +1,549 @@
++/*
++ * linux/drivers/video/console/fbcondecor.c -- Framebuffer console decorations
++ *
++ * Copyright (C) 2004-2009 Michal Januszewski <michalj+fbcondecor@gmail.com>
++ *
++ * Code based upon "Bootsplash" (C) 2001-2003
++ * Volker Poplawski <volker@poplawski.de>,
++ * Stefan Reinauer <stepan@suse.de>,
++ * Steffen Winterfeldt <snwint@suse.de>,
++ * Michael Schroeder <mls@suse.de>,
++ * Ken Wimer <wimer@suse.de>.
++ *
++ * Compat ioctl support by Thorsten Klein <TK@Thorsten-Klein.de>.
++ *
++ * This file is subject to the terms and conditions of the GNU General Public
++ * License. See the file COPYING in the main directory of this archive for
++ * more details.
++ *
++ */
++#include <linux/module.h>
++#include <linux/kernel.h>
++#include <linux/string.h>
++#include <linux/types.h>
++#include <linux/fb.h>
++#include <linux/vt_kern.h>
++#include <linux/vmalloc.h>
++#include <linux/unistd.h>
++#include <linux/syscalls.h>
++#include <linux/init.h>
++#include <linux/proc_fs.h>
++#include <linux/workqueue.h>
++#include <linux/kmod.h>
++#include <linux/miscdevice.h>
++#include <linux/device.h>
++#include <linux/fs.h>
++#include <linux/compat.h>
++#include <linux/console.h>
++
++#include <linux/uaccess.h>
++#include <asm/irq.h>
++
++#include "fbcon.h"
++#include "fbcondecor.h"
++
++extern signed char con2fb_map[];
++static int fbcon_decor_enable(struct vc_data *vc);
++
++static int initialized;
++
++char fbcon_decor_path[KMOD_PATH_LEN] = "/sbin/fbcondecor_helper";
++EXPORT_SYMBOL(fbcon_decor_path);
++
++int fbcon_decor_call_helper(char *cmd, unsigned short vc)
++{
++ char *envp[] = {
++ "HOME=/",
++ "PATH=/sbin:/bin",
++ NULL
++ };
++
++ char tfb[5];
++ char tcons[5];
++ unsigned char fb = (int) con2fb_map[vc];
++
++ char *argv[] = {
++ fbcon_decor_path,
++ "2",
++ cmd,
++ tcons,
++ tfb,
++ vc_cons[vc].d->vc_decor.theme,
++ NULL
++ };
++
++ snprintf(tfb, 5, "%d", fb);
++ snprintf(tcons, 5, "%d", vc);
++
++ return call_usermodehelper(fbcon_decor_path, argv, envp, UMH_WAIT_EXEC);
++}
++
++/* Disables fbcondecor on a virtual console; called with console sem held. */
++int fbcon_decor_disable(struct vc_data *vc, unsigned char redraw)
++{
++ struct fb_info *info;
++
++ if (!vc->vc_decor.state)
++ return -EINVAL;
++
++ info = registered_fb[(int) con2fb_map[vc->vc_num]];
++
++ if (info == NULL)
++ return -EINVAL;
++
++ vc->vc_decor.state = 0;
++ vc_resize(vc, info->var.xres / vc->vc_font.width,
++ info->var.yres / vc->vc_font.height);
++
++ if (fg_console == vc->vc_num && redraw) {
++ redraw_screen(vc, 0);
++ update_region(vc, vc->vc_origin +
++ vc->vc_size_row * vc->vc_top,
++ vc->vc_size_row * (vc->vc_bottom - vc->vc_top) / 2);
++ }
++
++ printk(KERN_INFO "fbcondecor: switched decor state to 'off' on console %d\n",
++ vc->vc_num);
++
++ return 0;
++}
++
++/* Enables fbcondecor on a virtual console; called with console sem held. */
++static int fbcon_decor_enable(struct vc_data *vc)
++{
++ struct fb_info *info;
++
++ info = registered_fb[(int) con2fb_map[vc->vc_num]];
++
++ if (vc->vc_decor.twidth == 0 || vc->vc_decor.theight == 0 ||
++ info == NULL || vc->vc_decor.state || (!info->bgdecor.data &&
++ vc->vc_num == fg_console))
++ return -EINVAL;
++
++ vc->vc_decor.state = 1;
++ vc_resize(vc, vc->vc_decor.twidth / vc->vc_font.width,
++ vc->vc_decor.theight / vc->vc_font.height);
++
++ if (fg_console == vc->vc_num) {
++ redraw_screen(vc, 0);
++ update_region(vc, vc->vc_origin +
++ vc->vc_size_row * vc->vc_top,
++ vc->vc_size_row * (vc->vc_bottom - vc->vc_top) / 2);
++ fbcon_decor_clear_margins(vc, info, 0);
++ }
++
++ printk(KERN_INFO "fbcondecor: switched decor state to 'on' on console %d\n",
++ vc->vc_num);
++
++ return 0;
++}
++
++static inline int fbcon_decor_ioctl_dosetstate(struct vc_data *vc, unsigned int state, unsigned char origin)
++{
++ int ret;
++
++ console_lock();
++ if (!state)
++ ret = fbcon_decor_disable(vc, 1);
++ else
++ ret = fbcon_decor_enable(vc);
++ console_unlock();
++
++ return ret;
++}
++
++static inline void fbcon_decor_ioctl_dogetstate(struct vc_data *vc, unsigned int *state)
++{
++ *state = vc->vc_decor.state;
++}
++
++static int fbcon_decor_ioctl_dosetcfg(struct vc_data *vc, struct vc_decor *cfg, unsigned char origin)
++{
++ struct fb_info *info;
++ int len;
++ char *tmp;
++
++ info = registered_fb[(int) con2fb_map[vc->vc_num]];
++
++ if (info == NULL || !cfg->twidth || !cfg->theight ||
++ cfg->tx + cfg->twidth > info->var.xres ||
++ cfg->ty + cfg->theight > info->var.yres)
++ return -EINVAL;
++
++ len = strlen_user(cfg->theme);
++ if (!len || len > FBCON_DECOR_THEME_LEN)
++ return -EINVAL;
++ tmp = kmalloc(len, GFP_KERNEL);
++ if (!tmp)
++ return -ENOMEM;
++ if (copy_from_user(tmp, (void __user *)cfg->theme, len))
++ return -EFAULT;
++ cfg->theme = tmp;
++ cfg->state = 0;
++
++ console_lock();
++ if (vc->vc_decor.state)
++ fbcon_decor_disable(vc, 1);
++ kfree(vc->vc_decor.theme);
++ vc->vc_decor = *cfg;
++ console_unlock();
++
++ printk(KERN_INFO "fbcondecor: console %d using theme '%s'\n",
++ vc->vc_num, vc->vc_decor.theme);
++ return 0;
++}
++
++static int fbcon_decor_ioctl_dogetcfg(struct vc_data *vc,
++ struct vc_decor *decor)
++{
++ char __user *tmp;
++
++ tmp = decor->theme;
++ *decor = vc->vc_decor;
++ decor->theme = tmp;
++
++ if (vc->vc_decor.theme) {
++ if (copy_to_user(tmp, vc->vc_decor.theme,
++ strlen(vc->vc_decor.theme) + 1))
++ return -EFAULT;
++ } else
++ if (put_user(0, tmp))
++ return -EFAULT;
++
++ return 0;
++}
++
++static int fbcon_decor_ioctl_dosetpic(struct vc_data *vc, struct fb_image *img,
++ unsigned char origin)
++{
++ struct fb_info *info;
++ int len;
++ u8 *tmp;
++
++ if (vc->vc_num != fg_console)
++ return -EINVAL;
++
++ info = registered_fb[(int) con2fb_map[vc->vc_num]];
++
++ if (info == NULL)
++ return -EINVAL;
++
++ if (img->width != info->var.xres || img->height != info->var.yres) {
++ printk(KERN_ERR "fbcondecor: picture dimensions mismatch\n");
++ printk(KERN_ERR "%dx%d vs %dx%d\n", img->width, img->height,
++ info->var.xres, info->var.yres);
++ return -EINVAL;
++ }
++
++ if (img->depth != info->var.bits_per_pixel) {
++ printk(KERN_ERR "fbcondecor: picture depth mismatch\n");
++ return -EINVAL;
++ }
++
++ if (img->depth == 8) {
++ if (!img->cmap.len || !img->cmap.red || !img->cmap.green ||
++ !img->cmap.blue)
++ return -EINVAL;
++
++ tmp = vmalloc(img->cmap.len * 3 * 2);
++ if (!tmp)
++ return -ENOMEM;
++
++ if (copy_from_user(tmp,
++ (void __user *)img->cmap.red,
++ (img->cmap.len << 1)) ||
++ copy_from_user(tmp + (img->cmap.len << 1),
++ (void __user *)img->cmap.green,
++ (img->cmap.len << 1)) ||
++ copy_from_user(tmp + (img->cmap.len << 2),
++ (void __user *)img->cmap.blue,
++ (img->cmap.len << 1))) {
++ vfree(tmp);
++ return -EFAULT;
++ }
++
++ img->cmap.transp = NULL;
++ img->cmap.red = (u16 *)tmp;
++ img->cmap.green = img->cmap.red + img->cmap.len;
++ img->cmap.blue = img->cmap.green + img->cmap.len;
++ } else {
++ img->cmap.red = NULL;
++ }
++
++ len = ((img->depth + 7) >> 3) * img->width * img->height;
++
++ /*
++ * Allocate an additional byte so that we never go outside of the
++ * buffer boundaries in the rendering functions in a 24 bpp mode.
++ */
++ tmp = vmalloc(len + 1);
++
++ if (!tmp)
++ goto out;
++
++ if (copy_from_user(tmp, (void __user *)img->data, len))
++ goto out;
++
++ img->data = tmp;
++
++ console_lock();
++
++ if (info->bgdecor.data)
++ vfree((u8 *)info->bgdecor.data);
++ if (info->bgdecor.cmap.red)
++ vfree(info->bgdecor.cmap.red);
++
++ info->bgdecor = *img;
++
++ if (fbcon_decor_active_vc(vc) && fg_console == vc->vc_num) {
++ redraw_screen(vc, 0);
++ update_region(vc, vc->vc_origin +
++ vc->vc_size_row * vc->vc_top,
++ vc->vc_size_row * (vc->vc_bottom - vc->vc_top) / 2);
++ fbcon_decor_clear_margins(vc, info, 0);
++ }
++
++ console_unlock();
++
++ return 0;
++
++out:
++ if (img->cmap.red)
++ vfree(img->cmap.red);
++
++ if (tmp)
++ vfree(tmp);
++ return -ENOMEM;
++}
++
++static long fbcon_decor_ioctl(struct file *filp, u_int cmd, u_long arg)
++{
++ struct fbcon_decor_iowrapper __user *wrapper = (void __user *) arg;
++ struct vc_data *vc = NULL;
++ unsigned short vc_num = 0;
++ unsigned char origin = 0;
++ void __user *data = NULL;
++
++ if (!access_ok(VERIFY_READ, wrapper,
++ sizeof(struct fbcon_decor_iowrapper)))
++ return -EFAULT;
++
++ __get_user(vc_num, &wrapper->vc);
++ __get_user(origin, &wrapper->origin);
++ __get_user(data, &wrapper->data);
++
++ if (!vc_cons_allocated(vc_num))
++ return -EINVAL;
++
++ vc = vc_cons[vc_num].d;
++
++ switch (cmd) {
++ case FBIOCONDECOR_SETPIC:
++ {
++ struct fb_image img;
++
++ if (copy_from_user(&img, (struct fb_image __user *)data, sizeof(struct fb_image)))
++ return -EFAULT;
++
++ return fbcon_decor_ioctl_dosetpic(vc, &img, origin);
++ }
++ case FBIOCONDECOR_SETCFG:
++ {
++ struct vc_decor cfg;
++
++ if (copy_from_user(&cfg, (struct vc_decor __user *)data, sizeof(struct vc_decor)))
++ return -EFAULT;
++
++ return fbcon_decor_ioctl_dosetcfg(vc, &cfg, origin);
++ }
++ case FBIOCONDECOR_GETCFG:
++ {
++ int rval;
++ struct vc_decor cfg;
++
++ if (copy_from_user(&cfg, (struct vc_decor __user *)data, sizeof(struct vc_decor)))
++ return -EFAULT;
++
++ rval = fbcon_decor_ioctl_dogetcfg(vc, &cfg);
++
++ if (copy_to_user(data, &cfg, sizeof(struct vc_decor)))
++ return -EFAULT;
++ return rval;
++ }
++ case FBIOCONDECOR_SETSTATE:
++ {
++ unsigned int state = 0;
++
++ if (get_user(state, (unsigned int __user *)data))
++ return -EFAULT;
++ return fbcon_decor_ioctl_dosetstate(vc, state, origin);
++ }
++ case FBIOCONDECOR_GETSTATE:
++ {
++ unsigned int state = 0;
++
++ fbcon_decor_ioctl_dogetstate(vc, &state);
++ return put_user(state, (unsigned int __user *)data);
++ }
++
++ default:
++ return -ENOIOCTLCMD;
++ }
++}
++
++#ifdef CONFIG_COMPAT
++
++static long fbcon_decor_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
++{
++ struct fbcon_decor_iowrapper32 __user *wrapper = (void __user *)arg;
++ struct vc_data *vc = NULL;
++ unsigned short vc_num = 0;
++ unsigned char origin = 0;
++ compat_uptr_t data_compat = 0;
++ void __user *data = NULL;
++
++ if (!access_ok(VERIFY_READ, wrapper,
++ sizeof(struct fbcon_decor_iowrapper32)))
++ return -EFAULT;
++
++ __get_user(vc_num, &wrapper->vc);
++ __get_user(origin, &wrapper->origin);
++ __get_user(data_compat, &wrapper->data);
++ data = compat_ptr(data_compat);
++
++ if (!vc_cons_allocated(vc_num))
++ return -EINVAL;
++
++ vc = vc_cons[vc_num].d;
++
++ switch (cmd) {
++ case FBIOCONDECOR_SETPIC32:
++ {
++ struct fb_image32 img_compat;
++ struct fb_image img;
++
++ if (copy_from_user(&img_compat, (struct fb_image32 __user *)data, sizeof(struct fb_image32)))
++ return -EFAULT;
++
++ fb_image_from_compat(img, img_compat);
++
++ return fbcon_decor_ioctl_dosetpic(vc, &img, origin);
++ }
++
++ case FBIOCONDECOR_SETCFG32:
++ {
++ struct vc_decor32 cfg_compat;
++ struct vc_decor cfg;
++
++ if (copy_from_user(&cfg_compat, (struct vc_decor32 __user *)data, sizeof(struct vc_decor32)))
++ return -EFAULT;
++
++ vc_decor_from_compat(cfg, cfg_compat);
++
++ return fbcon_decor_ioctl_dosetcfg(vc, &cfg, origin);
++ }
++
++ case FBIOCONDECOR_GETCFG32:
++ {
++ int rval;
++ struct vc_decor32 cfg_compat;
++ struct vc_decor cfg;
++
++ if (copy_from_user(&cfg_compat, (struct vc_decor32 __user *)data, sizeof(struct vc_decor32)))
++ return -EFAULT;
++ cfg.theme = compat_ptr(cfg_compat.theme);
++
++ rval = fbcon_decor_ioctl_dogetcfg(vc, &cfg);
++
++ vc_decor_to_compat(cfg_compat, cfg);
++
++ if (copy_to_user((struct vc_decor32 __user *)data, &cfg_compat, sizeof(struct vc_decor32)))
++ return -EFAULT;
++ return rval;
++ }
++
++ case FBIOCONDECOR_SETSTATE32:
++ {
++ compat_uint_t state_compat = 0;
++ unsigned int state = 0;
++
++ if (get_user(state_compat, (compat_uint_t __user *)data))
++ return -EFAULT;
++
++ state = (unsigned int)state_compat;
++
++ return fbcon_decor_ioctl_dosetstate(vc, state, origin);
++ }
++
++ case FBIOCONDECOR_GETSTATE32:
++ {
++ compat_uint_t state_compat = 0;
++ unsigned int state = 0;
++
++ fbcon_decor_ioctl_dogetstate(vc, &state);
++ state_compat = (compat_uint_t)state;
++
++ return put_user(state_compat, (compat_uint_t __user *)data);
++ }
++
++ default:
++ return -ENOIOCTLCMD;
++ }
++}
++#else
++ #define fbcon_decor_compat_ioctl NULL
++#endif
++
++static struct file_operations fbcon_decor_ops = {
++ .owner = THIS_MODULE,
++ .unlocked_ioctl = fbcon_decor_ioctl,
++ .compat_ioctl = fbcon_decor_compat_ioctl
++};
++
++static struct miscdevice fbcon_decor_dev = {
++ .minor = MISC_DYNAMIC_MINOR,
++ .name = "fbcondecor",
++ .fops = &fbcon_decor_ops
++};
++
++void fbcon_decor_reset(void)
++{
++ int i;
++
++ for (i = 0; i < num_registered_fb; i++) {
++ registered_fb[i]->bgdecor.data = NULL;
++ registered_fb[i]->bgdecor.cmap.red = NULL;
++ }
++
++ for (i = 0; i < MAX_NR_CONSOLES && vc_cons[i].d; i++) {
++ vc_cons[i].d->vc_decor.state = vc_cons[i].d->vc_decor.twidth =
++ vc_cons[i].d->vc_decor.theight = 0;
++ vc_cons[i].d->vc_decor.theme = NULL;
++ }
++}
++
++int fbcon_decor_init(void)
++{
++ int i;
++
++ fbcon_decor_reset();
++
++ if (initialized)
++ return 0;
++
++ i = misc_register(&fbcon_decor_dev);
++ if (i) {
++ printk(KERN_ERR "fbcondecor: failed to register device\n");
++ return i;
++ }
++
++ fbcon_decor_call_helper("init", 0);
++ initialized = 1;
++ return 0;
++}
++
++int fbcon_decor_exit(void)
++{
++ fbcon_decor_reset();
++ return 0;
++}
+diff --git a/drivers/video/console/fbcondecor.h b/drivers/video/console/fbcondecor.h
+new file mode 100644
+index 0000000..c49386c
+--- /dev/null
++++ b/drivers/video/console/fbcondecor.h
+@@ -0,0 +1,77 @@
++/*
++ * linux/drivers/video/console/fbcondecor.h -- Framebuffer Console Decoration headers
++ *
++ * Copyright (C) 2004 Michal Januszewski <michalj+fbcondecor@gmail.com>
++ *
++ */
++
++#ifndef __FBCON_DECOR_H
++#define __FBCON_DECOR_H
++
++#ifndef _LINUX_FB_H
++#include <linux/fb.h>
++#endif
++
++/* This is needed for vc_cons in fbcmap.c */
++#include <linux/vt_kern.h>
++
++struct fb_cursor;
++struct fb_info;
++struct vc_data;
++
++#ifdef CONFIG_FB_CON_DECOR
++/* fbcondecor.c */
++int fbcon_decor_init(void);
++int fbcon_decor_exit(void);
++int fbcon_decor_call_helper(char *cmd, unsigned short cons);
++int fbcon_decor_disable(struct vc_data *vc, unsigned char redraw);
++
++/* cfbcondecor.c */
++void fbcon_decor_putcs(struct vc_data *vc, struct fb_info *info, const unsigned short *s, int count, int yy, int xx);
++void fbcon_decor_cursor(struct fb_info *info, struct fb_cursor *cursor);
++void fbcon_decor_clear(struct vc_data *vc, struct fb_info *info, int sy, int sx, int height, int width);
++void fbcon_decor_clear_margins(struct vc_data *vc, struct fb_info *info, int bottom_only);
++void fbcon_decor_blank(struct vc_data *vc, struct fb_info *info, int blank);
++void fbcon_decor_bmove_redraw(struct vc_data *vc, struct fb_info *info, int y, int sx, int dx, int width);
++void fbcon_decor_copy(u8 *dst, u8 *src, int height, int width, int linebytes, int srclinesbytes, int bpp);
++void fbcon_decor_fix_pseudo_pal(struct fb_info *info, struct vc_data *vc);
++
++/* vt.c */
++void acquire_console_sem(void);
++void release_console_sem(void);
++void do_unblank_screen(int entering_gfx);
++
++/* struct vc_data *y */
++#define fbcon_decor_active_vc(y) (y->vc_decor.state && y->vc_decor.theme)
++
++/* struct fb_info *x, struct vc_data *y */
++#define fbcon_decor_active_nores(x, y) (x->bgdecor.data && fbcon_decor_active_vc(y))
++
++/* struct fb_info *x, struct vc_data *y */
++#define fbcon_decor_active(x, y) (fbcon_decor_active_nores(x, y) && \
++ x->bgdecor.width == x->var.xres && \
++ x->bgdecor.height == x->var.yres && \
++ x->bgdecor.depth == x->var.bits_per_pixel)
++
++#else /* CONFIG_FB_CON_DECOR */
++
++static inline void fbcon_decor_putcs(struct vc_data *vc, struct fb_info *info, const unsigned short *s, int count, int yy, int xx) {}
++static inline void fbcon_decor_putc(struct vc_data *vc, struct fb_info *info, int c, int ypos, int xpos) {}
++static inline void fbcon_decor_cursor(struct fb_info *info, struct fb_cursor *cursor) {}
++static inline void fbcon_decor_clear(struct vc_data *vc, struct fb_info *info, int sy, int sx, int height, int width) {}
++static inline void fbcon_decor_clear_margins(struct vc_data *vc, struct fb_info *info, int bottom_only) {}
++static inline void fbcon_decor_blank(struct vc_data *vc, struct fb_info *info, int blank) {}
++static inline void fbcon_decor_bmove_redraw(struct vc_data *vc, struct fb_info *info, int y, int sx, int dx, int width) {}
++static inline void fbcon_decor_fix_pseudo_pal(struct fb_info *info, struct vc_data *vc) {}
++static inline int fbcon_decor_call_helper(char *cmd, unsigned short cons) { return 0; }
++static inline int fbcon_decor_init(void) { return 0; }
++static inline int fbcon_decor_exit(void) { return 0; }
++static inline int fbcon_decor_disable(struct vc_data *vc, unsigned char redraw) { return 0; }
++
++#define fbcon_decor_active_vc(y) (0)
++#define fbcon_decor_active_nores(x, y) (0)
++#define fbcon_decor_active(x, y) (0)
++
++#endif /* CONFIG_FB_CON_DECOR */
++
++#endif /* __FBCON_DECOR_H */
+diff --git a/drivers/video/fbdev/Kconfig b/drivers/video/fbdev/Kconfig
+index 88b008f..c84113d 100644
+--- a/drivers/video/fbdev/Kconfig
++++ b/drivers/video/fbdev/Kconfig
+@@ -1216,7 +1216,6 @@ config FB_MATROX
+ select FB_CFB_FILLRECT
+ select FB_CFB_COPYAREA
+ select FB_CFB_IMAGEBLIT
+- select FB_TILEBLITTING
+ select FB_MACMODES if PPC_PMAC
+ ---help---
+ Say Y here if you have a Matrox Millennium, Matrox Millennium II,
+diff --git a/drivers/video/fbdev/core/fbcmap.c b/drivers/video/fbdev/core/fbcmap.c
+index f89245b..c2c12ce 100644
+--- a/drivers/video/fbdev/core/fbcmap.c
++++ b/drivers/video/fbdev/core/fbcmap.c
+@@ -17,6 +17,8 @@
+ #include <linux/slab.h>
+ #include <linux/uaccess.h>
+
++#include "../../console/fbcondecor.h"
++
+ static u16 red2[] __read_mostly = {
+ 0x0000, 0xaaaa
+ };
+@@ -254,9 +256,12 @@ int fb_set_cmap(struct fb_cmap *cmap, struct fb_info *info)
+ break;
+ }
+ }
+- if (rc == 0)
++ if (rc == 0) {
+ fb_copy_cmap(cmap, &info->cmap);
+-
++ if (fbcon_decor_active(info, vc_cons[fg_console].d) &&
++ info->fix.visual == FB_VISUAL_DIRECTCOLOR)
++ fbcon_decor_fix_pseudo_pal(info, vc_cons[fg_console].d);
++ }
+ return rc;
+ }
+
+diff --git a/drivers/video/fbdev/core/fbmem.c b/drivers/video/fbdev/core/fbmem.c
+index 76c1ad9..fafc0af 100644
+--- a/drivers/video/fbdev/core/fbmem.c
++++ b/drivers/video/fbdev/core/fbmem.c
+@@ -1251,15 +1251,6 @@ struct fb_fix_screeninfo32 {
+ u16 reserved[3];
+ };
+
+-struct fb_cmap32 {
+- u32 start;
+- u32 len;
+- compat_caddr_t red;
+- compat_caddr_t green;
+- compat_caddr_t blue;
+- compat_caddr_t transp;
+-};
+-
+ static int fb_getput_cmap(struct fb_info *info, unsigned int cmd,
+ unsigned long arg)
+ {
+diff --git a/include/linux/console_decor.h b/include/linux/console_decor.h
+new file mode 100644
+index 0000000..1514355
+--- /dev/null
++++ b/include/linux/console_decor.h
+@@ -0,0 +1,46 @@
++#ifndef _LINUX_CONSOLE_DECOR_H_
++#define _LINUX_CONSOLE_DECOR_H_ 1
++
++/* A structure used by the framebuffer console decorations (drivers/video/console/fbcondecor.c) */
++struct vc_decor {
++ __u8 bg_color; /* The color that is to be treated as transparent */
++ __u8 state; /* Current decor state: 0 = off, 1 = on */
++ __u16 tx, ty; /* Top left corner coordinates of the text field */
++ __u16 twidth, theight; /* Width and height of the text field */
++ char *theme;
++};
++
++#ifdef __KERNEL__
++#ifdef CONFIG_COMPAT
++#include <linux/compat.h>
++
++struct vc_decor32 {
++ __u8 bg_color; /* The color that is to be treated as transparent */
++ __u8 state; /* Current decor state: 0 = off, 1 = on */
++ __u16 tx, ty; /* Top left corner coordinates of the text field */
++ __u16 twidth, theight; /* Width and height of the text field */
++ compat_uptr_t theme;
++};
++
++#define vc_decor_from_compat(to, from) \
++ (to).bg_color = (from).bg_color; \
++ (to).state = (from).state; \
++ (to).tx = (from).tx; \
++ (to).ty = (from).ty; \
++ (to).twidth = (from).twidth; \
++ (to).theight = (from).theight; \
++ (to).theme = compat_ptr((from).theme)
++
++#define vc_decor_to_compat(to, from) \
++ (to).bg_color = (from).bg_color; \
++ (to).state = (from).state; \
++ (to).tx = (from).tx; \
++ (to).ty = (from).ty; \
++ (to).twidth = (from).twidth; \
++ (to).theight = (from).theight; \
++ (to).theme = ptr_to_compat((from).theme)
++
++#endif /* CONFIG_COMPAT */
++#endif /* __KERNEL__ */
++
++#endif
+diff --git a/include/linux/console_struct.h b/include/linux/console_struct.h
+index 6fd3c90..c649555 100644
+--- a/include/linux/console_struct.h
++++ b/include/linux/console_struct.h
+@@ -20,6 +20,7 @@ struct vt_struct;
+ struct uni_pagedir;
+
+ #define NPAR 16
++#include <linux/console_decor.h>
+
+ /*
+ * Example: vc_data of a console that was scrolled 3 lines down.
+@@ -140,6 +141,8 @@ struct vc_data {
+ struct uni_pagedir *vc_uni_pagedir;
+ struct uni_pagedir **vc_uni_pagedir_loc; /* [!] Location of uni_pagedir variable for this console */
+ bool vc_panic_force_write; /* when oops/panic this VC can accept forced output/blanking */
++
++ struct vc_decor vc_decor;
+ /* additional information is in vt_kern.h */
+ };
+
+diff --git a/include/linux/fb.h b/include/linux/fb.h
+index a964d07..672cc64 100644
+--- a/include/linux/fb.h
++++ b/include/linux/fb.h
+@@ -238,6 +238,34 @@ struct fb_deferred_io {
+ };
+ #endif
+
++#ifdef __KERNEL__
++#ifdef CONFIG_COMPAT
++struct fb_image32 {
++ __u32 dx; /* Where to place image */
++ __u32 dy;
++ __u32 width; /* Size of image */
++ __u32 height;
++ __u32 fg_color; /* Only used when a mono bitmap */
++ __u32 bg_color;
++ __u8 depth; /* Depth of the image */
++ const compat_uptr_t data; /* Pointer to image data */
++ struct fb_cmap32 cmap; /* color map info */
++};
++
++#define fb_image_from_compat(to, from) \
++ (to).dx = (from).dx; \
++ (to).dy = (from).dy; \
++ (to).width = (from).width; \
++ (to).height = (from).height; \
++ (to).fg_color = (from).fg_color; \
++ (to).bg_color = (from).bg_color; \
++ (to).depth = (from).depth; \
++ (to).data = compat_ptr((from).data); \
++ fb_cmap_from_compat((to).cmap, (from).cmap)
++
++#endif /* CONFIG_COMPAT */
++#endif /* __KERNEL__ */
++
+ /*
+ * Frame buffer operations
+ *
+@@ -508,6 +536,9 @@ struct fb_info {
+ #define FBINFO_STATE_SUSPENDED 1
+ u32 state; /* Hardware state i.e suspend */
+ void *fbcon_par; /* fbcon use-only private area */
++
++ struct fb_image bgdecor;
++
+ /* From here on everything is device dependent */
+ void *par;
+ /* we need the PCI or similar aperture base/size not
+diff --git a/include/uapi/linux/fb.h b/include/uapi/linux/fb.h
+index fb795c3..4b57c67 100644
+--- a/include/uapi/linux/fb.h
++++ b/include/uapi/linux/fb.h
+@@ -8,6 +8,23 @@
+
+ #define FB_MAX 32 /* sufficient for now */
+
++struct fbcon_decor_iowrapper {
++ unsigned short vc; /* Virtual console */
++ unsigned char origin; /* Point of origin of the request */
++ void *data;
++};
++
++#ifdef __KERNEL__
++#ifdef CONFIG_COMPAT
++#include <linux/compat.h>
++struct fbcon_decor_iowrapper32 {
++ unsigned short vc; /* Virtual console */
++ unsigned char origin; /* Point of origin of the request */
++ compat_uptr_t data;
++};
++#endif /* CONFIG_COMPAT */
++#endif /* __KERNEL__ */
++
+ /* ioctls
+ 0x46 is 'F' */
+ #define FBIOGET_VSCREENINFO 0x4600
+@@ -35,6 +52,25 @@
+ #define FBIOGET_DISPINFO 0x4618
+ #define FBIO_WAITFORVSYNC _IOW('F', 0x20, __u32)
+
++#define FBIOCONDECOR_SETCFG _IOWR('F', 0x19, struct fbcon_decor_iowrapper)
++#define FBIOCONDECOR_GETCFG _IOR('F', 0x1A, struct fbcon_decor_iowrapper)
++#define FBIOCONDECOR_SETSTATE _IOWR('F', 0x1B, struct fbcon_decor_iowrapper)
++#define FBIOCONDECOR_GETSTATE _IOR('F', 0x1C, struct fbcon_decor_iowrapper)
++#define FBIOCONDECOR_SETPIC _IOWR('F', 0x1D, struct fbcon_decor_iowrapper)
++#ifdef __KERNEL__
++#ifdef CONFIG_COMPAT
++#define FBIOCONDECOR_SETCFG32 _IOWR('F', 0x19, struct fbcon_decor_iowrapper32)
++#define FBIOCONDECOR_GETCFG32 _IOR('F', 0x1A, struct fbcon_decor_iowrapper32)
++#define FBIOCONDECOR_SETSTATE32 _IOWR('F', 0x1B, struct fbcon_decor_iowrapper32)
++#define FBIOCONDECOR_GETSTATE32 _IOR('F', 0x1C, struct fbcon_decor_iowrapper32)
++#define FBIOCONDECOR_SETPIC32 _IOWR('F', 0x1D, struct fbcon_decor_iowrapper32)
++#endif /* CONFIG_COMPAT */
++#endif /* __KERNEL__ */
++
++#define FBCON_DECOR_THEME_LEN 128 /* Maximum length of a theme name */
++#define FBCON_DECOR_IO_ORIG_KERNEL 0 /* Kernel ioctl origin */
++#define FBCON_DECOR_IO_ORIG_USER 1 /* User ioctl origin */
++
+ #define FB_TYPE_PACKED_PIXELS 0 /* Packed Pixels */
+ #define FB_TYPE_PLANES 1 /* Non interleaved planes */
+ #define FB_TYPE_INTERLEAVED_PLANES 2 /* Interleaved planes */
+@@ -277,6 +313,29 @@ struct fb_var_screeninfo {
+ __u32 reserved[4]; /* Reserved for future compatibility */
+ };
+
++#ifdef __KERNEL__
++#ifdef CONFIG_COMPAT
++struct fb_cmap32 {
++ __u32 start;
++ __u32 len; /* Number of entries */
++ compat_uptr_t red; /* Red values */
++ compat_uptr_t green;
++ compat_uptr_t blue;
++ compat_uptr_t transp; /* transparency, can be NULL */
++};
++
++#define fb_cmap_from_compat(to, from) \
++ (to).start = (from).start; \
++ (to).len = (from).len; \
++ (to).red = compat_ptr((from).red); \
++ (to).green = compat_ptr((from).green); \
++ (to).blue = compat_ptr((from).blue); \
++ (to).transp = compat_ptr((from).transp)
++
++#endif /* CONFIG_COMPAT */
++#endif /* __KERNEL__ */
++
++
+ struct fb_cmap {
+ __u32 start; /* First entry */
+ __u32 len; /* Number of entries */
+diff --git a/kernel/sysctl.c b/kernel/sysctl.c
+index 6ee416e..d2c2425 100644
+--- a/kernel/sysctl.c
++++ b/kernel/sysctl.c
+@@ -149,6 +149,10 @@ static const int cap_last_cap = CAP_LAST_CAP;
+ static unsigned long hung_task_timeout_max = (LONG_MAX/HZ);
+ #endif
+
++#ifdef CONFIG_FB_CON_DECOR
++extern char fbcon_decor_path[];
++#endif
++
+ #ifdef CONFIG_INOTIFY_USER
+ #include <linux/inotify.h>
+ #endif
+@@ -266,6 +270,15 @@ static struct ctl_table sysctl_base_table[] = {
+ .mode = 0555,
+ .child = dev_table,
+ },
++#ifdef CONFIG_FB_CON_DECOR
++ {
++ .procname = "fbcondecor",
++ .data = &fbcon_decor_path,
++ .maxlen = KMOD_PATH_LEN,
++ .mode = 0644,
++ .proc_handler = &proc_dostring,
++ },
++#endif
+ { }
+ };
+
diff --git a/4400_alpha-sysctl-uac.patch b/4400_alpha-sysctl-uac.patch
new file mode 100644
index 0000000..d42b4ed
--- /dev/null
+++ b/4400_alpha-sysctl-uac.patch
@@ -0,0 +1,142 @@
+diff --git a/arch/alpha/Kconfig b/arch/alpha/Kconfig
+index 7f312d8..1eb686b 100644
+--- a/arch/alpha/Kconfig
++++ b/arch/alpha/Kconfig
+@@ -697,6 +697,33 @@ config HZ
+ default 1200 if HZ_1200
+ default 1024
+
++config ALPHA_UAC_SYSCTL
++ bool "Configure UAC policy via sysctl"
++ depends on SYSCTL
++ default y
++ ---help---
++ Configuring the UAC (unaligned access control) policy on a Linux
++ system usually involves setting a compile time define. If you say
++ Y here, you will be able to modify the UAC policy at runtime using
++ the /proc interface.
++
++ The UAC policy defines the action Linux should take when an
++ unaligned memory access occurs. The action can include printing a
++ warning message (NOPRINT), sending a signal to the offending
++ program to help developers debug their applications (SIGBUS), or
++ disabling the transparent fixing (NOFIX).
++
++ The sysctls will be initialized to the compile-time defined UAC
++ policy. You can change these manually, or with the sysctl(8)
++ userspace utility.
++
++ To disable the warning messages at runtime, you would use
++
++ echo 1 > /proc/sys/kernel/uac/noprint
++
++ This is pretty harmless. Say Y if you're not sure.
++
++
+ source "drivers/pci/Kconfig"
+ source "drivers/eisa/Kconfig"
+
+diff --git a/arch/alpha/kernel/traps.c b/arch/alpha/kernel/traps.c
+index 74aceea..cb35d80 100644
+--- a/arch/alpha/kernel/traps.c
++++ b/arch/alpha/kernel/traps.c
+@@ -103,6 +103,49 @@ static char * ireg_name[] = {"v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
+ "t10", "t11", "ra", "pv", "at", "gp", "sp", "zero"};
+ #endif
+
++#ifdef CONFIG_ALPHA_UAC_SYSCTL
++
++#include <linux/sysctl.h>
++
++static int enabled_noprint = 0;
++static int enabled_sigbus = 0;
++static int enabled_nofix = 0;
++
++struct ctl_table uac_table[] = {
++ {
++ .procname = "noprint",
++ .data = &enabled_noprint,
++ .maxlen = sizeof (int),
++ .mode = 0644,
++ .proc_handler = &proc_dointvec,
++ },
++ {
++ .procname = "sigbus",
++ .data = &enabled_sigbus,
++ .maxlen = sizeof (int),
++ .mode = 0644,
++ .proc_handler = &proc_dointvec,
++ },
++ {
++ .procname = "nofix",
++ .data = &enabled_nofix,
++ .maxlen = sizeof (int),
++ .mode = 0644,
++ .proc_handler = &proc_dointvec,
++ },
++ { }
++};
++
++static int __init init_uac_sysctl(void)
++{
++ /* Initialize sysctls with the #defined UAC policy */
++ enabled_noprint = (test_thread_flag (TS_UAC_NOPRINT)) ? 1 : 0;
++ enabled_sigbus = (test_thread_flag (TS_UAC_SIGBUS)) ? 1 : 0;
++ enabled_nofix = (test_thread_flag (TS_UAC_NOFIX)) ? 1 : 0;
++ return 0;
++}
++#endif
++
+ static void
+ dik_show_code(unsigned int *pc)
+ {
+@@ -785,7 +828,12 @@ do_entUnaUser(void __user * va, unsigned long opcode,
+ /* Check the UAC bits to decide what the user wants us to do
+ with the unaliged access. */
+
++#ifndef CONFIG_ALPHA_UAC_SYSCTL
+ if (!(current_thread_info()->status & TS_UAC_NOPRINT)) {
++#else /* CONFIG_ALPHA_UAC_SYSCTL */
++ if (!(current_thread_info()->status & TS_UAC_NOPRINT) &&
++ !(enabled_noprint)) {
++#endif /* CONFIG_ALPHA_UAC_SYSCTL */
+ if (__ratelimit(&ratelimit)) {
+ printk("%s(%d): unaligned trap at %016lx: %p %lx %ld\n",
+ current->comm, task_pid_nr(current),
+@@ -1090,3 +1138,6 @@ trap_init(void)
+ wrent(entSys, 5);
+ wrent(entDbg, 6);
+ }
++#ifdef CONFIG_ALPHA_UAC_SYSCTL
++ __initcall(init_uac_sysctl);
++#endif
+diff --git a/kernel/sysctl.c b/kernel/sysctl.c
+index 87b2fc3..55021a8 100644
+--- a/kernel/sysctl.c
++++ b/kernel/sysctl.c
+@@ -152,6 +152,11 @@ static unsigned long hung_task_timeout_max = (LONG_MAX/HZ);
+ #ifdef CONFIG_INOTIFY_USER
+ #include <linux/inotify.h>
+ #endif
++
++#ifdef CONFIG_ALPHA_UAC_SYSCTL
++extern struct ctl_table uac_table[];
++#endif
++
+ #ifdef CONFIG_SPARC
+ #endif
+
+@@ -1844,6 +1849,13 @@ static struct ctl_table debug_table[] = {
+ .extra2 = &one,
+ },
+ #endif
++#ifdef CONFIG_ALPHA_UAC_SYSCTL
++ {
++ .procname = "uac",
++ .mode = 0555,
++ .child = uac_table,
++ },
++#endif /* CONFIG_ALPHA_UAC_SYSCTL */
+ { }
+ };
+
diff --git a/5010_enable-additional-cpu-optimizations-for-gcc.patch b/5010_enable-additional-cpu-optimizations-for-gcc.patch
new file mode 100644
index 0000000..d9729b2
--- /dev/null
+++ b/5010_enable-additional-cpu-optimizations-for-gcc.patch
@@ -0,0 +1,426 @@
+WARNING - this version of the patch works with version 4.9+ of gcc and with
+kernel version 3.15.x+ and should NOT be applied when compiling on older
+versions due to name changes of the flags with the 4.9 release of gcc.
+Use the older version of this patch hosted on the same github for older
+versions of gcc. For example:
+
+corei7 --> nehalem
+corei7-avx --> sandybridge
+core-avx-i --> ivybridge
+core-avx2 --> haswell
+
+For more, see: https://gcc.gnu.org/gcc-4.9/changes.html
+
+It also changes 'atom' to 'bonnell' in accordance with the gcc v4.9 changes.
+Note that upstream is using the deprecated 'match=atom' flags when I believe it
+should use the newer 'march=bonnell' flag for atom processors.
+
+I have made that change to this patch set as well. See the following kernel
+bug report to see if I'm right: https://bugzilla.kernel.org/show_bug.cgi?id=77461
+
+This patch will expand the number of microarchitectures to include newer
+processors including: AMD K10-family, AMD Family 10h (Barcelona), AMD Family
+14h (Bobcat), AMD Family 15h (Bulldozer), AMD Family 15h (Piledriver), AMD
+Family 15h (Steamroller), Family 16h (Jaguar), Intel 1st Gen Core i3/i5/i7
+(Nehalem), Intel 1.5 Gen Core i3/i5/i7 (Westmere), Intel 2nd Gen Core i3/i5/i7
+(Sandybridge), Intel 3rd Gen Core i3/i5/i7 (Ivybridge), Intel 4th Gen Core
+i3/i5/i7 (Haswell), Intel 5th Gen Core i3/i5/i7 (Broadwell), and the low power
+Silvermont series of Atom processors (Silvermont). It also offers the compiler
+the 'native' flag.
+
+Small but real speed increases are measurable using a make endpoint comparing
+a generic kernel to one built with one of the respective microarchs.
+
+See the following experimental evidence supporting this statement:
+https://github.com/graysky2/kernel_gcc_patch
+
+REQUIREMENTS
+linux version >=3.15
+gcc version >=4.9
+
+--- a/arch/x86/include/asm/module.h 2015-08-30 14:34:09.000000000 -0400
++++ b/arch/x86/include/asm/module.h 2015-11-06 14:18:24.234941036 -0500
+@@ -15,6 +15,24 @@
+ #define MODULE_PROC_FAMILY "586MMX "
+ #elif defined CONFIG_MCORE2
+ #define MODULE_PROC_FAMILY "CORE2 "
++#elif defined CONFIG_MNATIVE
++#define MODULE_PROC_FAMILY "NATIVE "
++#elif defined CONFIG_MNEHALEM
++#define MODULE_PROC_FAMILY "NEHALEM "
++#elif defined CONFIG_MWESTMERE
++#define MODULE_PROC_FAMILY "WESTMERE "
++#elif defined CONFIG_MSILVERMONT
++#define MODULE_PROC_FAMILY "SILVERMONT "
++#elif defined CONFIG_MSANDYBRIDGE
++#define MODULE_PROC_FAMILY "SANDYBRIDGE "
++#elif defined CONFIG_MIVYBRIDGE
++#define MODULE_PROC_FAMILY "IVYBRIDGE "
++#elif defined CONFIG_MHASWELL
++#define MODULE_PROC_FAMILY "HASWELL "
++#elif defined CONFIG_MBROADWELL
++#define MODULE_PROC_FAMILY "BROADWELL "
++#elif defined CONFIG_MSKYLAKE
++#define MODULE_PROC_FAMILY "SKYLAKE "
+ #elif defined CONFIG_MATOM
+ #define MODULE_PROC_FAMILY "ATOM "
+ #elif defined CONFIG_M686
+@@ -33,6 +51,22 @@
+ #define MODULE_PROC_FAMILY "K7 "
+ #elif defined CONFIG_MK8
+ #define MODULE_PROC_FAMILY "K8 "
++#elif defined CONFIG_MK8SSE3
++#define MODULE_PROC_FAMILY "K8SSE3 "
++#elif defined CONFIG_MK10
++#define MODULE_PROC_FAMILY "K10 "
++#elif defined CONFIG_MBARCELONA
++#define MODULE_PROC_FAMILY "BARCELONA "
++#elif defined CONFIG_MBOBCAT
++#define MODULE_PROC_FAMILY "BOBCAT "
++#elif defined CONFIG_MBULLDOZER
++#define MODULE_PROC_FAMILY "BULLDOZER "
++#elif defined CONFIG_MPILEDRIVER
++#define MODULE_PROC_FAMILY "STEAMROLLER "
++#elif defined CONFIG_MSTEAMROLLER
++#define MODULE_PROC_FAMILY "PILEDRIVER "
++#elif defined CONFIG_MJAGUAR
++#define MODULE_PROC_FAMILY "JAGUAR "
+ #elif defined CONFIG_MELAN
+ #define MODULE_PROC_FAMILY "ELAN "
+ #elif defined CONFIG_MCRUSOE
+--- a/arch/x86/Kconfig.cpu 2015-08-30 14:34:09.000000000 -0400
++++ b/arch/x86/Kconfig.cpu 2015-11-06 14:20:14.948369244 -0500
+@@ -137,9 +137,8 @@ config MPENTIUM4
+ -Paxville
+ -Dempsey
+
+-
+ config MK6
+- bool "K6/K6-II/K6-III"
++ bool "AMD K6/K6-II/K6-III"
+ depends on X86_32
+ ---help---
+ Select this for an AMD K6-family processor. Enables use of
+@@ -147,7 +146,7 @@ config MK6
+ flags to GCC.
+
+ config MK7
+- bool "Athlon/Duron/K7"
++ bool "AMD Athlon/Duron/K7"
+ depends on X86_32
+ ---help---
+ Select this for an AMD Athlon K7-family processor. Enables use of
+@@ -155,12 +154,69 @@ config MK7
+ flags to GCC.
+
+ config MK8
+- bool "Opteron/Athlon64/Hammer/K8"
++ bool "AMD Opteron/Athlon64/Hammer/K8"
+ ---help---
+ Select this for an AMD Opteron or Athlon64 Hammer-family processor.
+ Enables use of some extended instructions, and passes appropriate
+ optimization flags to GCC.
+
++config MK8SSE3
++ bool "AMD Opteron/Athlon64/Hammer/K8 with SSE3"
++ ---help---
++ Select this for improved AMD Opteron or Athlon64 Hammer-family processors.
++ Enables use of some extended instructions, and passes appropriate
++ optimization flags to GCC.
++
++config MK10
++ bool "AMD 61xx/7x50/PhenomX3/X4/II/K10"
++ ---help---
++ Select this for an AMD 61xx Eight-Core Magny-Cours, Athlon X2 7x50,
++ Phenom X3/X4/II, Athlon II X2/X3/X4, or Turion II-family processor.
++ Enables use of some extended instructions, and passes appropriate
++ optimization flags to GCC.
++
++config MBARCELONA
++ bool "AMD Barcelona"
++ ---help---
++ Select this for AMD Barcelona and newer processors.
++
++ Enables -march=barcelona
++
++config MBOBCAT
++ bool "AMD Bobcat"
++ ---help---
++ Select this for AMD Bobcat processors.
++
++ Enables -march=btver1
++
++config MBULLDOZER
++ bool "AMD Bulldozer"
++ ---help---
++ Select this for AMD Bulldozer processors.
++
++ Enables -march=bdver1
++
++config MPILEDRIVER
++ bool "AMD Piledriver"
++ ---help---
++ Select this for AMD Piledriver processors.
++
++ Enables -march=bdver2
++
++config MSTEAMROLLER
++ bool "AMD Steamroller"
++ ---help---
++ Select this for AMD Steamroller processors.
++
++ Enables -march=bdver3
++
++config MJAGUAR
++ bool "AMD Jaguar"
++ ---help---
++ Select this for AMD Jaguar processors.
++
++ Enables -march=btver2
++
+ config MCRUSOE
+ bool "Crusoe"
+ depends on X86_32
+@@ -251,8 +307,17 @@ config MPSC
+ using the cpu family field
+ in /proc/cpuinfo. Family 15 is an older Xeon, Family 6 a newer one.
+
++config MATOM
++ bool "Intel Atom"
++ ---help---
++
++ Select this for the Intel Atom platform. Intel Atom CPUs have an
++ in-order pipelining architecture and thus can benefit from
++ accordingly optimized code. Use a recent GCC with specific Atom
++ support in order to fully benefit from selecting this option.
++
+ config MCORE2
+- bool "Core 2/newer Xeon"
++ bool "Intel Core 2"
+ ---help---
+
+ Select this for Intel Core 2 and newer Core 2 Xeons (Xeon 51xx and
+@@ -260,14 +325,71 @@ config MCORE2
+ family in /proc/cpuinfo. Newer ones have 6 and older ones 15
+ (not a typo)
+
+-config MATOM
+- bool "Intel Atom"
++ Enables -march=core2
++
++config MNEHALEM
++ bool "Intel Nehalem"
+ ---help---
+
+- Select this for the Intel Atom platform. Intel Atom CPUs have an
+- in-order pipelining architecture and thus can benefit from
+- accordingly optimized code. Use a recent GCC with specific Atom
+- support in order to fully benefit from selecting this option.
++ Select this for 1st Gen Core processors in the Nehalem family.
++
++ Enables -march=nehalem
++
++config MWESTMERE
++ bool "Intel Westmere"
++ ---help---
++
++ Select this for the Intel Westmere formerly Nehalem-C family.
++
++ Enables -march=westmere
++
++config MSILVERMONT
++ bool "Intel Silvermont"
++ ---help---
++
++ Select this for the Intel Silvermont platform.
++
++ Enables -march=silvermont
++
++config MSANDYBRIDGE
++ bool "Intel Sandy Bridge"
++ ---help---
++
++ Select this for 2nd Gen Core processors in the Sandy Bridge family.
++
++ Enables -march=sandybridge
++
++config MIVYBRIDGE
++ bool "Intel Ivy Bridge"
++ ---help---
++
++ Select this for 3rd Gen Core processors in the Ivy Bridge family.
++
++ Enables -march=ivybridge
++
++config MHASWELL
++ bool "Intel Haswell"
++ ---help---
++
++ Select this for 4th Gen Core processors in the Haswell family.
++
++ Enables -march=haswell
++
++config MBROADWELL
++ bool "Intel Broadwell"
++ ---help---
++
++ Select this for 5th Gen Core processors in the Broadwell family.
++
++ Enables -march=broadwell
++
++config MSKYLAKE
++ bool "Intel Skylake"
++ ---help---
++
++ Select this for 6th Gen Core processors in the Skylake family.
++
++ Enables -march=skylake
+
+ config GENERIC_CPU
+ bool "Generic-x86-64"
+@@ -276,6 +398,19 @@ config GENERIC_CPU
+ Generic x86-64 CPU.
+ Run equally well on all x86-64 CPUs.
+
++config MNATIVE
++ bool "Native optimizations autodetected by GCC"
++ ---help---
++
++ GCC 4.2 and above support -march=native, which automatically detects
++ the optimum settings to use based on your processor. -march=native
++ also detects and applies additional settings beyond -march specific
++ to your CPU, (eg. -msse4). Unless you have a specific reason not to
++ (e.g. distcc cross-compiling), you should probably be using
++ -march=native rather than anything listed below.
++
++ Enables -march=native
++
+ endchoice
+
+ config X86_GENERIC
+@@ -300,7 +435,7 @@ config X86_INTERNODE_CACHE_SHIFT
+ config X86_L1_CACHE_SHIFT
+ int
+ default "7" if MPENTIUM4 || MPSC
+- default "6" if MK7 || MK8 || MPENTIUMM || MCORE2 || MATOM || MVIAC7 || X86_GENERIC || GENERIC_CPU
++ default "6" if MK7 || MK8 || MK8SSE3 || MK10 || MBARCELONA || MBOBCAT || MBULLDOZER || MPILEDRIVER || MSTEAMROLLER || MJAGUAR || MPENTIUMM || MCORE2 || MNEHALEM || MWESTMERE || MSILVERMONT || MSANDYBRIDGE || MIVYBRIDGE || MHASWELL || MBROADWELL || MSKYLAKE || MNATIVE || MATOM || MVIAC7 || X86_GENERIC || GENERIC_CPU
+ default "4" if MELAN || M486 || MGEODEGX1
+ default "5" if MWINCHIP3D || MWINCHIPC6 || MCRUSOE || MEFFICEON || MCYRIXIII || MK6 || MPENTIUMIII || MPENTIUMII || M686 || M586MMX || M586TSC || M586 || MVIAC3_2 || MGEODE_LX
+
+@@ -331,11 +466,11 @@ config X86_ALIGNMENT_16
+
+ config X86_INTEL_USERCOPY
+ def_bool y
+- depends on MPENTIUM4 || MPENTIUMM || MPENTIUMIII || MPENTIUMII || M586MMX || X86_GENERIC || MK8 || MK7 || MEFFICEON || MCORE2
++ depends on MPENTIUM4 || MPENTIUMM || MPENTIUMIII || MPENTIUMII || M586MMX || X86_GENERIC || MK8 || MK8SSE3 || MK7 || MEFFICEON || MCORE2 || MK10 || MBARCELONA || MNEHALEM || MWESTMERE || MSILVERMONT || MSANDYBRIDGE || MIVYBRIDGE || MHASWELL || MBROADWELL || MSKYLAKE || MNATIVE
+
+ config X86_USE_PPRO_CHECKSUM
+ def_bool y
+- depends on MWINCHIP3D || MWINCHIPC6 || MCYRIXIII || MK7 || MK6 || MPENTIUM4 || MPENTIUMM || MPENTIUMIII || MPENTIUMII || M686 || MK8 || MVIAC3_2 || MVIAC7 || MEFFICEON || MGEODE_LX || MCORE2 || MATOM
++ depends on MWINCHIP3D || MWINCHIPC6 || MCYRIXIII || MK7 || MK6 || MK10 || MPENTIUM4 || MPENTIUMM || MPENTIUMIII || MPENTIUMII || M686 || MK8 || MK8SSE3 || MVIAC3_2 || MVIAC7 || MEFFICEON || MGEODE_LX || MCORE2 || MNEHALEM || MWESTMERE || MSILVERMONT || MSANDYBRIDGE || MIVYBRIDGE || MHASWELL || MBROADWELL || MSKYLAKE || MATOM || MNATIVE
+
+ config X86_USE_3DNOW
+ def_bool y
+@@ -359,17 +494,17 @@ config X86_P6_NOP
+
+ config X86_TSC
+ def_bool y
+- depends on (MWINCHIP3D || MCRUSOE || MEFFICEON || MCYRIXIII || MK7 || MK6 || MPENTIUM4 || MPENTIUMM || MPENTIUMIII || MPENTIUMII || M686 || M586MMX || M586TSC || MK8 || MVIAC3_2 || MVIAC7 || MGEODEGX1 || MGEODE_LX || MCORE2 || MATOM) || X86_64
++ depends on (MWINCHIP3D || MCRUSOE || MEFFICEON || MCYRIXIII || MK7 || MK6 || MPENTIUM4 || MPENTIUMM || MPENTIUMIII || MPENTIUMII || M686 || M586MMX || M586TSC || MK8 || MK8SSE3 || MVIAC3_2 || MVIAC7 || MGEODEGX1 || MGEODE_LX || MCORE2 || MNEHALEM || MWESTMERE || MSILVERMONT || MSANDYBRIDGE || MIVYBRIDGE || MHASWELL || MBROADWELL || MSKYLAKE || MNATIVE || MATOM) || X86_64
+
+ config X86_CMPXCHG64
+ def_bool y
+- depends on X86_PAE || X86_64 || MCORE2 || MPENTIUM4 || MPENTIUMM || MPENTIUMIII || MPENTIUMII || M686 || MATOM
++ depends on X86_PAE || X86_64 || MCORE2 || MNEHALEM || MWESTMERE || MSILVERMONT || MSANDYBRIDGE || MIVYBRIDGE || MHASWELL || MBROADWELL || MSKYLAKE || MPENTIUM4 || MPENTIUMM || MPENTIUMIII || MPENTIUMII || M686 || MATOM || MNATIVE
+
+ # this should be set for all -march=.. options where the compiler
+ # generates cmov.
+ config X86_CMOV
+ def_bool y
+- depends on (MK8 || MK7 || MCORE2 || MPENTIUM4 || MPENTIUMM || MPENTIUMIII || MPENTIUMII || M686 || MVIAC3_2 || MVIAC7 || MCRUSOE || MEFFICEON || X86_64 || MATOM || MGEODE_LX)
++ depends on (MK8 || MK8SSE3 || MK10 || MBARCELONA || MBOBCAT || MBULLDOZER || MPILEDRIVER || MSTEAMROLLER || MJAGUAR || MK7 || MCORE2 || MNEHALEM || MWESTMERE || MSILVERMONT || MSANDYBRIDGE || MIVYBRIDGE || MHASWELL || MBROADWELL || MSKYLAKE || MPENTIUM4 || MPENTIUMM || MPENTIUMIII || MPENTIUMII || M686 || MVIAC3_2 || MVIAC7 || MCRUSOE || MEFFICEON || X86_64 || MNATIVE || MATOM || MGEODE_LX)
+
+ config X86_MINIMUM_CPU_FAMILY
+ int
+--- a/arch/x86/Makefile 2015-08-30 14:34:09.000000000 -0400
++++ b/arch/x86/Makefile 2015-11-06 14:21:05.708983344 -0500
+@@ -94,13 +94,38 @@ else
+ KBUILD_CFLAGS += $(call cc-option,-mskip-rax-setup)
+
+ # FIXME - should be integrated in Makefile.cpu (Makefile_32.cpu)
++ cflags-$(CONFIG_MNATIVE) += $(call cc-option,-march=native)
+ cflags-$(CONFIG_MK8) += $(call cc-option,-march=k8)
++ cflags-$(CONFIG_MK8SSE3) += $(call cc-option,-march=k8-sse3,-mtune=k8)
++ cflags-$(CONFIG_MK10) += $(call cc-option,-march=amdfam10)
++ cflags-$(CONFIG_MBARCELONA) += $(call cc-option,-march=barcelona)
++ cflags-$(CONFIG_MBOBCAT) += $(call cc-option,-march=btver1)
++ cflags-$(CONFIG_MBULLDOZER) += $(call cc-option,-march=bdver1)
++ cflags-$(CONFIG_MPILEDRIVER) += $(call cc-option,-march=bdver2)
++ cflags-$(CONFIG_MSTEAMROLLER) += $(call cc-option,-march=bdver3)
++ cflags-$(CONFIG_MJAGUAR) += $(call cc-option,-march=btver2)
+ cflags-$(CONFIG_MPSC) += $(call cc-option,-march=nocona)
+
+ cflags-$(CONFIG_MCORE2) += \
+- $(call cc-option,-march=core2,$(call cc-option,-mtune=generic))
+- cflags-$(CONFIG_MATOM) += $(call cc-option,-march=atom) \
+- $(call cc-option,-mtune=atom,$(call cc-option,-mtune=generic))
++ $(call cc-option,-march=core2,$(call cc-option,-mtune=core2))
++ cflags-$(CONFIG_MNEHALEM) += \
++ $(call cc-option,-march=nehalem,$(call cc-option,-mtune=nehalem))
++ cflags-$(CONFIG_MWESTMERE) += \
++ $(call cc-option,-march=westmere,$(call cc-option,-mtune=westmere))
++ cflags-$(CONFIG_MSILVERMONT) += \
++ $(call cc-option,-march=silvermont,$(call cc-option,-mtune=silvermont))
++ cflags-$(CONFIG_MSANDYBRIDGE) += \
++ $(call cc-option,-march=sandybridge,$(call cc-option,-mtune=sandybridge))
++ cflags-$(CONFIG_MIVYBRIDGE) += \
++ $(call cc-option,-march=ivybridge,$(call cc-option,-mtune=ivybridge))
++ cflags-$(CONFIG_MHASWELL) += \
++ $(call cc-option,-march=haswell,$(call cc-option,-mtune=haswell))
++ cflags-$(CONFIG_MBROADWELL) += \
++ $(call cc-option,-march=broadwell,$(call cc-option,-mtune=broadwell))
++ cflags-$(CONFIG_MSKYLAKE) += \
++ $(call cc-option,-march=skylake,$(call cc-option,-mtune=skylake))
++ cflags-$(CONFIG_MATOM) += $(call cc-option,-march=bonnell) \
++ $(call cc-option,-mtune=bonnell,$(call cc-option,-mtune=generic))
+ cflags-$(CONFIG_GENERIC_CPU) += $(call cc-option,-mtune=generic)
+ KBUILD_CFLAGS += $(cflags-y)
+
+--- a/arch/x86/Makefile_32.cpu 2015-08-30 14:34:09.000000000 -0400
++++ b/arch/x86/Makefile_32.cpu 2015-11-06 14:21:43.604429077 -0500
+@@ -23,7 +23,16 @@ cflags-$(CONFIG_MK6) += -march=k6
+ # Please note, that patches that add -march=athlon-xp and friends are pointless.
+ # They make zero difference whatsosever to performance at this time.
+ cflags-$(CONFIG_MK7) += -march=athlon
++cflags-$(CONFIG_MNATIVE) += $(call cc-option,-march=native)
+ cflags-$(CONFIG_MK8) += $(call cc-option,-march=k8,-march=athlon)
++cflags-$(CONFIG_MK8SSE3) += $(call cc-option,-march=k8-sse3,-march=athlon)
++cflags-$(CONFIG_MK10) += $(call cc-option,-march=amdfam10,-march=athlon)
++cflags-$(CONFIG_MBARCELONA) += $(call cc-option,-march=barcelona,-march=athlon)
++cflags-$(CONFIG_MBOBCAT) += $(call cc-option,-march=btver1,-march=athlon)
++cflags-$(CONFIG_MBULLDOZER) += $(call cc-option,-march=bdver1,-march=athlon)
++cflags-$(CONFIG_MPILEDRIVER) += $(call cc-option,-march=bdver2,-march=athlon)
++cflags-$(CONFIG_MSTEAMROLLER) += $(call cc-option,-march=bdver3,-march=athlon)
++cflags-$(CONFIG_MJAGUAR) += $(call cc-option,-march=btver2,-march=athlon)
+ cflags-$(CONFIG_MCRUSOE) += -march=i686 $(align)-functions=0 $(align)-jumps=0 $(align)-loops=0
+ cflags-$(CONFIG_MEFFICEON) += -march=i686 $(call tune,pentium3) $(align)-functions=0 $(align)-jumps=0 $(align)-loops=0
+ cflags-$(CONFIG_MWINCHIPC6) += $(call cc-option,-march=winchip-c6,-march=i586)
+@@ -32,8 +41,16 @@ cflags-$(CONFIG_MCYRIXIII) += $(call cc-
+ cflags-$(CONFIG_MVIAC3_2) += $(call cc-option,-march=c3-2,-march=i686)
+ cflags-$(CONFIG_MVIAC7) += -march=i686
+ cflags-$(CONFIG_MCORE2) += -march=i686 $(call tune,core2)
+-cflags-$(CONFIG_MATOM) += $(call cc-option,-march=atom,$(call cc-option,-march=core2,-march=i686)) \
+- $(call cc-option,-mtune=atom,$(call cc-option,-mtune=generic))
++cflags-$(CONFIG_MNEHALEM) += -march=i686 $(call tune,nehalem)
++cflags-$(CONFIG_MWESTMERE) += -march=i686 $(call tune,westmere)
++cflags-$(CONFIG_MSILVERMONT) += -march=i686 $(call tune,silvermont)
++cflags-$(CONFIG_MSANDYBRIDGE) += -march=i686 $(call tune,sandybridge)
++cflags-$(CONFIG_MIVYBRIDGE) += -march=i686 $(call tune,ivybridge)
++cflags-$(CONFIG_MHASWELL) += -march=i686 $(call tune,haswell)
++cflags-$(CONFIG_MBROADWELL) += -march=i686 $(call tune,broadwell)
++cflags-$(CONFIG_MSKYLAKE) += -march=i686 $(call tune,skylake)
++cflags-$(CONFIG_MATOM) += $(call cc-option,-march=bonnell,$(call cc-option,-march=core2,-march=i686)) \
++ $(call cc-option,-mtune=bonnell,$(call cc-option,-mtune=generic))
+
+ # AMD Elan support
+ cflags-$(CONFIG_MELAN) += -march=i486
^ permalink raw reply related [flat|nested] 5+ messages in thread
* [gentoo-commits] proj/linux-patches:4.11 commit in: /
@ 2017-03-23 17:12 Mike Pagano
0 siblings, 0 replies; 5+ messages in thread
From: Mike Pagano @ 2017-03-23 17:12 UTC (permalink / raw
To: gentoo-commits
commit: 4c14a0858d558e36d4e1135a98d1e21664aa0a80
Author: Mike Pagano <mpagano <AT> gentoo <DOT> org>
AuthorDate: Thu Mar 23 17:12:05 2017 +0000
Commit: Mike Pagano <mpagano <AT> gentoo <DOT> org>
CommitDate: Thu Mar 23 17:12:05 2017 +0000
URL: https://gitweb.gentoo.org/proj/linux-patches.git/commit/?id=4c14a085
Upgrade gcc cpu optimization patc. See bug #613570.
...able-additional-cpu-optimizations-for-gcc.patch | 225 +++++++++++++++------
1 file changed, 166 insertions(+), 59 deletions(-)
diff --git a/5010_enable-additional-cpu-optimizations-for-gcc.patch b/5010_enable-additional-cpu-optimizations-for-gcc.patch
index d9729b2..76cbd9d 100644
--- a/5010_enable-additional-cpu-optimizations-for-gcc.patch
+++ b/5010_enable-additional-cpu-optimizations-for-gcc.patch
@@ -1,33 +1,51 @@
-WARNING - this version of the patch works with version 4.9+ of gcc and with
-kernel version 3.15.x+ and should NOT be applied when compiling on older
-versions due to name changes of the flags with the 4.9 release of gcc.
+WARNING
+This patch works with gcc versions 4.9+ and with kernel version 3.15+ and should
+NOT be applied when compiling on older versions of gcc due to key name changes
+of the march flags introduced with the version 4.9 release of gcc.[1]
+
Use the older version of this patch hosted on the same github for older
-versions of gcc. For example:
+versions of gcc.
-corei7 --> nehalem
-corei7-avx --> sandybridge
-core-avx-i --> ivybridge
-core-avx2 --> haswell
+FEATURES
+This patch adds additional CPU options to the Linux kernel accessible under:
+ Processor type and features --->
+ Processor family --->
-For more, see: https://gcc.gnu.org/gcc-4.9/changes.html
+The expanded microarchitectures include:
+* AMD Improved K8-family
+* AMD K10-family
+* AMD Family 10h (Barcelona)
+* AMD Family 14h (Bobcat)
+* AMD Family 16h (Jaguar)
+* AMD Family 15h (Bulldozer)
+* AMD Family 15h (Piledriver)
+* AMD Family 15h (Steamroller)
+* AMD Family 15h (Excavator)
+* AMD Family 17h (Zen)
+* Intel Silvermont low-power processors
+* Intel 1st Gen Core i3/i5/i7 (Nehalem)
+* Intel 1.5 Gen Core i3/i5/i7 (Westmere)
+* Intel 2nd Gen Core i3/i5/i7 (Sandybridge)
+* Intel 3rd Gen Core i3/i5/i7 (Ivybridge)
+* Intel 4th Gen Core i3/i5/i7 (Haswell)
+* Intel 5th Gen Core i3/i5/i7 (Broadwell)
+* Intel 6th Gen Core i3/i5.i7 (Skylake)
-It also changes 'atom' to 'bonnell' in accordance with the gcc v4.9 changes.
-Note that upstream is using the deprecated 'match=atom' flags when I believe it
-should use the newer 'march=bonnell' flag for atom processors.
+It also offers to compile passing the 'native' option which, "selects the CPU
+to generate code for at compilation time by determining the processor type of
+the compiling machine. Using -march=native enables all instruction subsets
+supported by the local machine and will produce code optimized for the local
+machine under the constraints of the selected instruction set."[3]
-I have made that change to this patch set as well. See the following kernel
-bug report to see if I'm right: https://bugzilla.kernel.org/show_bug.cgi?id=77461
+MINOR NOTES
+This patch also changes 'atom' to 'bonnell' in accordance with the gcc v4.9
+changes. Note that upstream is using the deprecated 'match=atom' flags when I
+believe it should use the newer 'march=bonnell' flag for atom processors.[2]
-This patch will expand the number of microarchitectures to include newer
-processors including: AMD K10-family, AMD Family 10h (Barcelona), AMD Family
-14h (Bobcat), AMD Family 15h (Bulldozer), AMD Family 15h (Piledriver), AMD
-Family 15h (Steamroller), Family 16h (Jaguar), Intel 1st Gen Core i3/i5/i7
-(Nehalem), Intel 1.5 Gen Core i3/i5/i7 (Westmere), Intel 2nd Gen Core i3/i5/i7
-(Sandybridge), Intel 3rd Gen Core i3/i5/i7 (Ivybridge), Intel 4th Gen Core
-i3/i5/i7 (Haswell), Intel 5th Gen Core i3/i5/i7 (Broadwell), and the low power
-Silvermont series of Atom processors (Silvermont). It also offers the compiler
-the 'native' flag.
+It is not recommended to compile on Atom-CPUs with the 'native' option.[4] The
+recommendation is use to the 'atom' option instead.
+BENEFITS
Small but real speed increases are measurable using a make endpoint comparing
a generic kernel to one built with one of the respective microarchs.
@@ -38,8 +56,18 @@ REQUIREMENTS
linux version >=3.15
gcc version >=4.9
---- a/arch/x86/include/asm/module.h 2015-08-30 14:34:09.000000000 -0400
-+++ b/arch/x86/include/asm/module.h 2015-11-06 14:18:24.234941036 -0500
+ACKNOWLEDGMENTS
+This patch builds on the seminal work by Jeroen.[5]
+
+REFERENCES
+1. https://gcc.gnu.org/gcc-4.9/changes.html
+2. https://bugzilla.kernel.org/show_bug.cgi?id=77461
+3. https://gcc.gnu.org/onlinedocs/gcc/x86-Options.html
+4. https://github.com/graysky2/kernel_gcc_patch/issues/15
+5. http://www.linuxforge.net/docs/linux/linux-gcc.php
+
+--- a/arch/x86/include/asm/module.h 2016-12-11 14:17:54.000000000 -0500
++++ b/arch/x86/include/asm/module.h 2017-01-06 20:44:36.602227264 -0500
@@ -15,6 +15,24 @@
#define MODULE_PROC_FAMILY "586MMX "
#elif defined CONFIG_MCORE2
@@ -65,7 +93,7 @@ gcc version >=4.9
#elif defined CONFIG_MATOM
#define MODULE_PROC_FAMILY "ATOM "
#elif defined CONFIG_M686
-@@ -33,6 +51,22 @@
+@@ -33,6 +51,26 @@
#define MODULE_PROC_FAMILY "K7 "
#elif defined CONFIG_MK8
#define MODULE_PROC_FAMILY "K8 "
@@ -80,17 +108,29 @@ gcc version >=4.9
+#elif defined CONFIG_MBULLDOZER
+#define MODULE_PROC_FAMILY "BULLDOZER "
+#elif defined CONFIG_MPILEDRIVER
-+#define MODULE_PROC_FAMILY "STEAMROLLER "
-+#elif defined CONFIG_MSTEAMROLLER
+#define MODULE_PROC_FAMILY "PILEDRIVER "
++#elif defined CONFIG_MSTEAMROLLER
++#define MODULE_PROC_FAMILY "STEAMROLLER "
+#elif defined CONFIG_MJAGUAR
+#define MODULE_PROC_FAMILY "JAGUAR "
++#elif defined CONFIG_MEXCAVATOR
++#define MODULE_PROC_FAMILY "EXCAVATOR "
++#elif defined CONFIG_MZEN
++#define MODULE_PROC_FAMILY "ZEN "
#elif defined CONFIG_MELAN
#define MODULE_PROC_FAMILY "ELAN "
#elif defined CONFIG_MCRUSOE
---- a/arch/x86/Kconfig.cpu 2015-08-30 14:34:09.000000000 -0400
-+++ b/arch/x86/Kconfig.cpu 2015-11-06 14:20:14.948369244 -0500
-@@ -137,9 +137,8 @@ config MPENTIUM4
+--- a/arch/x86/Kconfig.cpu 2016-12-11 14:17:54.000000000 -0500
++++ b/arch/x86/Kconfig.cpu 2017-01-06 20:46:14.004109597 -0500
+@@ -115,6 +115,7 @@ config MPENTIUMM
+ config MPENTIUM4
+ bool "Pentium-4/Celeron(P4-based)/Pentium-4 M/older Xeon"
+ depends on X86_32
++ select X86_P6_NOP
+ ---help---
+ Select this for Intel Pentium 4 chips. This includes the
+ Pentium 4, Pentium D, P4-based Celeron and Xeon, and
+@@ -147,9 +148,8 @@ config MPENTIUM4
-Paxville
-Dempsey
@@ -101,7 +141,7 @@ gcc version >=4.9
depends on X86_32
---help---
Select this for an AMD K6-family processor. Enables use of
-@@ -147,7 +146,7 @@ config MK6
+@@ -157,7 +157,7 @@ config MK6
flags to GCC.
config MK7
@@ -110,7 +150,7 @@ gcc version >=4.9
depends on X86_32
---help---
Select this for an AMD Athlon K7-family processor. Enables use of
-@@ -155,12 +154,69 @@ config MK7
+@@ -165,12 +165,83 @@ config MK7
flags to GCC.
config MK8
@@ -139,54 +179,77 @@ gcc version >=4.9
+config MBARCELONA
+ bool "AMD Barcelona"
+ ---help---
-+ Select this for AMD Barcelona and newer processors.
++ Select this for AMD Family 10h Barcelona processors.
+
+ Enables -march=barcelona
+
+config MBOBCAT
+ bool "AMD Bobcat"
+ ---help---
-+ Select this for AMD Bobcat processors.
++ Select this for AMD Family 14h Bobcat processors.
+
+ Enables -march=btver1
+
++config MJAGUAR
++ bool "AMD Jaguar"
++ ---help---
++ Select this for AMD Family 16h Jaguar processors.
++
++ Enables -march=btver2
++
+config MBULLDOZER
+ bool "AMD Bulldozer"
+ ---help---
-+ Select this for AMD Bulldozer processors.
++ Select this for AMD Family 15h Bulldozer processors.
+
+ Enables -march=bdver1
+
+config MPILEDRIVER
+ bool "AMD Piledriver"
+ ---help---
-+ Select this for AMD Piledriver processors.
++ Select this for AMD Family 15h Piledriver processors.
+
+ Enables -march=bdver2
+
+config MSTEAMROLLER
+ bool "AMD Steamroller"
+ ---help---
-+ Select this for AMD Steamroller processors.
++ Select this for AMD Family 15h Steamroller processors.
+
+ Enables -march=bdver3
+
-+config MJAGUAR
-+ bool "AMD Jaguar"
++config MEXCAVATOR
++ bool "AMD Excavator"
+ ---help---
-+ Select this for AMD Jaguar processors.
++ Select this for AMD Family 15h Excavator processors.
+
-+ Enables -march=btver2
++ Enables -march=bdver4
++
++config MZEN
++ bool "AMD Zen"
++ ---help---
++ Select this for AMD Family 17h Zen processors.
++
++ Enables -march=znver1
+
config MCRUSOE
bool "Crusoe"
depends on X86_32
-@@ -251,8 +307,17 @@ config MPSC
+@@ -252,6 +323,7 @@ config MVIAC7
+
+ config MPSC
+ bool "Intel P4 / older Netburst based Xeon"
++ select X86_P6_NOP
+ depends on X86_64
+ ---help---
+ Optimize for Intel Pentium 4, Pentium D and older Nocona/Dempsey
+@@ -261,8 +333,19 @@ config MPSC
using the cpu family field
in /proc/cpuinfo. Family 15 is an older Xeon, Family 6 a newer one.
+config MATOM
+ bool "Intel Atom"
++ select X86_P6_NOP
+ ---help---
+
+ Select this for the Intel Atom platform. Intel Atom CPUs have an
@@ -197,10 +260,11 @@ gcc version >=4.9
config MCORE2
- bool "Core 2/newer Xeon"
+ bool "Intel Core 2"
++ select X86_P6_NOP
---help---
Select this for Intel Core 2 and newer Core 2 Xeons (Xeon 51xx and
-@@ -260,14 +325,71 @@ config MCORE2
+@@ -270,14 +353,79 @@ config MCORE2
family in /proc/cpuinfo. Newer ones have 6 and older ones 15
(not a typo)
@@ -210,6 +274,7 @@ gcc version >=4.9
+
+config MNEHALEM
+ bool "Intel Nehalem"
++ select X86_P6_NOP
---help---
- Select this for the Intel Atom platform. Intel Atom CPUs have an
@@ -222,6 +287,7 @@ gcc version >=4.9
+
+config MWESTMERE
+ bool "Intel Westmere"
++ select X86_P6_NOP
+ ---help---
+
+ Select this for the Intel Westmere formerly Nehalem-C family.
@@ -230,6 +296,7 @@ gcc version >=4.9
+
+config MSILVERMONT
+ bool "Intel Silvermont"
++ select X86_P6_NOP
+ ---help---
+
+ Select this for the Intel Silvermont platform.
@@ -238,6 +305,7 @@ gcc version >=4.9
+
+config MSANDYBRIDGE
+ bool "Intel Sandy Bridge"
++ select X86_P6_NOP
+ ---help---
+
+ Select this for 2nd Gen Core processors in the Sandy Bridge family.
@@ -246,6 +314,7 @@ gcc version >=4.9
+
+config MIVYBRIDGE
+ bool "Intel Ivy Bridge"
++ select X86_P6_NOP
+ ---help---
+
+ Select this for 3rd Gen Core processors in the Ivy Bridge family.
@@ -254,6 +323,7 @@ gcc version >=4.9
+
+config MHASWELL
+ bool "Intel Haswell"
++ select X86_P6_NOP
+ ---help---
+
+ Select this for 4th Gen Core processors in the Haswell family.
@@ -262,6 +332,7 @@ gcc version >=4.9
+
+config MBROADWELL
+ bool "Intel Broadwell"
++ select X86_P6_NOP
+ ---help---
+
+ Select this for 5th Gen Core processors in the Broadwell family.
@@ -270,6 +341,7 @@ gcc version >=4.9
+
+config MSKYLAKE
+ bool "Intel Skylake"
++ select X86_P6_NOP
+ ---help---
+
+ Select this for 6th Gen Core processors in the Skylake family.
@@ -278,7 +350,7 @@ gcc version >=4.9
config GENERIC_CPU
bool "Generic-x86-64"
-@@ -276,6 +398,19 @@ config GENERIC_CPU
+@@ -286,6 +434,19 @@ config GENERIC_CPU
Generic x86-64 CPU.
Run equally well on all x86-64 CPUs.
@@ -298,16 +370,16 @@ gcc version >=4.9
endchoice
config X86_GENERIC
-@@ -300,7 +435,7 @@ config X86_INTERNODE_CACHE_SHIFT
+@@ -310,7 +471,7 @@ config X86_INTERNODE_CACHE_SHIFT
config X86_L1_CACHE_SHIFT
int
default "7" if MPENTIUM4 || MPSC
- default "6" if MK7 || MK8 || MPENTIUMM || MCORE2 || MATOM || MVIAC7 || X86_GENERIC || GENERIC_CPU
-+ default "6" if MK7 || MK8 || MK8SSE3 || MK10 || MBARCELONA || MBOBCAT || MBULLDOZER || MPILEDRIVER || MSTEAMROLLER || MJAGUAR || MPENTIUMM || MCORE2 || MNEHALEM || MWESTMERE || MSILVERMONT || MSANDYBRIDGE || MIVYBRIDGE || MHASWELL || MBROADWELL || MSKYLAKE || MNATIVE || MATOM || MVIAC7 || X86_GENERIC || GENERIC_CPU
++ default "6" if MK7 || MK8 || MK8SSE3 || MK10 || MBARCELONA || MBOBCAT || MBULLDOZER || MPILEDRIVER || MSTEAMROLLER || MEXCAVATOR || MZEN || MJAGUAR || MPENTIUMM || MCORE2 || MNEHALEM || MWESTMERE || MSILVERMONT || MSANDYBRIDGE || MIVYBRIDGE || MHASWELL || MBROADWELL || MSKYLAKE || MNATIVE || MATOM || MVIAC7 || X86_GENERIC || GENERIC_CPU
default "4" if MELAN || M486 || MGEODEGX1
default "5" if MWINCHIP3D || MWINCHIPC6 || MCRUSOE || MEFFICEON || MCYRIXIII || MK6 || MPENTIUMIII || MPENTIUMII || M686 || M586MMX || M586TSC || M586 || MVIAC3_2 || MGEODE_LX
-@@ -331,11 +466,11 @@ config X86_ALIGNMENT_16
+@@ -341,45 +502,46 @@ config X86_ALIGNMENT_16
config X86_INTEL_USERCOPY
def_bool y
@@ -321,7 +393,38 @@ gcc version >=4.9
config X86_USE_3DNOW
def_bool y
-@@ -359,17 +494,17 @@ config X86_P6_NOP
+ depends on (MCYRIXIII || MK7 || MGEODE_LX) && !UML
+
+-#
+-# P6_NOPs are a relatively minor optimization that require a family >=
+-# 6 processor, except that it is broken on certain VIA chips.
+-# Furthermore, AMD chips prefer a totally different sequence of NOPs
+-# (which work on all CPUs). In addition, it looks like Virtual PC
+-# does not understand them.
+-#
+-# As a result, disallow these if we're not compiling for X86_64 (these
+-# NOPs do work on all x86-64 capable chips); the list of processors in
+-# the right-hand clause are the cores that benefit from this optimization.
+-#
+ config X86_P6_NOP
+- def_bool y
+- depends on X86_64
+- depends on (MCORE2 || MPENTIUM4 || MPSC)
++ default n
++ bool "Support for P6_NOPs on Intel chips"
++ depends on (MCORE2 || MPENTIUM4 || MPSC || MATOM || MNEHALEM || MWESTMERE || MSILVERMONT || MSANDYBRIDGE || MIVYBRIDGE || MHASWELL || MBROADWELL || MSKYLAKE || MNATIVE)
++ ---help---
++ P6_NOPs are a relatively minor optimization that require a family >=
++ 6 processor, except that it is broken on certain VIA chips.
++ Furthermore, AMD chips prefer a totally different sequence of NOPs
++ (which work on all CPUs). In addition, it looks like Virtual PC
++ does not understand them.
++
++ As a result, disallow these if we're not compiling for X86_64 (these
++ NOPs do work on all x86-64 capable chips); the list of processors in
++ the right-hand clause are the cores that benefit from this optimization.
++
++ Say Y if you have Intel CPU newer than Pentium Pro, N otherwise.
config X86_TSC
def_bool y
@@ -338,13 +441,13 @@ gcc version >=4.9
config X86_CMOV
def_bool y
- depends on (MK8 || MK7 || MCORE2 || MPENTIUM4 || MPENTIUMM || MPENTIUMIII || MPENTIUMII || M686 || MVIAC3_2 || MVIAC7 || MCRUSOE || MEFFICEON || X86_64 || MATOM || MGEODE_LX)
-+ depends on (MK8 || MK8SSE3 || MK10 || MBARCELONA || MBOBCAT || MBULLDOZER || MPILEDRIVER || MSTEAMROLLER || MJAGUAR || MK7 || MCORE2 || MNEHALEM || MWESTMERE || MSILVERMONT || MSANDYBRIDGE || MIVYBRIDGE || MHASWELL || MBROADWELL || MSKYLAKE || MPENTIUM4 || MPENTIUMM || MPENTIUMIII || MPENTIUMII || M686 || MVIAC3_2 || MVIAC7 || MCRUSOE || MEFFICEON || X86_64 || MNATIVE || MATOM || MGEODE_LX)
++ depends on (MK8 || MK8SSE3 || MK10 || MBARCELONA || MBOBCAT || MBULLDOZER || MPILEDRIVER || MSTEAMROLLER || MEXCAVATOR || MZEN || MJAGUAR || MK7 || MCORE2 || MNEHALEM || MWESTMERE || MSILVERMONT || MSANDYBRIDGE || MIVYBRIDGE || MHASWELL || MBROADWELL || MSKYLAKE || MPENTIUM4 || MPENTIUMM || MPENTIUMIII || MPENTIUMII || M686 || MVIAC3_2 || MVIAC7 || MCRUSOE || MEFFICEON || X86_64 || MNATIVE || MATOM || MGEODE_LX)
config X86_MINIMUM_CPU_FAMILY
int
---- a/arch/x86/Makefile 2015-08-30 14:34:09.000000000 -0400
-+++ b/arch/x86/Makefile 2015-11-06 14:21:05.708983344 -0500
-@@ -94,13 +94,38 @@ else
+--- a/arch/x86/Makefile 2016-12-11 14:17:54.000000000 -0500
++++ b/arch/x86/Makefile 2017-01-06 20:44:36.603227283 -0500
+@@ -104,13 +104,40 @@ else
KBUILD_CFLAGS += $(call cc-option,-mskip-rax-setup)
# FIXME - should be integrated in Makefile.cpu (Makefile_32.cpu)
@@ -354,10 +457,12 @@ gcc version >=4.9
+ cflags-$(CONFIG_MK10) += $(call cc-option,-march=amdfam10)
+ cflags-$(CONFIG_MBARCELONA) += $(call cc-option,-march=barcelona)
+ cflags-$(CONFIG_MBOBCAT) += $(call cc-option,-march=btver1)
++ cflags-$(CONFIG_MJAGUAR) += $(call cc-option,-march=btver2)
+ cflags-$(CONFIG_MBULLDOZER) += $(call cc-option,-march=bdver1)
+ cflags-$(CONFIG_MPILEDRIVER) += $(call cc-option,-march=bdver2)
+ cflags-$(CONFIG_MSTEAMROLLER) += $(call cc-option,-march=bdver3)
-+ cflags-$(CONFIG_MJAGUAR) += $(call cc-option,-march=btver2)
++ cflags-$(CONFIG_MEXCAVATOR) += $(call cc-option,-march=bdver4)
++ cflags-$(CONFIG_MZEN) += $(call cc-option,-march=znver1)
cflags-$(CONFIG_MPSC) += $(call cc-option,-march=nocona)
cflags-$(CONFIG_MCORE2) += \
@@ -386,9 +491,9 @@ gcc version >=4.9
cflags-$(CONFIG_GENERIC_CPU) += $(call cc-option,-mtune=generic)
KBUILD_CFLAGS += $(cflags-y)
---- a/arch/x86/Makefile_32.cpu 2015-08-30 14:34:09.000000000 -0400
-+++ b/arch/x86/Makefile_32.cpu 2015-11-06 14:21:43.604429077 -0500
-@@ -23,7 +23,16 @@ cflags-$(CONFIG_MK6) += -march=k6
+--- a/arch/x86/Makefile_32.cpu 2016-12-11 14:17:54.000000000 -0500
++++ b/arch/x86/Makefile_32.cpu 2017-01-06 20:44:36.603227283 -0500
+@@ -23,7 +23,18 @@ cflags-$(CONFIG_MK6) += -march=k6
# Please note, that patches that add -march=athlon-xp and friends are pointless.
# They make zero difference whatsosever to performance at this time.
cflags-$(CONFIG_MK7) += -march=athlon
@@ -398,14 +503,16 @@ gcc version >=4.9
+cflags-$(CONFIG_MK10) += $(call cc-option,-march=amdfam10,-march=athlon)
+cflags-$(CONFIG_MBARCELONA) += $(call cc-option,-march=barcelona,-march=athlon)
+cflags-$(CONFIG_MBOBCAT) += $(call cc-option,-march=btver1,-march=athlon)
++cflags-$(CONFIG_MJAGUAR) += $(call cc-option,-march=btver2,-march=athlon)
+cflags-$(CONFIG_MBULLDOZER) += $(call cc-option,-march=bdver1,-march=athlon)
+cflags-$(CONFIG_MPILEDRIVER) += $(call cc-option,-march=bdver2,-march=athlon)
+cflags-$(CONFIG_MSTEAMROLLER) += $(call cc-option,-march=bdver3,-march=athlon)
-+cflags-$(CONFIG_MJAGUAR) += $(call cc-option,-march=btver2,-march=athlon)
++cflags-$(CONFIG_MEXCAVATOR) += $(call cc-option,-march=bdver4,-march=athlon)
++cflags-$(CONFIG_MZEN) += $(call cc-option,-march=znver1,-march=athlon)
cflags-$(CONFIG_MCRUSOE) += -march=i686 $(align)-functions=0 $(align)-jumps=0 $(align)-loops=0
cflags-$(CONFIG_MEFFICEON) += -march=i686 $(call tune,pentium3) $(align)-functions=0 $(align)-jumps=0 $(align)-loops=0
cflags-$(CONFIG_MWINCHIPC6) += $(call cc-option,-march=winchip-c6,-march=i586)
-@@ -32,8 +41,16 @@ cflags-$(CONFIG_MCYRIXIII) += $(call cc-
+@@ -32,8 +43,16 @@ cflags-$(CONFIG_MCYRIXIII) += $(call cc-
cflags-$(CONFIG_MVIAC3_2) += $(call cc-option,-march=c3-2,-march=i686)
cflags-$(CONFIG_MVIAC7) += -march=i686
cflags-$(CONFIG_MCORE2) += -march=i686 $(call tune,core2)
^ permalink raw reply related [flat|nested] 5+ messages in thread
* [gentoo-commits] proj/linux-patches:4.11 commit in: /
@ 2017-05-01 23:09 Mike Pagano
0 siblings, 0 replies; 5+ messages in thread
From: Mike Pagano @ 2017-05-01 23:09 UTC (permalink / raw
To: gentoo-commits
commit: ef35bf05ea5efede8a1005b96bc899dc080be4fe
Author: Mike Pagano <mpagano <AT> gentoo <DOT> org>
AuthorDate: Mon May 1 23:09:26 2017 +0000
Commit: Mike Pagano <mpagano <AT> gentoo <DOT> org>
CommitDate: Mon May 1 23:09:26 2017 +0000
URL: https://gitweb.gentoo.org/proj/linux-patches.git/commit/?id=ef35bf05
Add BFQ patchset for 4.11
0000_README | 16 +
...ups-kconfig-build-bits-for-BFQ-v7r11-4.11.patch | 103 +
...oduce-the-BFQ-v7r11-I-O-sched-for-4.11.0.patch1 | 7109 +++++++++++++++
...rly-Queue-Merge-EQM-to-BFQ-v7r11-for-4.11.patch | 1101 +++
...FQ-v7r11-for-4.11.0-into-BFQ-v8r11-for-4.patch1 | 9433 ++++++++++++++++++++
5 files changed, 17762 insertions(+)
diff --git a/0000_README b/0000_README
index 58e3c74..70e3319 100644
--- a/0000_README
+++ b/0000_README
@@ -71,6 +71,22 @@ Patch: 4567_distro-Gentoo-Kconfig.patch
From: Tom Wijsman <TomWij@gentoo.org>
Desc: Add Gentoo Linux support config settings and defaults.
+Patch: 5001_block-cgroups-kconfig-build-bits-for-BFQ-v7r11-4.11.patch
+From: http://algo.ing.unimo.it/people/paolo/disk_sched/
+Desc: BFQ v7r11 patch 1 for 4.10: Build, cgroups and kconfig bits
+
+Patch: 5002_block-introduce-the-BFQ-v7r11-I-O-sched-for-4.11.0.patch1
+From: http://algo.ing.unimo.it/people/paolo/disk_sched/
+Desc: BFQ v7r11 patch 2 for 4.10: BFQ Scheduler
+
+Patch: 5003_block-bfq-add-Early-Queue-Merge-EQM-to-BFQ-v7r11-for-4.11.patch
+From: http://algo.ing.unimo.it/people/paolo/disk_sched/
+Desc: BFQ v7r11 patch 3 for 4.10: Early Queue Merge (EQM)
+
+Patch: 5004_blkck-bfq-turn-BFQ-v7r11-for-4.11.0-into-BFQ-v8r11-for-4.patch1
+From: http://algo.ing.unimo.it/people/paolo/disk_sched/
+Desc: BFQ v8r8 patch 4 for 4.10: Early Queue Merge (EQM)
+
Patch: 5010_enable-additional-cpu-optimizations-for-gcc.patch
From: https://github.com/graysky2/kernel_gcc_patch/
Desc: Kernel patch enables gcc >= v4.9 optimizations for additional CPUs.
diff --git a/5001_block-cgroups-kconfig-build-bits-for-BFQ-v7r11-4.11.patch b/5001_block-cgroups-kconfig-build-bits-for-BFQ-v7r11-4.11.patch
new file mode 100644
index 0000000..4555daa
--- /dev/null
+++ b/5001_block-cgroups-kconfig-build-bits-for-BFQ-v7r11-4.11.patch
@@ -0,0 +1,103 @@
+From a0bd3c561ad7ec10c22a5ca345c6e4c5df117e41 Mon Sep 17 00:00:00 2001
+From: Paolo Valente <paolo.valente@unimore.it>
+Date: Tue, 7 Apr 2015 13:39:12 +0200
+Subject: [PATCH 1/4] block: cgroups, kconfig, build bits for BFQ-v7r11-4.11.0
+
+Update Kconfig.iosched and do the related Makefile changes to include
+kernel configuration options for BFQ. Also increase the number of
+policies supported by the blkio controller so that BFQ can add its
+own.
+
+Signed-off-by: Paolo Valente <paolo.valente@unimore.it>
+Signed-off-by: Arianna Avanzini <avanzini@google.com>
+---
+ block/Kconfig.iosched | 32 ++++++++++++++++++++++++++++++++
+ block/Makefile | 1 +
+ include/linux/blkdev.h | 2 +-
+ 3 files changed, 34 insertions(+), 1 deletion(-)
+
+diff --git a/block/Kconfig.iosched b/block/Kconfig.iosched
+index 58fc868..bb47b1a 100644
+--- a/block/Kconfig.iosched
++++ b/block/Kconfig.iosched
+@@ -39,6 +39,27 @@ config CFQ_GROUP_IOSCHED
+ ---help---
+ Enable group IO scheduling in CFQ.
+
++config IOSCHED_BFQ
++ tristate "BFQ I/O scheduler"
++ default n
++ ---help---
++ The BFQ I/O scheduler tries to distribute bandwidth among
++ all processes according to their weights.
++ It aims at distributing the bandwidth as desired, independently of
++ the disk parameters and with any workload. It also tries to
++ guarantee low latency to interactive and soft real-time
++ applications. If compiled built-in (saying Y here), BFQ can
++ be configured to support hierarchical scheduling.
++
++config CGROUP_BFQIO
++ bool "BFQ hierarchical scheduling support"
++ depends on CGROUPS && IOSCHED_BFQ=y
++ default n
++ ---help---
++ Enable hierarchical scheduling in BFQ, using the cgroups
++ filesystem interface. The name of the subsystem will be
++ bfqio.
++
+ choice
+ prompt "Default I/O scheduler"
+ default DEFAULT_CFQ
+@@ -52,6 +73,16 @@ choice
+ config DEFAULT_CFQ
+ bool "CFQ" if IOSCHED_CFQ=y
+
++ config DEFAULT_BFQ
++ bool "BFQ" if IOSCHED_BFQ=y
++ help
++ Selects BFQ as the default I/O scheduler which will be
++ used by default for all block devices.
++ The BFQ I/O scheduler aims at distributing the bandwidth
++ as desired, independently of the disk parameters and with
++ any workload. It also tries to guarantee low latency to
++ interactive and soft real-time applications.
++
+ config DEFAULT_NOOP
+ bool "No-op"
+
+@@ -61,6 +92,7 @@ config DEFAULT_IOSCHED
+ string
+ default "deadline" if DEFAULT_DEADLINE
+ default "cfq" if DEFAULT_CFQ
++ default "bfq" if DEFAULT_BFQ
+ default "noop" if DEFAULT_NOOP
+
+ config MQ_IOSCHED_DEADLINE
+diff --git a/block/Makefile b/block/Makefile
+index 081bb68..91869f2 100644
+--- a/block/Makefile
++++ b/block/Makefile
+@@ -20,6 +20,7 @@ obj-$(CONFIG_IOSCHED_NOOP) += noop-iosched.o
+ obj-$(CONFIG_IOSCHED_DEADLINE) += deadline-iosched.o
+ obj-$(CONFIG_IOSCHED_CFQ) += cfq-iosched.o
+ obj-$(CONFIG_MQ_IOSCHED_DEADLINE) += mq-deadline.o
++obj-$(CONFIG_IOSCHED_BFQ) += bfq-iosched.o
+
+ obj-$(CONFIG_BLOCK_COMPAT) += compat_ioctl.o
+ obj-$(CONFIG_BLK_CMDLINE_PARSER) += cmdline-parser.o
+diff --git a/include/linux/blkdev.h b/include/linux/blkdev.h
+index 01a696b..29d537d 100644
+--- a/include/linux/blkdev.h
++++ b/include/linux/blkdev.h
+@@ -48,7 +48,7 @@ struct rq_wb;
+ * Maximum number of blkcg policies allowed to be registered concurrently.
+ * Defined here to simplify include dependency.
+ */
+-#define BLKCG_MAX_POLS 2
++#define BLKCG_MAX_POLS 3
+
+ typedef void (rq_end_io_fn)(struct request *, int);
+
+--
+2.10.0
+
diff --git a/5002_block-introduce-the-BFQ-v7r11-I-O-sched-for-4.11.0.patch1 b/5002_block-introduce-the-BFQ-v7r11-I-O-sched-for-4.11.0.patch1
new file mode 100644
index 0000000..0c46a2e
--- /dev/null
+++ b/5002_block-introduce-the-BFQ-v7r11-I-O-sched-for-4.11.0.patch1
@@ -0,0 +1,7109 @@
+From ce617fdef48078f52afeec078dacbe7ac9d74588 Mon Sep 17 00:00:00 2001
+From: Paolo Valente <paolo.valente@unimore.it>
+Date: Thu, 9 May 2013 19:10:02 +0200
+Subject: [PATCH 2/4] block: introduce the BFQ-v7r11 I/O sched for 4.11.0
+
+The general structure is borrowed from CFQ, as much of the code for
+handling I/O contexts. Over time, several useful features have been
+ported from CFQ as well (details in the changelog in README.BFQ). A
+(bfq_)queue is associated to each task doing I/O on a device, and each
+time a scheduling decision has to be made a queue is selected and served
+until it expires.
+
+ - Slices are given in the service domain: tasks are assigned
+ budgets, measured in number of sectors. Once got the disk, a task
+ must however consume its assigned budget within a configurable
+ maximum time (by default, the maximum possible value of the
+ budgets is automatically computed to comply with this timeout).
+ This allows the desired latency vs "throughput boosting" tradeoff
+ to be set.
+
+ - Budgets are scheduled according to a variant of WF2Q+, implemented
+ using an augmented rb-tree to take eligibility into account while
+ preserving an O(log N) overall complexity.
+
+ - A low-latency tunable is provided; if enabled, both interactive
+ and soft real-time applications are guaranteed a very low latency.
+
+ - Latency guarantees are preserved also in the presence of NCQ.
+
+ - Also with flash-based devices, a high throughput is achieved
+ while still preserving latency guarantees.
+
+ - BFQ features Early Queue Merge (EQM), a sort of fusion of the
+ cooperating-queue-merging and the preemption mechanisms present
+ in CFQ. EQM is in fact a unified mechanism that tries to get a
+ sequential read pattern, and hence a high throughput, with any
+ set of processes performing interleaved I/O over a contiguous
+ sequence of sectors.
+
+ - BFQ supports full hierarchical scheduling, exporting a cgroups
+ interface. Since each node has a full scheduler, each group can
+ be assigned its own weight.
+
+ - If the cgroups interface is not used, only I/O priorities can be
+ assigned to processes, with ioprio values mapped to weights
+ with the relation weight = IOPRIO_BE_NR - ioprio.
+
+ - ioprio classes are served in strict priority order, i.e., lower
+ priority queues are not served as long as there are higher
+ priority queues. Among queues in the same class the bandwidth is
+ distributed in proportion to the weight of each queue. A very
+ thin extra bandwidth is however guaranteed to the Idle class, to
+ prevent it from starving.
+
+Signed-off-by: Paolo Valente <paolo.valente@unimore.it>
+Signed-off-by: Arianna Avanzini <avanzini@google.com>
+---
+ block/Kconfig.iosched | 6 +-
+ block/bfq-cgroup.c | 1186 ++++++++++++++++
+ block/bfq-ioc.c | 36 +
+ block/bfq-iosched.c | 3763 +++++++++++++++++++++++++++++++++++++++++++++++++
+ block/bfq-sched.c | 1199 ++++++++++++++++
+ block/bfq.h | 801 +++++++++++
+ 6 files changed, 6987 insertions(+), 4 deletions(-)
+ create mode 100644 block/bfq-cgroup.c
+ create mode 100644 block/bfq-ioc.c
+ create mode 100644 block/bfq-iosched.c
+ create mode 100644 block/bfq-sched.c
+ create mode 100644 block/bfq.h
+
+diff --git a/block/Kconfig.iosched b/block/Kconfig.iosched
+index bb47b1a..b1ab0ca 100644
+--- a/block/Kconfig.iosched
++++ b/block/Kconfig.iosched
+@@ -51,14 +51,12 @@ config IOSCHED_BFQ
+ applications. If compiled built-in (saying Y here), BFQ can
+ be configured to support hierarchical scheduling.
+
+-config CGROUP_BFQIO
++config BFQ_GROUP_IOSCHED
+ bool "BFQ hierarchical scheduling support"
+ depends on CGROUPS && IOSCHED_BFQ=y
+ default n
+ ---help---
+- Enable hierarchical scheduling in BFQ, using the cgroups
+- filesystem interface. The name of the subsystem will be
+- bfqio.
++ Enable hierarchical scheduling in BFQ, using the blkio controller.
+
+ choice
+ prompt "Default I/O scheduler"
+diff --git a/block/bfq-cgroup.c b/block/bfq-cgroup.c
+new file mode 100644
+index 0000000..8b08a57
+--- /dev/null
++++ b/block/bfq-cgroup.c
+@@ -0,0 +1,1186 @@
++/*
++ * BFQ: CGROUPS support.
++ *
++ * Based on ideas and code from CFQ:
++ * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
++ *
++ * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
++ * Paolo Valente <paolo.valente@unimore.it>
++ *
++ * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
++ *
++ * Licensed under the GPL-2 as detailed in the accompanying COPYING.BFQ
++ * file.
++ */
++
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++
++/* bfqg stats flags */
++enum bfqg_stats_flags {
++ BFQG_stats_waiting = 0,
++ BFQG_stats_idling,
++ BFQG_stats_empty,
++};
++
++#define BFQG_FLAG_FNS(name) \
++static void bfqg_stats_mark_##name(struct bfqg_stats *stats) \
++{ \
++ stats->flags |= (1 << BFQG_stats_##name); \
++} \
++static void bfqg_stats_clear_##name(struct bfqg_stats *stats) \
++{ \
++ stats->flags &= ~(1 << BFQG_stats_##name); \
++} \
++static int bfqg_stats_##name(struct bfqg_stats *stats) \
++{ \
++ return (stats->flags & (1 << BFQG_stats_##name)) != 0; \
++} \
++
++BFQG_FLAG_FNS(waiting)
++BFQG_FLAG_FNS(idling)
++BFQG_FLAG_FNS(empty)
++#undef BFQG_FLAG_FNS
++
++/* This should be called with the queue_lock held. */
++static void bfqg_stats_update_group_wait_time(struct bfqg_stats *stats)
++{
++ unsigned long long now;
++
++ if (!bfqg_stats_waiting(stats))
++ return;
++
++ now = sched_clock();
++ if (time_after64(now, stats->start_group_wait_time))
++ blkg_stat_add(&stats->group_wait_time,
++ now - stats->start_group_wait_time);
++ bfqg_stats_clear_waiting(stats);
++}
++
++/* This should be called with the queue_lock held. */
++static void bfqg_stats_set_start_group_wait_time(struct bfq_group *bfqg,
++ struct bfq_group *curr_bfqg)
++{
++ struct bfqg_stats *stats = &bfqg->stats;
++
++ if (bfqg_stats_waiting(stats))
++ return;
++ if (bfqg == curr_bfqg)
++ return;
++ stats->start_group_wait_time = sched_clock();
++ bfqg_stats_mark_waiting(stats);
++}
++
++/* This should be called with the queue_lock held. */
++static void bfqg_stats_end_empty_time(struct bfqg_stats *stats)
++{
++ unsigned long long now;
++
++ if (!bfqg_stats_empty(stats))
++ return;
++
++ now = sched_clock();
++ if (time_after64(now, stats->start_empty_time))
++ blkg_stat_add(&stats->empty_time,
++ now - stats->start_empty_time);
++ bfqg_stats_clear_empty(stats);
++}
++
++static void bfqg_stats_update_dequeue(struct bfq_group *bfqg)
++{
++ blkg_stat_add(&bfqg->stats.dequeue, 1);
++}
++
++static void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg)
++{
++ struct bfqg_stats *stats = &bfqg->stats;
++
++ if (blkg_rwstat_total(&stats->queued))
++ return;
++
++ /*
++ * group is already marked empty. This can happen if bfqq got new
++ * request in parent group and moved to this group while being added
++ * to service tree. Just ignore the event and move on.
++ */
++ if (bfqg_stats_empty(stats))
++ return;
++
++ stats->start_empty_time = sched_clock();
++ bfqg_stats_mark_empty(stats);
++}
++
++static void bfqg_stats_update_idle_time(struct bfq_group *bfqg)
++{
++ struct bfqg_stats *stats = &bfqg->stats;
++
++ if (bfqg_stats_idling(stats)) {
++ unsigned long long now = sched_clock();
++
++ if (time_after64(now, stats->start_idle_time))
++ blkg_stat_add(&stats->idle_time,
++ now - stats->start_idle_time);
++ bfqg_stats_clear_idling(stats);
++ }
++}
++
++static void bfqg_stats_set_start_idle_time(struct bfq_group *bfqg)
++{
++ struct bfqg_stats *stats = &bfqg->stats;
++
++ stats->start_idle_time = sched_clock();
++ bfqg_stats_mark_idling(stats);
++}
++
++static void bfqg_stats_update_avg_queue_size(struct bfq_group *bfqg)
++{
++ struct bfqg_stats *stats = &bfqg->stats;
++
++ blkg_stat_add(&stats->avg_queue_size_sum,
++ blkg_rwstat_total(&stats->queued));
++ blkg_stat_add(&stats->avg_queue_size_samples, 1);
++ bfqg_stats_update_group_wait_time(stats);
++}
++
++static struct blkcg_policy blkcg_policy_bfq;
++
++/*
++ * blk-cgroup policy-related handlers
++ * The following functions help in converting between blk-cgroup
++ * internal structures and BFQ-specific structures.
++ */
++
++static struct bfq_group *pd_to_bfqg(struct blkg_policy_data *pd)
++{
++ return pd ? container_of(pd, struct bfq_group, pd) : NULL;
++}
++
++static struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg)
++{
++ return pd_to_blkg(&bfqg->pd);
++}
++
++static struct bfq_group *blkg_to_bfqg(struct blkcg_gq *blkg)
++{
++ struct blkg_policy_data *pd = blkg_to_pd(blkg, &blkcg_policy_bfq);
++
++ BUG_ON(!pd);
++
++ return pd_to_bfqg(pd);
++}
++
++/*
++ * bfq_group handlers
++ * The following functions help in navigating the bfq_group hierarchy
++ * by allowing to find the parent of a bfq_group or the bfq_group
++ * associated to a bfq_queue.
++ */
++
++static struct bfq_group *bfqg_parent(struct bfq_group *bfqg)
++{
++ struct blkcg_gq *pblkg = bfqg_to_blkg(bfqg)->parent;
++
++ return pblkg ? blkg_to_bfqg(pblkg) : NULL;
++}
++
++static struct bfq_group *bfqq_group(struct bfq_queue *bfqq)
++{
++ struct bfq_entity *group_entity = bfqq->entity.parent;
++
++ return group_entity ? container_of(group_entity, struct bfq_group,
++ entity) :
++ bfqq->bfqd->root_group;
++}
++
++/*
++ * The following two functions handle get and put of a bfq_group by
++ * wrapping the related blk-cgroup hooks.
++ */
++
++static void bfqg_get(struct bfq_group *bfqg)
++{
++ return blkg_get(bfqg_to_blkg(bfqg));
++}
++
++static void bfqg_put(struct bfq_group *bfqg)
++{
++ return blkg_put(bfqg_to_blkg(bfqg));
++}
++
++static void bfqg_stats_update_io_add(struct bfq_group *bfqg,
++ struct bfq_queue *bfqq,
++ int rw)
++{
++ blkg_rwstat_add(&bfqg->stats.queued, rw, 1);
++ bfqg_stats_end_empty_time(&bfqg->stats);
++ if (!(bfqq == ((struct bfq_data *)bfqg->bfqd)->in_service_queue))
++ bfqg_stats_set_start_group_wait_time(bfqg, bfqq_group(bfqq));
++}
++
++static void bfqg_stats_update_io_remove(struct bfq_group *bfqg, int rw)
++{
++ blkg_rwstat_add(&bfqg->stats.queued, rw, -1);
++}
++
++static void bfqg_stats_update_io_merged(struct bfq_group *bfqg, int rw)
++{
++ blkg_rwstat_add(&bfqg->stats.merged, rw, 1);
++}
++
++static void bfqg_stats_update_dispatch(struct bfq_group *bfqg,
++ uint64_t bytes, int rw)
++{
++ blkg_stat_add(&bfqg->stats.sectors, bytes >> 9);
++ blkg_rwstat_add(&bfqg->stats.serviced, rw, 1);
++ blkg_rwstat_add(&bfqg->stats.service_bytes, rw, bytes);
++}
++
++static void bfqg_stats_update_completion(struct bfq_group *bfqg,
++ uint64_t start_time, uint64_t io_start_time, int rw)
++{
++ struct bfqg_stats *stats = &bfqg->stats;
++ unsigned long long now = sched_clock();
++
++ if (time_after64(now, io_start_time))
++ blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
++ if (time_after64(io_start_time, start_time))
++ blkg_rwstat_add(&stats->wait_time, rw,
++ io_start_time - start_time);
++}
++
++/* @stats = 0 */
++static void bfqg_stats_reset(struct bfqg_stats *stats)
++{
++ if (!stats)
++ return;
++
++ /* queued stats shouldn't be cleared */
++ blkg_rwstat_reset(&stats->service_bytes);
++ blkg_rwstat_reset(&stats->serviced);
++ blkg_rwstat_reset(&stats->merged);
++ blkg_rwstat_reset(&stats->service_time);
++ blkg_rwstat_reset(&stats->wait_time);
++ blkg_stat_reset(&stats->time);
++ blkg_stat_reset(&stats->unaccounted_time);
++ blkg_stat_reset(&stats->avg_queue_size_sum);
++ blkg_stat_reset(&stats->avg_queue_size_samples);
++ blkg_stat_reset(&stats->dequeue);
++ blkg_stat_reset(&stats->group_wait_time);
++ blkg_stat_reset(&stats->idle_time);
++ blkg_stat_reset(&stats->empty_time);
++}
++
++/* @to += @from */
++static void bfqg_stats_merge(struct bfqg_stats *to, struct bfqg_stats *from)
++{
++ if (!to || !from)
++ return;
++
++ /* queued stats shouldn't be cleared */
++ blkg_rwstat_add_aux(&to->service_bytes, &from->service_bytes);
++ blkg_rwstat_add_aux(&to->serviced, &from->serviced);
++ blkg_rwstat_add_aux(&to->merged, &from->merged);
++ blkg_rwstat_add_aux(&to->service_time, &from->service_time);
++ blkg_rwstat_add_aux(&to->wait_time, &from->wait_time);
++ blkg_stat_add_aux(&from->time, &from->time);
++ blkg_stat_add_aux(&to->unaccounted_time, &from->unaccounted_time);
++ blkg_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
++ blkg_stat_add_aux(&to->avg_queue_size_samples,
++ &from->avg_queue_size_samples);
++ blkg_stat_add_aux(&to->dequeue, &from->dequeue);
++ blkg_stat_add_aux(&to->group_wait_time, &from->group_wait_time);
++ blkg_stat_add_aux(&to->idle_time, &from->idle_time);
++ blkg_stat_add_aux(&to->empty_time, &from->empty_time);
++}
++
++/*
++ * Transfer @bfqg's stats to its parent's dead_stats so that the ancestors'
++ * recursive stats can still account for the amount used by this bfqg after
++ * it's gone.
++ */
++static void bfqg_stats_xfer_dead(struct bfq_group *bfqg)
++{
++ struct bfq_group *parent;
++
++ if (!bfqg) /* root_group */
++ return;
++
++ parent = bfqg_parent(bfqg);
++
++ lockdep_assert_held(bfqg_to_blkg(bfqg)->q->queue_lock);
++
++ if (unlikely(!parent))
++ return;
++
++ bfqg_stats_merge(&parent->dead_stats, &bfqg->stats);
++ bfqg_stats_merge(&parent->dead_stats, &bfqg->dead_stats);
++ bfqg_stats_reset(&bfqg->stats);
++ bfqg_stats_reset(&bfqg->dead_stats);
++}
++
++static void bfq_init_entity(struct bfq_entity *entity,
++ struct bfq_group *bfqg)
++{
++ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++
++ entity->weight = entity->new_weight;
++ entity->orig_weight = entity->new_weight;
++ if (bfqq) {
++ bfqq->ioprio = bfqq->new_ioprio;
++ bfqq->ioprio_class = bfqq->new_ioprio_class;
++ bfqg_get(bfqg);
++ }
++ entity->parent = bfqg->my_entity;
++ entity->sched_data = &bfqg->sched_data;
++}
++
++static void bfqg_stats_exit(struct bfqg_stats *stats)
++{
++ blkg_rwstat_exit(&stats->service_bytes);
++ blkg_rwstat_exit(&stats->serviced);
++ blkg_rwstat_exit(&stats->merged);
++ blkg_rwstat_exit(&stats->service_time);
++ blkg_rwstat_exit(&stats->wait_time);
++ blkg_rwstat_exit(&stats->queued);
++ blkg_stat_exit(&stats->sectors);
++ blkg_stat_exit(&stats->time);
++ blkg_stat_exit(&stats->unaccounted_time);
++ blkg_stat_exit(&stats->avg_queue_size_sum);
++ blkg_stat_exit(&stats->avg_queue_size_samples);
++ blkg_stat_exit(&stats->dequeue);
++ blkg_stat_exit(&stats->group_wait_time);
++ blkg_stat_exit(&stats->idle_time);
++ blkg_stat_exit(&stats->empty_time);
++}
++
++static int bfqg_stats_init(struct bfqg_stats *stats, gfp_t gfp)
++{
++ if (blkg_rwstat_init(&stats->service_bytes, gfp) ||
++ blkg_rwstat_init(&stats->serviced, gfp) ||
++ blkg_rwstat_init(&stats->merged, gfp) ||
++ blkg_rwstat_init(&stats->service_time, gfp) ||
++ blkg_rwstat_init(&stats->wait_time, gfp) ||
++ blkg_rwstat_init(&stats->queued, gfp) ||
++ blkg_stat_init(&stats->sectors, gfp) ||
++ blkg_stat_init(&stats->time, gfp) ||
++ blkg_stat_init(&stats->unaccounted_time, gfp) ||
++ blkg_stat_init(&stats->avg_queue_size_sum, gfp) ||
++ blkg_stat_init(&stats->avg_queue_size_samples, gfp) ||
++ blkg_stat_init(&stats->dequeue, gfp) ||
++ blkg_stat_init(&stats->group_wait_time, gfp) ||
++ blkg_stat_init(&stats->idle_time, gfp) ||
++ blkg_stat_init(&stats->empty_time, gfp)) {
++ bfqg_stats_exit(stats);
++ return -ENOMEM;
++ }
++
++ return 0;
++}
++
++static struct bfq_group_data *cpd_to_bfqgd(struct blkcg_policy_data *cpd)
++{
++ return cpd ? container_of(cpd, struct bfq_group_data, pd) : NULL;
++}
++
++static struct bfq_group_data *blkcg_to_bfqgd(struct blkcg *blkcg)
++{
++ return cpd_to_bfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_bfq));
++}
++
++static void bfq_cpd_init(struct blkcg_policy_data *cpd)
++{
++ struct bfq_group_data *d = cpd_to_bfqgd(cpd);
++
++ d->weight = BFQ_DEFAULT_GRP_WEIGHT;
++}
++
++static struct blkg_policy_data *bfq_pd_alloc(gfp_t gfp, int node)
++{
++ struct bfq_group *bfqg;
++
++ bfqg = kzalloc_node(sizeof(*bfqg), gfp, node);
++ if (!bfqg)
++ return NULL;
++
++ if (bfqg_stats_init(&bfqg->stats, gfp) ||
++ bfqg_stats_init(&bfqg->dead_stats, gfp)) {
++ kfree(bfqg);
++ return NULL;
++ }
++
++ return &bfqg->pd;
++}
++
++static void bfq_group_set_parent(struct bfq_group *bfqg,
++ struct bfq_group *parent)
++{
++ struct bfq_entity *entity;
++
++ BUG_ON(!parent);
++ BUG_ON(!bfqg);
++ BUG_ON(bfqg == parent);
++
++ entity = &bfqg->entity;
++ entity->parent = parent->my_entity;
++ entity->sched_data = &parent->sched_data;
++}
++
++static void bfq_pd_init(struct blkg_policy_data *pd)
++{
++ struct blkcg_gq *blkg = pd_to_blkg(pd);
++ struct bfq_group *bfqg = blkg_to_bfqg(blkg);
++ struct bfq_data *bfqd = blkg->q->elevator->elevator_data;
++ struct bfq_entity *entity = &bfqg->entity;
++ struct bfq_group_data *d = blkcg_to_bfqgd(blkg->blkcg);
++
++ entity->orig_weight = entity->weight = entity->new_weight = d->weight;
++ entity->my_sched_data = &bfqg->sched_data;
++ bfqg->my_entity = entity; /*
++ * the root_group's will be set to NULL
++ * in bfq_init_queue()
++ */
++ bfqg->bfqd = bfqd;
++ bfqg->active_entities = 0;
++}
++
++static void bfq_pd_free(struct blkg_policy_data *pd)
++{
++ struct bfq_group *bfqg = pd_to_bfqg(pd);
++
++ bfqg_stats_exit(&bfqg->stats);
++ bfqg_stats_exit(&bfqg->dead_stats);
++
++ return kfree(bfqg);
++}
++
++/* offset delta from bfqg->stats to bfqg->dead_stats */
++static const int dead_stats_off_delta = offsetof(struct bfq_group, dead_stats) -
++ offsetof(struct bfq_group, stats);
++
++/* to be used by recursive prfill, sums live and dead stats recursively */
++static u64 bfqg_stat_pd_recursive_sum(struct blkg_policy_data *pd, int off)
++{
++ u64 sum = 0;
++
++ sum += blkg_stat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_bfq, off);
++ sum += blkg_stat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_bfq,
++ off + dead_stats_off_delta);
++ return sum;
++}
++
++/* to be used by recursive prfill, sums live and dead rwstats recursively */
++static struct blkg_rwstat
++bfqg_rwstat_pd_recursive_sum(struct blkg_policy_data *pd, int off)
++{
++ struct blkg_rwstat a, b;
++
++ a = blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_bfq, off);
++ b = blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_bfq,
++ off + dead_stats_off_delta);
++ blkg_rwstat_add_aux(&a, &b);
++ return a;
++}
++
++static void bfq_pd_reset_stats(struct blkg_policy_data *pd)
++{
++ struct bfq_group *bfqg = pd_to_bfqg(pd);
++
++ bfqg_stats_reset(&bfqg->stats);
++ bfqg_stats_reset(&bfqg->dead_stats);
++}
++
++static struct bfq_group *bfq_find_alloc_group(struct bfq_data *bfqd,
++ struct blkcg *blkcg)
++{
++ struct request_queue *q = bfqd->queue;
++ struct bfq_group *bfqg = NULL, *parent;
++ struct bfq_entity *entity = NULL;
++
++ assert_spin_locked(bfqd->queue->queue_lock);
++
++ /* avoid lookup for the common case where there's no blkcg */
++ if (blkcg == &blkcg_root) {
++ bfqg = bfqd->root_group;
++ } else {
++ struct blkcg_gq *blkg;
++
++ blkg = blkg_lookup_create(blkcg, q);
++ if (!IS_ERR(blkg))
++ bfqg = blkg_to_bfqg(blkg);
++ else /* fallback to root_group */
++ bfqg = bfqd->root_group;
++ }
++
++ BUG_ON(!bfqg);
++
++ /*
++ * Update chain of bfq_groups as we might be handling a leaf group
++ * which, along with some of its relatives, has not been hooked yet
++ * to the private hierarchy of BFQ.
++ */
++ entity = &bfqg->entity;
++ for_each_entity(entity) {
++ bfqg = container_of(entity, struct bfq_group, entity);
++ BUG_ON(!bfqg);
++ if (bfqg != bfqd->root_group) {
++ parent = bfqg_parent(bfqg);
++ if (!parent)
++ parent = bfqd->root_group;
++ BUG_ON(!parent);
++ bfq_group_set_parent(bfqg, parent);
++ }
++ }
++
++ return bfqg;
++}
++
++/**
++ * bfq_bfqq_move - migrate @bfqq to @bfqg.
++ * @bfqd: queue descriptor.
++ * @bfqq: the queue to move.
++ * @entity: @bfqq's entity.
++ * @bfqg: the group to move to.
++ *
++ * Move @bfqq to @bfqg, deactivating it from its old group and reactivating
++ * it on the new one. Avoid putting the entity on the old group idle tree.
++ *
++ * Must be called under the queue lock; the cgroup owning @bfqg must
++ * not disappear (by now this just means that we are called under
++ * rcu_read_lock()).
++ */
++static void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++ struct bfq_entity *entity, struct bfq_group *bfqg)
++{
++ int busy, resume;
++
++ busy = bfq_bfqq_busy(bfqq);
++ resume = !RB_EMPTY_ROOT(&bfqq->sort_list);
++
++ BUG_ON(resume && !entity->on_st);
++ BUG_ON(busy && !resume && entity->on_st &&
++ bfqq != bfqd->in_service_queue);
++
++ if (busy) {
++ BUG_ON(atomic_read(&bfqq->ref) < 2);
++
++ if (!resume)
++ bfq_del_bfqq_busy(bfqd, bfqq, 0);
++ else
++ bfq_deactivate_bfqq(bfqd, bfqq, 0);
++ } else if (entity->on_st)
++ bfq_put_idle_entity(bfq_entity_service_tree(entity), entity);
++ bfqg_put(bfqq_group(bfqq));
++
++ /*
++ * Here we use a reference to bfqg. We don't need a refcounter
++ * as the cgroup reference will not be dropped, so that its
++ * destroy() callback will not be invoked.
++ */
++ entity->parent = bfqg->my_entity;
++ entity->sched_data = &bfqg->sched_data;
++ bfqg_get(bfqg);
++
++ if (busy) {
++ if (resume)
++ bfq_activate_bfqq(bfqd, bfqq);
++ }
++
++ if (!bfqd->in_service_queue && !bfqd->rq_in_driver)
++ bfq_schedule_dispatch(bfqd);
++}
++
++/**
++ * __bfq_bic_change_cgroup - move @bic to @cgroup.
++ * @bfqd: the queue descriptor.
++ * @bic: the bic to move.
++ * @blkcg: the blk-cgroup to move to.
++ *
++ * Move bic to blkcg, assuming that bfqd->queue is locked; the caller
++ * has to make sure that the reference to cgroup is valid across the call.
++ *
++ * NOTE: an alternative approach might have been to store the current
++ * cgroup in bfqq and getting a reference to it, reducing the lookup
++ * time here, at the price of slightly more complex code.
++ */
++static struct bfq_group *__bfq_bic_change_cgroup(struct bfq_data *bfqd,
++ struct bfq_io_cq *bic,
++ struct blkcg *blkcg)
++{
++ struct bfq_queue *async_bfqq = bic_to_bfqq(bic, 0);
++ struct bfq_queue *sync_bfqq = bic_to_bfqq(bic, 1);
++ struct bfq_group *bfqg;
++ struct bfq_entity *entity;
++
++ lockdep_assert_held(bfqd->queue->queue_lock);
++
++ bfqg = bfq_find_alloc_group(bfqd, blkcg);
++ if (async_bfqq) {
++ entity = &async_bfqq->entity;
++
++ if (entity->sched_data != &bfqg->sched_data) {
++ bic_set_bfqq(bic, NULL, 0);
++ bfq_log_bfqq(bfqd, async_bfqq,
++ "bic_change_group: %p %d",
++ async_bfqq, atomic_read(&async_bfqq->ref));
++ bfq_put_queue(async_bfqq);
++ }
++ }
++
++ if (sync_bfqq) {
++ entity = &sync_bfqq->entity;
++ if (entity->sched_data != &bfqg->sched_data)
++ bfq_bfqq_move(bfqd, sync_bfqq, entity, bfqg);
++ }
++
++ return bfqg;
++}
++
++static void bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio)
++{
++ struct bfq_data *bfqd = bic_to_bfqd(bic);
++ struct blkcg *blkcg;
++ struct bfq_group *bfqg = NULL;
++ uint64_t id;
++
++ rcu_read_lock();
++ blkcg = bio_blkcg(bio);
++ id = blkcg->css.serial_nr;
++ rcu_read_unlock();
++
++ /*
++ * Check whether blkcg has changed. The condition may trigger
++ * spuriously on a newly created cic but there's no harm.
++ */
++ if (unlikely(!bfqd) || likely(bic->blkcg_id == id))
++ return;
++
++ bfqg = __bfq_bic_change_cgroup(bfqd, bic, blkcg);
++ BUG_ON(!bfqg);
++ bic->blkcg_id = id;
++}
++
++/**
++ * bfq_flush_idle_tree - deactivate any entity on the idle tree of @st.
++ * @st: the service tree being flushed.
++ */
++static void bfq_flush_idle_tree(struct bfq_service_tree *st)
++{
++ struct bfq_entity *entity = st->first_idle;
++
++ for (; entity ; entity = st->first_idle)
++ __bfq_deactivate_entity(entity, 0);
++}
++
++/**
++ * bfq_reparent_leaf_entity - move leaf entity to the root_group.
++ * @bfqd: the device data structure with the root group.
++ * @entity: the entity to move.
++ */
++static void bfq_reparent_leaf_entity(struct bfq_data *bfqd,
++ struct bfq_entity *entity)
++{
++ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++
++ BUG_ON(!bfqq);
++ bfq_bfqq_move(bfqd, bfqq, entity, bfqd->root_group);
++}
++
++/**
++ * bfq_reparent_active_entities - move to the root group all active
++ * entities.
++ * @bfqd: the device data structure with the root group.
++ * @bfqg: the group to move from.
++ * @st: the service tree with the entities.
++ *
++ * Needs queue_lock to be taken and reference to be valid over the call.
++ */
++static void bfq_reparent_active_entities(struct bfq_data *bfqd,
++ struct bfq_group *bfqg,
++ struct bfq_service_tree *st)
++{
++ struct rb_root *active = &st->active;
++ struct bfq_entity *entity = NULL;
++
++ if (!RB_EMPTY_ROOT(&st->active))
++ entity = bfq_entity_of(rb_first(active));
++
++ for (; entity ; entity = bfq_entity_of(rb_first(active)))
++ bfq_reparent_leaf_entity(bfqd, entity);
++
++ if (bfqg->sched_data.in_service_entity)
++ bfq_reparent_leaf_entity(bfqd,
++ bfqg->sched_data.in_service_entity);
++}
++
++/**
++ * bfq_destroy_group - destroy @bfqg.
++ * @bfqg: the group being destroyed.
++ *
++ * Destroy @bfqg, making sure that it is not referenced from its parent.
++ * blkio already grabs the queue_lock for us, so no need to use RCU-based magic
++ */
++static void bfq_pd_offline(struct blkg_policy_data *pd)
++{
++ struct bfq_service_tree *st;
++ struct bfq_group *bfqg;
++ struct bfq_data *bfqd;
++ struct bfq_entity *entity;
++ int i;
++
++ BUG_ON(!pd);
++ bfqg = pd_to_bfqg(pd);
++ BUG_ON(!bfqg);
++ bfqd = bfqg->bfqd;
++ BUG_ON(bfqd && !bfqd->root_group);
++
++ entity = bfqg->my_entity;
++
++ if (!entity) /* root group */
++ return;
++
++ /*
++ * Empty all service_trees belonging to this group before
++ * deactivating the group itself.
++ */
++ for (i = 0; i < BFQ_IOPRIO_CLASSES; i++) {
++ BUG_ON(!bfqg->sched_data.service_tree);
++ st = bfqg->sched_data.service_tree + i;
++ /*
++ * The idle tree may still contain bfq_queues belonging
++ * to exited task because they never migrated to a different
++ * cgroup from the one being destroyed now. No one else
++ * can access them so it's safe to act without any lock.
++ */
++ bfq_flush_idle_tree(st);
++
++ /*
++ * It may happen that some queues are still active
++ * (busy) upon group destruction (if the corresponding
++ * processes have been forced to terminate). We move
++ * all the leaf entities corresponding to these queues
++ * to the root_group.
++ * Also, it may happen that the group has an entity
++ * in service, which is disconnected from the active
++ * tree: it must be moved, too.
++ * There is no need to put the sync queues, as the
++ * scheduler has taken no reference.
++ */
++ bfq_reparent_active_entities(bfqd, bfqg, st);
++ BUG_ON(!RB_EMPTY_ROOT(&st->active));
++ BUG_ON(!RB_EMPTY_ROOT(&st->idle));
++ }
++ BUG_ON(bfqg->sched_data.next_in_service);
++ BUG_ON(bfqg->sched_data.in_service_entity);
++
++ __bfq_deactivate_entity(entity, 0);
++ bfq_put_async_queues(bfqd, bfqg);
++ BUG_ON(entity->tree);
++
++ bfqg_stats_xfer_dead(bfqg);
++}
++
++static void bfq_end_wr_async(struct bfq_data *bfqd)
++{
++ struct blkcg_gq *blkg;
++
++ list_for_each_entry(blkg, &bfqd->queue->blkg_list, q_node) {
++ struct bfq_group *bfqg = blkg_to_bfqg(blkg);
++
++ bfq_end_wr_async_queues(bfqd, bfqg);
++ }
++ bfq_end_wr_async_queues(bfqd, bfqd->root_group);
++}
++
++static u64 bfqio_cgroup_weight_read(struct cgroup_subsys_state *css,
++ struct cftype *cftype)
++{
++ struct blkcg *blkcg = css_to_blkcg(css);
++ struct bfq_group_data *bfqgd = blkcg_to_bfqgd(blkcg);
++ int ret = -EINVAL;
++
++ spin_lock_irq(&blkcg->lock);
++ ret = bfqgd->weight;
++ spin_unlock_irq(&blkcg->lock);
++
++ return ret;
++}
++
++static int bfqio_cgroup_weight_read_dfl(struct seq_file *sf, void *v)
++{
++ struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
++ struct bfq_group_data *bfqgd = blkcg_to_bfqgd(blkcg);
++
++ spin_lock_irq(&blkcg->lock);
++ seq_printf(sf, "%u\n", bfqgd->weight);
++ spin_unlock_irq(&blkcg->lock);
++
++ return 0;
++}
++
++static int bfqio_cgroup_weight_write(struct cgroup_subsys_state *css,
++ struct cftype *cftype,
++ u64 val)
++{
++ struct blkcg *blkcg = css_to_blkcg(css);
++ struct bfq_group_data *bfqgd = blkcg_to_bfqgd(blkcg);
++ struct blkcg_gq *blkg;
++ int ret = -EINVAL;
++
++ if (val < BFQ_MIN_WEIGHT || val > BFQ_MAX_WEIGHT)
++ return ret;
++
++ ret = 0;
++ spin_lock_irq(&blkcg->lock);
++ bfqgd->weight = (unsigned short)val;
++ hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
++ struct bfq_group *bfqg = blkg_to_bfqg(blkg);
++
++ if (!bfqg)
++ continue;
++ /*
++ * Setting the prio_changed flag of the entity
++ * to 1 with new_weight == weight would re-set
++ * the value of the weight to its ioprio mapping.
++ * Set the flag only if necessary.
++ */
++ if ((unsigned short)val != bfqg->entity.new_weight) {
++ bfqg->entity.new_weight = (unsigned short)val;
++ /*
++ * Make sure that the above new value has been
++ * stored in bfqg->entity.new_weight before
++ * setting the prio_changed flag. In fact,
++ * this flag may be read asynchronously (in
++ * critical sections protected by a different
++ * lock than that held here), and finding this
++ * flag set may cause the execution of the code
++ * for updating parameters whose value may
++ * depend also on bfqg->entity.new_weight (in
++ * __bfq_entity_update_weight_prio).
++ * This barrier makes sure that the new value
++ * of bfqg->entity.new_weight is correctly
++ * seen in that code.
++ */
++ smp_wmb();
++ bfqg->entity.prio_changed = 1;
++ }
++ }
++ spin_unlock_irq(&blkcg->lock);
++
++ return ret;
++}
++
++static ssize_t bfqio_cgroup_weight_write_dfl(struct kernfs_open_file *of,
++ char *buf, size_t nbytes,
++ loff_t off)
++{
++ /* First unsigned long found in the file is used */
++ return bfqio_cgroup_weight_write(of_css(of), NULL,
++ simple_strtoull(strim(buf), NULL, 0));
++}
++
++static int bfqg_print_stat(struct seq_file *sf, void *v)
++{
++ blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat,
++ &blkcg_policy_bfq, seq_cft(sf)->private, false);
++ return 0;
++}
++
++static int bfqg_print_rwstat(struct seq_file *sf, void *v)
++{
++ blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
++ &blkcg_policy_bfq, seq_cft(sf)->private, true);
++ return 0;
++}
++
++static u64 bfqg_prfill_stat_recursive(struct seq_file *sf,
++ struct blkg_policy_data *pd, int off)
++{
++ u64 sum = bfqg_stat_pd_recursive_sum(pd, off);
++
++ return __blkg_prfill_u64(sf, pd, sum);
++}
++
++static u64 bfqg_prfill_rwstat_recursive(struct seq_file *sf,
++ struct blkg_policy_data *pd, int off)
++{
++ struct blkg_rwstat sum = bfqg_rwstat_pd_recursive_sum(pd, off);
++
++ return __blkg_prfill_rwstat(sf, pd, &sum);
++}
++
++static int bfqg_print_stat_recursive(struct seq_file *sf, void *v)
++{
++ blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
++ bfqg_prfill_stat_recursive, &blkcg_policy_bfq,
++ seq_cft(sf)->private, false);
++ return 0;
++}
++
++static int bfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
++{
++ blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
++ bfqg_prfill_rwstat_recursive, &blkcg_policy_bfq,
++ seq_cft(sf)->private, true);
++ return 0;
++}
++
++static u64 bfqg_prfill_avg_queue_size(struct seq_file *sf,
++ struct blkg_policy_data *pd, int off)
++{
++ struct bfq_group *bfqg = pd_to_bfqg(pd);
++ u64 samples = blkg_stat_read(&bfqg->stats.avg_queue_size_samples);
++ u64 v = 0;
++
++ if (samples) {
++ v = blkg_stat_read(&bfqg->stats.avg_queue_size_sum);
++ v = div64_u64(v, samples);
++ }
++ __blkg_prfill_u64(sf, pd, v);
++ return 0;
++}
++
++/* print avg_queue_size */
++static int bfqg_print_avg_queue_size(struct seq_file *sf, void *v)
++{
++ blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
++ bfqg_prfill_avg_queue_size, &blkcg_policy_bfq,
++ 0, false);
++ return 0;
++}
++
++static struct bfq_group *
++bfq_create_group_hierarchy(struct bfq_data *bfqd, int node)
++{
++ int ret;
++
++ ret = blkcg_activate_policy(bfqd->queue, &blkcg_policy_bfq);
++ if (ret)
++ return NULL;
++
++ return blkg_to_bfqg(bfqd->queue->root_blkg);
++}
++
++static struct blkcg_policy_data *bfq_cpd_alloc(gfp_t gfp)
++{
++ struct bfq_group_data *bgd;
++
++ bgd = kzalloc(sizeof(*bgd), GFP_KERNEL);
++ if (!bgd)
++ return NULL;
++ return &bgd->pd;
++}
++
++static void bfq_cpd_free(struct blkcg_policy_data *cpd)
++{
++ kfree(cpd_to_bfqgd(cpd));
++}
++
++static struct cftype bfqio_files_dfl[] = {
++ {
++ .name = "weight",
++ .flags = CFTYPE_NOT_ON_ROOT,
++ .seq_show = bfqio_cgroup_weight_read_dfl,
++ .write = bfqio_cgroup_weight_write_dfl,
++ },
++ {} /* terminate */
++};
++
++static struct cftype bfqio_files[] = {
++ {
++ .name = "bfq.weight",
++ .read_u64 = bfqio_cgroup_weight_read,
++ .write_u64 = bfqio_cgroup_weight_write,
++ },
++ /* statistics, cover only the tasks in the bfqg */
++ {
++ .name = "bfq.time",
++ .private = offsetof(struct bfq_group, stats.time),
++ .seq_show = bfqg_print_stat,
++ },
++ {
++ .name = "bfq.sectors",
++ .private = offsetof(struct bfq_group, stats.sectors),
++ .seq_show = bfqg_print_stat,
++ },
++ {
++ .name = "bfq.io_service_bytes",
++ .private = offsetof(struct bfq_group, stats.service_bytes),
++ .seq_show = bfqg_print_rwstat,
++ },
++ {
++ .name = "bfq.io_serviced",
++ .private = offsetof(struct bfq_group, stats.serviced),
++ .seq_show = bfqg_print_rwstat,
++ },
++ {
++ .name = "bfq.io_service_time",
++ .private = offsetof(struct bfq_group, stats.service_time),
++ .seq_show = bfqg_print_rwstat,
++ },
++ {
++ .name = "bfq.io_wait_time",
++ .private = offsetof(struct bfq_group, stats.wait_time),
++ .seq_show = bfqg_print_rwstat,
++ },
++ {
++ .name = "bfq.io_merged",
++ .private = offsetof(struct bfq_group, stats.merged),
++ .seq_show = bfqg_print_rwstat,
++ },
++ {
++ .name = "bfq.io_queued",
++ .private = offsetof(struct bfq_group, stats.queued),
++ .seq_show = bfqg_print_rwstat,
++ },
++
++ /* the same statictics which cover the bfqg and its descendants */
++ {
++ .name = "bfq.time_recursive",
++ .private = offsetof(struct bfq_group, stats.time),
++ .seq_show = bfqg_print_stat_recursive,
++ },
++ {
++ .name = "bfq.sectors_recursive",
++ .private = offsetof(struct bfq_group, stats.sectors),
++ .seq_show = bfqg_print_stat_recursive,
++ },
++ {
++ .name = "bfq.io_service_bytes_recursive",
++ .private = offsetof(struct bfq_group, stats.service_bytes),
++ .seq_show = bfqg_print_rwstat_recursive,
++ },
++ {
++ .name = "bfq.io_serviced_recursive",
++ .private = offsetof(struct bfq_group, stats.serviced),
++ .seq_show = bfqg_print_rwstat_recursive,
++ },
++ {
++ .name = "bfq.io_service_time_recursive",
++ .private = offsetof(struct bfq_group, stats.service_time),
++ .seq_show = bfqg_print_rwstat_recursive,
++ },
++ {
++ .name = "bfq.io_wait_time_recursive",
++ .private = offsetof(struct bfq_group, stats.wait_time),
++ .seq_show = bfqg_print_rwstat_recursive,
++ },
++ {
++ .name = "bfq.io_merged_recursive",
++ .private = offsetof(struct bfq_group, stats.merged),
++ .seq_show = bfqg_print_rwstat_recursive,
++ },
++ {
++ .name = "bfq.io_queued_recursive",
++ .private = offsetof(struct bfq_group, stats.queued),
++ .seq_show = bfqg_print_rwstat_recursive,
++ },
++ {
++ .name = "bfq.avg_queue_size",
++ .seq_show = bfqg_print_avg_queue_size,
++ },
++ {
++ .name = "bfq.group_wait_time",
++ .private = offsetof(struct bfq_group, stats.group_wait_time),
++ .seq_show = bfqg_print_stat,
++ },
++ {
++ .name = "bfq.idle_time",
++ .private = offsetof(struct bfq_group, stats.idle_time),
++ .seq_show = bfqg_print_stat,
++ },
++ {
++ .name = "bfq.empty_time",
++ .private = offsetof(struct bfq_group, stats.empty_time),
++ .seq_show = bfqg_print_stat,
++ },
++ {
++ .name = "bfq.dequeue",
++ .private = offsetof(struct bfq_group, stats.dequeue),
++ .seq_show = bfqg_print_stat,
++ },
++ {
++ .name = "bfq.unaccounted_time",
++ .private = offsetof(struct bfq_group, stats.unaccounted_time),
++ .seq_show = bfqg_print_stat,
++ },
++ { } /* terminate */
++};
++
++static struct blkcg_policy blkcg_policy_bfq = {
++ .dfl_cftypes = bfqio_files_dfl,
++ .legacy_cftypes = bfqio_files,
++
++ .pd_alloc_fn = bfq_pd_alloc,
++ .pd_init_fn = bfq_pd_init,
++ .pd_offline_fn = bfq_pd_offline,
++ .pd_free_fn = bfq_pd_free,
++ .pd_reset_stats_fn = bfq_pd_reset_stats,
++
++ .cpd_alloc_fn = bfq_cpd_alloc,
++ .cpd_init_fn = bfq_cpd_init,
++ .cpd_bind_fn = bfq_cpd_init,
++ .cpd_free_fn = bfq_cpd_free,
++};
++
++#else
++
++static void bfq_init_entity(struct bfq_entity *entity,
++ struct bfq_group *bfqg)
++{
++ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++
++ entity->weight = entity->new_weight;
++ entity->orig_weight = entity->new_weight;
++ if (bfqq) {
++ bfqq->ioprio = bfqq->new_ioprio;
++ bfqq->ioprio_class = bfqq->new_ioprio_class;
++ }
++ entity->sched_data = &bfqg->sched_data;
++}
++
++static struct bfq_group *
++bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio)
++{
++ struct bfq_data *bfqd = bic_to_bfqd(bic);
++
++ return bfqd->root_group;
++}
++
++static void bfq_bfqq_move(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq,
++ struct bfq_entity *entity,
++ struct bfq_group *bfqg)
++{
++}
++
++static void bfq_end_wr_async(struct bfq_data *bfqd)
++{
++ bfq_end_wr_async_queues(bfqd, bfqd->root_group);
++}
++
++static void bfq_disconnect_groups(struct bfq_data *bfqd)
++{
++ bfq_put_async_queues(bfqd, bfqd->root_group);
++}
++
++static struct bfq_group *bfq_find_alloc_group(struct bfq_data *bfqd,
++ struct blkcg *blkcg)
++{
++ return bfqd->root_group;
++}
++
++static struct bfq_group *
++bfq_create_group_hierarchy(struct bfq_data *bfqd, int node)
++{
++ struct bfq_group *bfqg;
++ int i;
++
++ bfqg = kmalloc_node(sizeof(*bfqg), GFP_KERNEL | __GFP_ZERO, node);
++ if (!bfqg)
++ return NULL;
++
++ for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
++ bfqg->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
++
++ return bfqg;
++}
++#endif
+diff --git a/block/bfq-ioc.c b/block/bfq-ioc.c
+new file mode 100644
+index 0000000..fb7bb8f
+--- /dev/null
++++ b/block/bfq-ioc.c
+@@ -0,0 +1,36 @@
++/*
++ * BFQ: I/O context handling.
++ *
++ * Based on ideas and code from CFQ:
++ * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
++ *
++ * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
++ * Paolo Valente <paolo.valente@unimore.it>
++ *
++ * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
++ */
++
++/**
++ * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
++ * @icq: the iocontext queue.
++ */
++static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
++{
++ /* bic->icq is the first member, %NULL will convert to %NULL */
++ return container_of(icq, struct bfq_io_cq, icq);
++}
++
++/**
++ * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
++ * @bfqd: the lookup key.
++ * @ioc: the io_context of the process doing I/O.
++ *
++ * Queue lock must be held.
++ */
++static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
++ struct io_context *ioc)
++{
++ if (ioc)
++ return icq_to_bic(ioc_lookup_icq(ioc, bfqd->queue));
++ return NULL;
++}
+diff --git a/block/bfq-iosched.c b/block/bfq-iosched.c
+new file mode 100644
+index 0000000..85e2169
+--- /dev/null
++++ b/block/bfq-iosched.c
+@@ -0,0 +1,3763 @@
++/*
++ * Budget Fair Queueing (BFQ) disk scheduler.
++ *
++ * Based on ideas and code from CFQ:
++ * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
++ *
++ * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
++ * Paolo Valente <paolo.valente@unimore.it>
++ *
++ * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
++ *
++ * Licensed under the GPL-2 as detailed in the accompanying COPYING.BFQ
++ * file.
++ *
++ * BFQ is a proportional-share storage-I/O scheduling algorithm based on
++ * the slice-by-slice service scheme of CFQ. But BFQ assigns budgets,
++ * measured in number of sectors, to processes instead of time slices. The
++ * device is not granted to the in-service process for a given time slice,
++ * but until it has exhausted its assigned budget. This change from the time
++ * to the service domain allows BFQ to distribute the device throughput
++ * among processes as desired, without any distortion due to ZBR, workload
++ * fluctuations or other factors. BFQ uses an ad hoc internal scheduler,
++ * called B-WF2Q+, to schedule processes according to their budgets. More
++ * precisely, BFQ schedules queues associated to processes. Thanks to the
++ * accurate policy of B-WF2Q+, BFQ can afford to assign high budgets to
++ * I/O-bound processes issuing sequential requests (to boost the
++ * throughput), and yet guarantee a low latency to interactive and soft
++ * real-time applications.
++ *
++ * BFQ is described in [1], where also a reference to the initial, more
++ * theoretical paper on BFQ can be found. The interested reader can find
++ * in the latter paper full details on the main algorithm, as well as
++ * formulas of the guarantees and formal proofs of all the properties.
++ * With respect to the version of BFQ presented in these papers, this
++ * implementation adds a few more heuristics, such as the one that
++ * guarantees a low latency to soft real-time applications, and a
++ * hierarchical extension based on H-WF2Q+.
++ *
++ * B-WF2Q+ is based on WF2Q+, that is described in [2], together with
++ * H-WF2Q+, while the augmented tree used to implement B-WF2Q+ with O(log N)
++ * complexity derives from the one introduced with EEVDF in [3].
++ *
++ * [1] P. Valente and M. Andreolini, ``Improving Application Responsiveness
++ * with the BFQ Disk I/O Scheduler'',
++ * Proceedings of the 5th Annual International Systems and Storage
++ * Conference (SYSTOR '12), June 2012.
++ *
++ * http://algogroup.unimo.it/people/paolo/disk_sched/bf1-v1-suite-results.pdf
++ *
++ * [2] Jon C.R. Bennett and H. Zhang, ``Hierarchical Packet Fair Queueing
++ * Algorithms,'' IEEE/ACM Transactions on Networking, 5(5):675-689,
++ * Oct 1997.
++ *
++ * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
++ *
++ * [3] I. Stoica and H. Abdel-Wahab, ``Earliest Eligible Virtual Deadline
++ * First: A Flexible and Accurate Mechanism for Proportional Share
++ * Resource Allocation,'' technical report.
++ *
++ * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
++ */
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/blkdev.h>
++#include <linux/cgroup.h>
++#include <linux/elevator.h>
++#include <linux/jiffies.h>
++#include <linux/rbtree.h>
++#include <linux/ioprio.h>
++#include "bfq.h"
++#include "blk.h"
++
++/* Expiration time of sync (0) and async (1) requests, in jiffies. */
++static const int bfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
++
++/* Maximum backwards seek, in KiB. */
++static const int bfq_back_max = 16 * 1024;
++
++/* Penalty of a backwards seek, in number of sectors. */
++static const int bfq_back_penalty = 2;
++
++/* Idling period duration, in jiffies. */
++static int bfq_slice_idle = HZ / 125;
++
++/* Minimum number of assigned budgets for which stats are safe to compute. */
++static const int bfq_stats_min_budgets = 194;
++
++/* Default maximum budget values, in sectors and number of requests. */
++static const int bfq_default_max_budget = 16 * 1024;
++static const int bfq_max_budget_async_rq = 4;
++
++/*
++ * Async to sync throughput distribution is controlled as follows:
++ * when an async request is served, the entity is charged the number
++ * of sectors of the request, multiplied by the factor below
++ */
++static const int bfq_async_charge_factor = 10;
++
++/* Default timeout values, in jiffies, approximating CFQ defaults. */
++static const int bfq_timeout_sync = HZ / 8;
++static int bfq_timeout_async = HZ / 25;
++
++struct kmem_cache *bfq_pool;
++
++/* Below this threshold (in ms), we consider thinktime immediate. */
++#define BFQ_MIN_TT 2
++
++/* hw_tag detection: parallel requests threshold and min samples needed. */
++#define BFQ_HW_QUEUE_THRESHOLD 4
++#define BFQ_HW_QUEUE_SAMPLES 32
++
++#define BFQQ_SEEK_THR (sector_t)(8 * 1024)
++#define BFQQ_SEEKY(bfqq) ((bfqq)->seek_mean > BFQQ_SEEK_THR)
++
++/* Min samples used for peak rate estimation (for autotuning). */
++#define BFQ_PEAK_RATE_SAMPLES 32
++
++/* Shift used for peak rate fixed precision calculations. */
++#define BFQ_RATE_SHIFT 16
++
++/*
++ * By default, BFQ computes the duration of the weight raising for
++ * interactive applications automatically, using the following formula:
++ * duration = (R / r) * T, where r is the peak rate of the device, and
++ * R and T are two reference parameters.
++ * In particular, R is the peak rate of the reference device (see below),
++ * and T is a reference time: given the systems that are likely to be
++ * installed on the reference device according to its speed class, T is
++ * about the maximum time needed, under BFQ and while reading two files in
++ * parallel, to load typical large applications on these systems.
++ * In practice, the slower/faster the device at hand is, the more/less it
++ * takes to load applications with respect to the reference device.
++ * Accordingly, the longer/shorter BFQ grants weight raising to interactive
++ * applications.
++ *
++ * BFQ uses four different reference pairs (R, T), depending on:
++ * . whether the device is rotational or non-rotational;
++ * . whether the device is slow, such as old or portable HDDs, as well as
++ * SD cards, or fast, such as newer HDDs and SSDs.
++ *
++ * The device's speed class is dynamically (re)detected in
++ * bfq_update_peak_rate() every time the estimated peak rate is updated.
++ *
++ * In the following definitions, R_slow[0]/R_fast[0] and T_slow[0]/T_fast[0]
++ * are the reference values for a slow/fast rotational device, whereas
++ * R_slow[1]/R_fast[1] and T_slow[1]/T_fast[1] are the reference values for
++ * a slow/fast non-rotational device. Finally, device_speed_thresh are the
++ * thresholds used to switch between speed classes.
++ * Both the reference peak rates and the thresholds are measured in
++ * sectors/usec, left-shifted by BFQ_RATE_SHIFT.
++ */
++static int R_slow[2] = {1536, 10752};
++static int R_fast[2] = {17415, 34791};
++/*
++ * To improve readability, a conversion function is used to initialize the
++ * following arrays, which entails that they can be initialized only in a
++ * function.
++ */
++static int T_slow[2];
++static int T_fast[2];
++static int device_speed_thresh[2];
++
++#define BFQ_SERVICE_TREE_INIT ((struct bfq_service_tree) \
++ { RB_ROOT, RB_ROOT, NULL, NULL, 0, 0 })
++
++#define RQ_BIC(rq) ((struct bfq_io_cq *) (rq)->elv.priv[0])
++#define RQ_BFQQ(rq) ((rq)->elv.priv[1])
++
++static void bfq_schedule_dispatch(struct bfq_data *bfqd);
++
++#include "bfq-ioc.c"
++#include "bfq-sched.c"
++#include "bfq-cgroup.c"
++
++#define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
++#define bfq_class_rt(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
++
++#define bfq_sample_valid(samples) ((samples) > 80)
++
++/*
++ * We regard a request as SYNC, if either it's a read or has the SYNC bit
++ * set (in which case it could also be a direct WRITE).
++ */
++static int bfq_bio_sync(struct bio *bio)
++{
++ if (bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC))
++ return 1;
++
++ return 0;
++}
++
++/*
++ * Scheduler run of queue, if there are requests pending and no one in the
++ * driver that will restart queueing.
++ */
++static void bfq_schedule_dispatch(struct bfq_data *bfqd)
++{
++ if (bfqd->queued != 0) {
++ bfq_log(bfqd, "schedule dispatch");
++ kblockd_schedule_work(&bfqd->unplug_work);
++ }
++}
++
++/*
++ * Lifted from AS - choose which of rq1 and rq2 that is best served now.
++ * We choose the request that is closesr to the head right now. Distance
++ * behind the head is penalized and only allowed to a certain extent.
++ */
++static struct request *bfq_choose_req(struct bfq_data *bfqd,
++ struct request *rq1,
++ struct request *rq2,
++ sector_t last)
++{
++ sector_t s1, s2, d1 = 0, d2 = 0;
++ unsigned long back_max;
++#define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */
++#define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */
++ unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
++
++ if (!rq1 || rq1 == rq2)
++ return rq2;
++ if (!rq2)
++ return rq1;
++
++ if (rq_is_sync(rq1) && !rq_is_sync(rq2))
++ return rq1;
++ else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
++ return rq2;
++ if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
++ return rq1;
++ else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
++ return rq2;
++
++ s1 = blk_rq_pos(rq1);
++ s2 = blk_rq_pos(rq2);
++
++ /*
++ * By definition, 1KiB is 2 sectors.
++ */
++ back_max = bfqd->bfq_back_max * 2;
++
++ /*
++ * Strict one way elevator _except_ in the case where we allow
++ * short backward seeks which are biased as twice the cost of a
++ * similar forward seek.
++ */
++ if (s1 >= last)
++ d1 = s1 - last;
++ else if (s1 + back_max >= last)
++ d1 = (last - s1) * bfqd->bfq_back_penalty;
++ else
++ wrap |= BFQ_RQ1_WRAP;
++
++ if (s2 >= last)
++ d2 = s2 - last;
++ else if (s2 + back_max >= last)
++ d2 = (last - s2) * bfqd->bfq_back_penalty;
++ else
++ wrap |= BFQ_RQ2_WRAP;
++
++ /* Found required data */
++
++ /*
++ * By doing switch() on the bit mask "wrap" we avoid having to
++ * check two variables for all permutations: --> faster!
++ */
++ switch (wrap) {
++ case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
++ if (d1 < d2)
++ return rq1;
++ else if (d2 < d1)
++ return rq2;
++
++ if (s1 >= s2)
++ return rq1;
++ else
++ return rq2;
++
++ case BFQ_RQ2_WRAP:
++ return rq1;
++ case BFQ_RQ1_WRAP:
++ return rq2;
++ case (BFQ_RQ1_WRAP|BFQ_RQ2_WRAP): /* both rqs wrapped */
++ default:
++ /*
++ * Since both rqs are wrapped,
++ * start with the one that's further behind head
++ * (--> only *one* back seek required),
++ * since back seek takes more time than forward.
++ */
++ if (s1 <= s2)
++ return rq1;
++ else
++ return rq2;
++ }
++}
++
++/*
++ * Tell whether there are active queues or groups with differentiated weights.
++ */
++static bool bfq_differentiated_weights(struct bfq_data *bfqd)
++{
++ /*
++ * For weights to differ, at least one of the trees must contain
++ * at least two nodes.
++ */
++ return (!RB_EMPTY_ROOT(&bfqd->queue_weights_tree) &&
++ (bfqd->queue_weights_tree.rb_node->rb_left ||
++ bfqd->queue_weights_tree.rb_node->rb_right)
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ ) ||
++ (!RB_EMPTY_ROOT(&bfqd->group_weights_tree) &&
++ (bfqd->group_weights_tree.rb_node->rb_left ||
++ bfqd->group_weights_tree.rb_node->rb_right)
++#endif
++ );
++}
++
++/*
++ * The following function returns true if every queue must receive the
++ * same share of the throughput (this condition is used when deciding
++ * whether idling may be disabled, see the comments in the function
++ * bfq_bfqq_may_idle()).
++ *
++ * Such a scenario occurs when:
++ * 1) all active queues have the same weight,
++ * 2) all active groups at the same level in the groups tree have the same
++ * weight,
++ * 3) all active groups at the same level in the groups tree have the same
++ * number of children.
++ *
++ * Unfortunately, keeping the necessary state for evaluating exactly the
++ * above symmetry conditions would be quite complex and time-consuming.
++ * Therefore this function evaluates, instead, the following stronger
++ * sub-conditions, for which it is much easier to maintain the needed
++ * state:
++ * 1) all active queues have the same weight,
++ * 2) all active groups have the same weight,
++ * 3) all active groups have at most one active child each.
++ * In particular, the last two conditions are always true if hierarchical
++ * support and the cgroups interface are not enabled, thus no state needs
++ * to be maintained in this case.
++ */
++static bool bfq_symmetric_scenario(struct bfq_data *bfqd)
++{
++ return
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ !bfqd->active_numerous_groups &&
++#endif
++ !bfq_differentiated_weights(bfqd);
++}
++
++/*
++ * If the weight-counter tree passed as input contains no counter for
++ * the weight of the input entity, then add that counter; otherwise just
++ * increment the existing counter.
++ *
++ * Note that weight-counter trees contain few nodes in mostly symmetric
++ * scenarios. For example, if all queues have the same weight, then the
++ * weight-counter tree for the queues may contain at most one node.
++ * This holds even if low_latency is on, because weight-raised queues
++ * are not inserted in the tree.
++ * In most scenarios, the rate at which nodes are created/destroyed
++ * should be low too.
++ */
++static void bfq_weights_tree_add(struct bfq_data *bfqd,
++ struct bfq_entity *entity,
++ struct rb_root *root)
++{
++ struct rb_node **new = &(root->rb_node), *parent = NULL;
++
++ /*
++ * Do not insert if the entity is already associated with a
++ * counter, which happens if:
++ * 1) the entity is associated with a queue,
++ * 2) a request arrival has caused the queue to become both
++ * non-weight-raised, and hence change its weight, and
++ * backlogged; in this respect, each of the two events
++ * causes an invocation of this function,
++ * 3) this is the invocation of this function caused by the
++ * second event. This second invocation is actually useless,
++ * and we handle this fact by exiting immediately. More
++ * efficient or clearer solutions might possibly be adopted.
++ */
++ if (entity->weight_counter)
++ return;
++
++ while (*new) {
++ struct bfq_weight_counter *__counter = container_of(*new,
++ struct bfq_weight_counter,
++ weights_node);
++ parent = *new;
++
++ if (entity->weight == __counter->weight) {
++ entity->weight_counter = __counter;
++ goto inc_counter;
++ }
++ if (entity->weight < __counter->weight)
++ new = &((*new)->rb_left);
++ else
++ new = &((*new)->rb_right);
++ }
++
++ entity->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
++ GFP_ATOMIC);
++ entity->weight_counter->weight = entity->weight;
++ rb_link_node(&entity->weight_counter->weights_node, parent, new);
++ rb_insert_color(&entity->weight_counter->weights_node, root);
++
++inc_counter:
++ entity->weight_counter->num_active++;
++}
++
++/*
++ * Decrement the weight counter associated with the entity, and, if the
++ * counter reaches 0, remove the counter from the tree.
++ * See the comments to the function bfq_weights_tree_add() for considerations
++ * about overhead.
++ */
++static void bfq_weights_tree_remove(struct bfq_data *bfqd,
++ struct bfq_entity *entity,
++ struct rb_root *root)
++{
++ if (!entity->weight_counter)
++ return;
++
++ BUG_ON(RB_EMPTY_ROOT(root));
++ BUG_ON(entity->weight_counter->weight != entity->weight);
++
++ BUG_ON(!entity->weight_counter->num_active);
++ entity->weight_counter->num_active--;
++ if (entity->weight_counter->num_active > 0)
++ goto reset_entity_pointer;
++
++ rb_erase(&entity->weight_counter->weights_node, root);
++ kfree(entity->weight_counter);
++
++reset_entity_pointer:
++ entity->weight_counter = NULL;
++}
++
++static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq,
++ struct request *last)
++{
++ struct rb_node *rbnext = rb_next(&last->rb_node);
++ struct rb_node *rbprev = rb_prev(&last->rb_node);
++ struct request *next = NULL, *prev = NULL;
++
++ BUG_ON(RB_EMPTY_NODE(&last->rb_node));
++
++ if (rbprev)
++ prev = rb_entry_rq(rbprev);
++
++ if (rbnext)
++ next = rb_entry_rq(rbnext);
++ else {
++ rbnext = rb_first(&bfqq->sort_list);
++ if (rbnext && rbnext != &last->rb_node)
++ next = rb_entry_rq(rbnext);
++ }
++
++ return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
++}
++
++/* see the definition of bfq_async_charge_factor for details */
++static unsigned long bfq_serv_to_charge(struct request *rq,
++ struct bfq_queue *bfqq)
++{
++ return blk_rq_sectors(rq) *
++ (1 + ((!bfq_bfqq_sync(bfqq)) * (bfqq->wr_coeff == 1) *
++ bfq_async_charge_factor));
++}
++
++/**
++ * bfq_updated_next_req - update the queue after a new next_rq selection.
++ * @bfqd: the device data the queue belongs to.
++ * @bfqq: the queue to update.
++ *
++ * If the first request of a queue changes we make sure that the queue
++ * has enough budget to serve at least its first request (if the
++ * request has grown). We do this because if the queue has not enough
++ * budget for its first request, it has to go through two dispatch
++ * rounds to actually get it dispatched.
++ */
++static void bfq_updated_next_req(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq)
++{
++ struct bfq_entity *entity = &bfqq->entity;
++ struct bfq_service_tree *st = bfq_entity_service_tree(entity);
++ struct request *next_rq = bfqq->next_rq;
++ unsigned long new_budget;
++
++ if (!next_rq)
++ return;
++
++ if (bfqq == bfqd->in_service_queue)
++ /*
++ * In order not to break guarantees, budgets cannot be
++ * changed after an entity has been selected.
++ */
++ return;
++
++ BUG_ON(entity->tree != &st->active);
++ BUG_ON(entity == entity->sched_data->in_service_entity);
++
++ new_budget = max_t(unsigned long, bfqq->max_budget,
++ bfq_serv_to_charge(next_rq, bfqq));
++ if (entity->budget != new_budget) {
++ entity->budget = new_budget;
++ bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
++ new_budget);
++ bfq_activate_bfqq(bfqd, bfqq);
++ }
++}
++
++static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
++{
++ u64 dur;
++
++ if (bfqd->bfq_wr_max_time > 0)
++ return bfqd->bfq_wr_max_time;
++
++ dur = bfqd->RT_prod;
++ do_div(dur, bfqd->peak_rate);
++
++ return dur;
++}
++
++/* Empty burst list and add just bfqq (see comments to bfq_handle_burst) */
++static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
++{
++ struct bfq_queue *item;
++ struct hlist_node *n;
++
++ hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
++ hlist_del_init(&item->burst_list_node);
++ hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
++ bfqd->burst_size = 1;
++}
++
++/* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
++static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
++{
++ /* Increment burst size to take into account also bfqq */
++ bfqd->burst_size++;
++
++ if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
++ struct bfq_queue *pos, *bfqq_item;
++ struct hlist_node *n;
++
++ /*
++ * Enough queues have been activated shortly after each
++ * other to consider this burst as large.
++ */
++ bfqd->large_burst = true;
++
++ /*
++ * We can now mark all queues in the burst list as
++ * belonging to a large burst.
++ */
++ hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
++ burst_list_node)
++ bfq_mark_bfqq_in_large_burst(bfqq_item);
++ bfq_mark_bfqq_in_large_burst(bfqq);
++
++ /*
++ * From now on, and until the current burst finishes, any
++ * new queue being activated shortly after the last queue
++ * was inserted in the burst can be immediately marked as
++ * belonging to a large burst. So the burst list is not
++ * needed any more. Remove it.
++ */
++ hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
++ burst_list_node)
++ hlist_del_init(&pos->burst_list_node);
++ } else /* burst not yet large: add bfqq to the burst list */
++ hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
++}
++
++/*
++ * If many queues happen to become active shortly after each other, then,
++ * to help the processes associated to these queues get their job done as
++ * soon as possible, it is usually better to not grant either weight-raising
++ * or device idling to these queues. In this comment we describe, firstly,
++ * the reasons why this fact holds, and, secondly, the next function, which
++ * implements the main steps needed to properly mark these queues so that
++ * they can then be treated in a different way.
++ *
++ * As for the terminology, we say that a queue becomes active, i.e.,
++ * switches from idle to backlogged, either when it is created (as a
++ * consequence of the arrival of an I/O request), or, if already existing,
++ * when a new request for the queue arrives while the queue is idle.
++ * Bursts of activations, i.e., activations of different queues occurring
++ * shortly after each other, are typically caused by services or applications
++ * that spawn or reactivate many parallel threads/processes. Examples are
++ * systemd during boot or git grep.
++ *
++ * These services or applications benefit mostly from a high throughput:
++ * the quicker the requests of the activated queues are cumulatively served,
++ * the sooner the target job of these queues gets completed. As a consequence,
++ * weight-raising any of these queues, which also implies idling the device
++ * for it, is almost always counterproductive: in most cases it just lowers
++ * throughput.
++ *
++ * On the other hand, a burst of activations may be also caused by the start
++ * of an application that does not consist in a lot of parallel I/O-bound
++ * threads. In fact, with a complex application, the burst may be just a
++ * consequence of the fact that several processes need to be executed to
++ * start-up the application. To start an application as quickly as possible,
++ * the best thing to do is to privilege the I/O related to the application
++ * with respect to all other I/O. Therefore, the best strategy to start as
++ * quickly as possible an application that causes a burst of activations is
++ * to weight-raise all the queues activated during the burst. This is the
++ * exact opposite of the best strategy for the other type of bursts.
++ *
++ * In the end, to take the best action for each of the two cases, the two
++ * types of bursts need to be distinguished. Fortunately, this seems
++ * relatively easy to do, by looking at the sizes of the bursts. In
++ * particular, we found a threshold such that bursts with a larger size
++ * than that threshold are apparently caused only by services or commands
++ * such as systemd or git grep. For brevity, hereafter we call just 'large'
++ * these bursts. BFQ *does not* weight-raise queues whose activations occur
++ * in a large burst. In addition, for each of these queues BFQ performs or
++ * does not perform idling depending on which choice boosts the throughput
++ * most. The exact choice depends on the device and request pattern at
++ * hand.
++ *
++ * Turning back to the next function, it implements all the steps needed
++ * to detect the occurrence of a large burst and to properly mark all the
++ * queues belonging to it (so that they can then be treated in a different
++ * way). This goal is achieved by maintaining a special "burst list" that
++ * holds, temporarily, the queues that belong to the burst in progress. The
++ * list is then used to mark these queues as belonging to a large burst if
++ * the burst does become large. The main steps are the following.
++ *
++ * . when the very first queue is activated, the queue is inserted into the
++ * list (as it could be the first queue in a possible burst)
++ *
++ * . if the current burst has not yet become large, and a queue Q that does
++ * not yet belong to the burst is activated shortly after the last time
++ * at which a new queue entered the burst list, then the function appends
++ * Q to the burst list
++ *
++ * . if, as a consequence of the previous step, the burst size reaches
++ * the large-burst threshold, then
++ *
++ * . all the queues in the burst list are marked as belonging to a
++ * large burst
++ *
++ * . the burst list is deleted; in fact, the burst list already served
++ * its purpose (keeping temporarily track of the queues in a burst,
++ * so as to be able to mark them as belonging to a large burst in the
++ * previous sub-step), and now is not needed any more
++ *
++ * . the device enters a large-burst mode
++ *
++ * . if a queue Q that does not belong to the burst is activated while
++ * the device is in large-burst mode and shortly after the last time
++ * at which a queue either entered the burst list or was marked as
++ * belonging to the current large burst, then Q is immediately marked
++ * as belonging to a large burst.
++ *
++ * . if a queue Q that does not belong to the burst is activated a while
++ * later, i.e., not shortly after, than the last time at which a queue
++ * either entered the burst list or was marked as belonging to the
++ * current large burst, then the current burst is deemed as finished and:
++ *
++ * . the large-burst mode is reset if set
++ *
++ * . the burst list is emptied
++ *
++ * . Q is inserted in the burst list, as Q may be the first queue
++ * in a possible new burst (then the burst list contains just Q
++ * after this step).
++ */
++static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++ bool idle_for_long_time)
++{
++ /*
++ * If bfqq happened to be activated in a burst, but has been idle
++ * for at least as long as an interactive queue, then we assume
++ * that, in the overall I/O initiated in the burst, the I/O
++ * associated to bfqq is finished. So bfqq does not need to be
++ * treated as a queue belonging to a burst anymore. Accordingly,
++ * we reset bfqq's in_large_burst flag if set, and remove bfqq
++ * from the burst list if it's there. We do not decrement instead
++ * burst_size, because the fact that bfqq does not need to belong
++ * to the burst list any more does not invalidate the fact that
++ * bfqq may have been activated during the current burst.
++ */
++ if (idle_for_long_time) {
++ hlist_del_init(&bfqq->burst_list_node);
++ bfq_clear_bfqq_in_large_burst(bfqq);
++ }
++
++ /*
++ * If bfqq is already in the burst list or is part of a large
++ * burst, then there is nothing else to do.
++ */
++ if (!hlist_unhashed(&bfqq->burst_list_node) ||
++ bfq_bfqq_in_large_burst(bfqq))
++ return;
++
++ /*
++ * If bfqq's activation happens late enough, then the current
++ * burst is finished, and related data structures must be reset.
++ *
++ * In this respect, consider the special case where bfqq is the very
++ * first queue being activated. In this case, last_ins_in_burst is
++ * not yet significant when we get here. But it is easy to verify
++ * that, whether or not the following condition is true, bfqq will
++ * end up being inserted into the burst list. In particular the
++ * list will happen to contain only bfqq. And this is exactly what
++ * has to happen, as bfqq may be the first queue in a possible
++ * burst.
++ */
++ if (time_is_before_jiffies(bfqd->last_ins_in_burst +
++ bfqd->bfq_burst_interval)) {
++ bfqd->large_burst = false;
++ bfq_reset_burst_list(bfqd, bfqq);
++ return;
++ }
++
++ /*
++ * If we get here, then bfqq is being activated shortly after the
++ * last queue. So, if the current burst is also large, we can mark
++ * bfqq as belonging to this large burst immediately.
++ */
++ if (bfqd->large_burst) {
++ bfq_mark_bfqq_in_large_burst(bfqq);
++ return;
++ }
++
++ /*
++ * If we get here, then a large-burst state has not yet been
++ * reached, but bfqq is being activated shortly after the last
++ * queue. Then we add bfqq to the burst.
++ */
++ bfq_add_to_burst(bfqd, bfqq);
++}
++
++static void bfq_add_request(struct request *rq)
++{
++ struct bfq_queue *bfqq = RQ_BFQQ(rq);
++ struct bfq_entity *entity = &bfqq->entity;
++ struct bfq_data *bfqd = bfqq->bfqd;
++ struct request *next_rq, *prev;
++ unsigned long old_wr_coeff = bfqq->wr_coeff;
++ bool interactive = false;
++
++ bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
++ bfqq->queued[rq_is_sync(rq)]++;
++ bfqd->queued++;
++
++ elv_rb_add(&bfqq->sort_list, rq);
++
++ /*
++ * Check if this request is a better next-serve candidate.
++ */
++ prev = bfqq->next_rq;
++ next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
++ BUG_ON(!next_rq);
++ bfqq->next_rq = next_rq;
++
++ if (!bfq_bfqq_busy(bfqq)) {
++ bool soft_rt, in_burst,
++ idle_for_long_time = time_is_before_jiffies(
++ bfqq->budget_timeout +
++ bfqd->bfq_wr_min_idle_time);
++
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ bfqg_stats_update_io_add(bfqq_group(RQ_BFQQ(rq)), bfqq,
++ rq->cmd_flags);
++#endif
++ if (bfq_bfqq_sync(bfqq)) {
++ bool already_in_burst =
++ !hlist_unhashed(&bfqq->burst_list_node) ||
++ bfq_bfqq_in_large_burst(bfqq);
++ bfq_handle_burst(bfqd, bfqq, idle_for_long_time);
++ /*
++ * If bfqq was not already in the current burst,
++ * then, at this point, bfqq either has been
++ * added to the current burst or has caused the
++ * current burst to terminate. In particular, in
++ * the second case, bfqq has become the first
++ * queue in a possible new burst.
++ * In both cases last_ins_in_burst needs to be
++ * moved forward.
++ */
++ if (!already_in_burst)
++ bfqd->last_ins_in_burst = jiffies;
++ }
++
++ in_burst = bfq_bfqq_in_large_burst(bfqq);
++ soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
++ !in_burst &&
++ time_is_before_jiffies(bfqq->soft_rt_next_start);
++ interactive = !in_burst && idle_for_long_time;
++ entity->budget = max_t(unsigned long, bfqq->max_budget,
++ bfq_serv_to_charge(next_rq, bfqq));
++
++ if (!bfq_bfqq_IO_bound(bfqq)) {
++ if (time_before(jiffies,
++ RQ_BIC(rq)->ttime.last_end_request +
++ bfqd->bfq_slice_idle)) {
++ bfqq->requests_within_timer++;
++ if (bfqq->requests_within_timer >=
++ bfqd->bfq_requests_within_timer)
++ bfq_mark_bfqq_IO_bound(bfqq);
++ } else
++ bfqq->requests_within_timer = 0;
++ }
++
++ if (!bfqd->low_latency)
++ goto add_bfqq_busy;
++
++ /*
++ * If the queue:
++ * - is not being boosted,
++ * - has been idle for enough time,
++ * - is not a sync queue or is linked to a bfq_io_cq (it is
++ * shared "for its nature" or it is not shared and its
++ * requests have not been redirected to a shared queue)
++ * start a weight-raising period.
++ */
++ if (old_wr_coeff == 1 && (interactive || soft_rt) &&
++ (!bfq_bfqq_sync(bfqq) || bfqq->bic)) {
++ bfqq->wr_coeff = bfqd->bfq_wr_coeff;
++ if (interactive)
++ bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
++ else
++ bfqq->wr_cur_max_time =
++ bfqd->bfq_wr_rt_max_time;
++ bfq_log_bfqq(bfqd, bfqq,
++ "wrais starting at %lu, rais_max_time %u",
++ jiffies,
++ jiffies_to_msecs(bfqq->wr_cur_max_time));
++ } else if (old_wr_coeff > 1) {
++ if (interactive)
++ bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
++ else if (in_burst ||
++ (bfqq->wr_cur_max_time ==
++ bfqd->bfq_wr_rt_max_time &&
++ !soft_rt)) {
++ bfqq->wr_coeff = 1;
++ bfq_log_bfqq(bfqd, bfqq,
++ "wrais ending at %lu, rais_max_time %u",
++ jiffies,
++ jiffies_to_msecs(bfqq->
++ wr_cur_max_time));
++ } else if (time_before(
++ bfqq->last_wr_start_finish +
++ bfqq->wr_cur_max_time,
++ jiffies +
++ bfqd->bfq_wr_rt_max_time) &&
++ soft_rt) {
++ /*
++ *
++ * The remaining weight-raising time is lower
++ * than bfqd->bfq_wr_rt_max_time, which means
++ * that the application is enjoying weight
++ * raising either because deemed soft-rt in
++ * the near past, or because deemed interactive
++ * a long ago.
++ * In both cases, resetting now the current
++ * remaining weight-raising time for the
++ * application to the weight-raising duration
++ * for soft rt applications would not cause any
++ * latency increase for the application (as the
++ * new duration would be higher than the
++ * remaining time).
++ *
++ * In addition, the application is now meeting
++ * the requirements for being deemed soft rt.
++ * In the end we can correctly and safely
++ * (re)charge the weight-raising duration for
++ * the application with the weight-raising
++ * duration for soft rt applications.
++ *
++ * In particular, doing this recharge now, i.e.,
++ * before the weight-raising period for the
++ * application finishes, reduces the probability
++ * of the following negative scenario:
++ * 1) the weight of a soft rt application is
++ * raised at startup (as for any newly
++ * created application),
++ * 2) since the application is not interactive,
++ * at a certain time weight-raising is
++ * stopped for the application,
++ * 3) at that time the application happens to
++ * still have pending requests, and hence
++ * is destined to not have a chance to be
++ * deemed soft rt before these requests are
++ * completed (see the comments to the
++ * function bfq_bfqq_softrt_next_start()
++ * for details on soft rt detection),
++ * 4) these pending requests experience a high
++ * latency because the application is not
++ * weight-raised while they are pending.
++ */
++ bfqq->last_wr_start_finish = jiffies;
++ bfqq->wr_cur_max_time =
++ bfqd->bfq_wr_rt_max_time;
++ }
++ }
++ if (old_wr_coeff != bfqq->wr_coeff)
++ entity->prio_changed = 1;
++add_bfqq_busy:
++ bfqq->last_idle_bklogged = jiffies;
++ bfqq->service_from_backlogged = 0;
++ bfq_clear_bfqq_softrt_update(bfqq);
++ bfq_add_bfqq_busy(bfqd, bfqq);
++ } else {
++ if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
++ time_is_before_jiffies(
++ bfqq->last_wr_start_finish +
++ bfqd->bfq_wr_min_inter_arr_async)) {
++ bfqq->wr_coeff = bfqd->bfq_wr_coeff;
++ bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
++
++ bfqd->wr_busy_queues++;
++ entity->prio_changed = 1;
++ bfq_log_bfqq(bfqd, bfqq,
++ "non-idle wrais starting at %lu, rais_max_time %u",
++ jiffies,
++ jiffies_to_msecs(bfqq->wr_cur_max_time));
++ }
++ if (prev != bfqq->next_rq)
++ bfq_updated_next_req(bfqd, bfqq);
++ }
++
++ if (bfqd->low_latency &&
++ (old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
++ bfqq->last_wr_start_finish = jiffies;
++}
++
++static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
++ struct bio *bio)
++{
++ struct task_struct *tsk = current;
++ struct bfq_io_cq *bic;
++ struct bfq_queue *bfqq;
++
++ bic = bfq_bic_lookup(bfqd, tsk->io_context);
++ if (!bic)
++ return NULL;
++
++ bfqq = bic_to_bfqq(bic, bfq_bio_sync(bio));
++ if (bfqq)
++ return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
++
++ return NULL;
++}
++
++static void bfq_activate_request(struct request_queue *q, struct request *rq)
++{
++ struct bfq_data *bfqd = q->elevator->elevator_data;
++
++ bfqd->rq_in_driver++;
++ bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
++ bfq_log(bfqd, "activate_request: new bfqd->last_position %llu",
++ (unsigned long long) bfqd->last_position);
++}
++
++static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
++{
++ struct bfq_data *bfqd = q->elevator->elevator_data;
++
++ BUG_ON(bfqd->rq_in_driver == 0);
++ bfqd->rq_in_driver--;
++}
++
++static void bfq_remove_request(struct request *rq)
++{
++ struct bfq_queue *bfqq = RQ_BFQQ(rq);
++ struct bfq_data *bfqd = bfqq->bfqd;
++ const int sync = rq_is_sync(rq);
++
++ if (bfqq->next_rq == rq) {
++ bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
++ bfq_updated_next_req(bfqd, bfqq);
++ }
++
++ if (rq->queuelist.prev != &rq->queuelist)
++ list_del_init(&rq->queuelist);
++ BUG_ON(bfqq->queued[sync] == 0);
++ bfqq->queued[sync]--;
++ bfqd->queued--;
++ elv_rb_del(&bfqq->sort_list, rq);
++
++ if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
++ if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue)
++ bfq_del_bfqq_busy(bfqd, bfqq, 1);
++ /*
++ * Remove queue from request-position tree as it is empty.
++ */
++ if (bfqq->pos_root) {
++ rb_erase(&bfqq->pos_node, bfqq->pos_root);
++ bfqq->pos_root = NULL;
++ }
++ }
++
++ if (rq->cmd_flags & REQ_META) {
++ BUG_ON(bfqq->meta_pending == 0);
++ bfqq->meta_pending--;
++ }
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ bfqg_stats_update_io_remove(bfqq_group(bfqq), rq->cmd_flags);
++#endif
++}
++
++static int bfq_merge(struct request_queue *q, struct request **req,
++ struct bio *bio)
++{
++ struct bfq_data *bfqd = q->elevator->elevator_data;
++ struct request *__rq;
++
++ __rq = bfq_find_rq_fmerge(bfqd, bio);
++ if (__rq && elv_rq_merge_ok(__rq, bio)) {
++ *req = __rq;
++ return ELEVATOR_FRONT_MERGE;
++ }
++
++ return ELEVATOR_NO_MERGE;
++}
++
++static void bfq_merged_request(struct request_queue *q, struct request *req,
++ int type)
++{
++ if (type == ELEVATOR_FRONT_MERGE &&
++ rb_prev(&req->rb_node) &&
++ blk_rq_pos(req) <
++ blk_rq_pos(container_of(rb_prev(&req->rb_node),
++ struct request, rb_node))) {
++ struct bfq_queue *bfqq = RQ_BFQQ(req);
++ struct bfq_data *bfqd = bfqq->bfqd;
++ struct request *prev, *next_rq;
++
++ /* Reposition request in its sort_list */
++ elv_rb_del(&bfqq->sort_list, req);
++ elv_rb_add(&bfqq->sort_list, req);
++ /* Choose next request to be served for bfqq */
++ prev = bfqq->next_rq;
++ next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
++ bfqd->last_position);
++ BUG_ON(!next_rq);
++ bfqq->next_rq = next_rq;
++ }
++}
++
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++static void bfq_bio_merged(struct request_queue *q, struct request *req,
++ struct bio *bio)
++{
++ bfqg_stats_update_io_merged(bfqq_group(RQ_BFQQ(req)), bio->bi_rw);
++}
++#endif
++
++static void bfq_merged_requests(struct request_queue *q, struct request *rq,
++ struct request *next)
++{
++ struct bfq_queue *bfqq = RQ_BFQQ(rq), *next_bfqq = RQ_BFQQ(next);
++
++ /*
++ * If next and rq belong to the same bfq_queue and next is older
++ * than rq, then reposition rq in the fifo (by substituting next
++ * with rq). Otherwise, if next and rq belong to different
++ * bfq_queues, never reposition rq: in fact, we would have to
++ * reposition it with respect to next's position in its own fifo,
++ * which would most certainly be too expensive with respect to
++ * the benefits.
++ */
++ if (bfqq == next_bfqq &&
++ !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
++ time_before(next->fifo_time, rq->fifo_time)) {
++ list_del_init(&rq->queuelist);
++ list_replace_init(&next->queuelist, &rq->queuelist);
++ rq->fifo_time = next->fifo_time;
++ }
++
++ if (bfqq->next_rq == next)
++ bfqq->next_rq = rq;
++
++ bfq_remove_request(next);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
++#endif
++}
++
++/* Must be called with bfqq != NULL */
++static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
++{
++ BUG_ON(!bfqq);
++ if (bfq_bfqq_busy(bfqq))
++ bfqq->bfqd->wr_busy_queues--;
++ bfqq->wr_coeff = 1;
++ bfqq->wr_cur_max_time = 0;
++ /* Trigger a weight change on the next activation of the queue */
++ bfqq->entity.prio_changed = 1;
++}
++
++static void bfq_end_wr_async_queues(struct bfq_data *bfqd,
++ struct bfq_group *bfqg)
++{
++ int i, j;
++
++ for (i = 0; i < 2; i++)
++ for (j = 0; j < IOPRIO_BE_NR; j++)
++ if (bfqg->async_bfqq[i][j])
++ bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
++ if (bfqg->async_idle_bfqq)
++ bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
++}
++
++static void bfq_end_wr(struct bfq_data *bfqd)
++{
++ struct bfq_queue *bfqq;
++
++ spin_lock_irq(bfqd->queue->queue_lock);
++
++ list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
++ bfq_bfqq_end_wr(bfqq);
++ list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
++ bfq_bfqq_end_wr(bfqq);
++ bfq_end_wr_async(bfqd);
++
++ spin_unlock_irq(bfqd->queue->queue_lock);
++}
++
++static int bfq_allow_merge(struct request_queue *q, struct request *rq,
++ struct bio *bio)
++{
++ struct bfq_data *bfqd = q->elevator->elevator_data;
++ struct bfq_io_cq *bic;
++
++ /*
++ * Disallow merge of a sync bio into an async request.
++ */
++ if (bfq_bio_sync(bio) && !rq_is_sync(rq))
++ return 0;
++
++ /*
++ * Lookup the bfqq that this bio will be queued with. Allow
++ * merge only if rq is queued there.
++ * Queue lock is held here.
++ */
++ bic = bfq_bic_lookup(bfqd, current->io_context);
++ if (!bic)
++ return 0;
++
++ return bic_to_bfqq(bic, bfq_bio_sync(bio)) == RQ_BFQQ(rq);
++}
++
++static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq)
++{
++ if (bfqq) {
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ bfqg_stats_update_avg_queue_size(bfqq_group(bfqq));
++#endif
++ bfq_mark_bfqq_must_alloc(bfqq);
++ bfq_mark_bfqq_budget_new(bfqq);
++ bfq_clear_bfqq_fifo_expire(bfqq);
++
++ bfqd->budgets_assigned = (bfqd->budgets_assigned*7 + 256) / 8;
++
++ bfq_log_bfqq(bfqd, bfqq,
++ "set_in_service_queue, cur-budget = %d",
++ bfqq->entity.budget);
++ }
++
++ bfqd->in_service_queue = bfqq;
++}
++
++/*
++ * Get and set a new queue for service.
++ */
++static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
++{
++ struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
++
++ __bfq_set_in_service_queue(bfqd, bfqq);
++ return bfqq;
++}
++
++/*
++ * If enough samples have been computed, return the current max budget
++ * stored in bfqd, which is dynamically updated according to the
++ * estimated disk peak rate; otherwise return the default max budget
++ */
++static int bfq_max_budget(struct bfq_data *bfqd)
++{
++ if (bfqd->budgets_assigned < bfq_stats_min_budgets)
++ return bfq_default_max_budget;
++ else
++ return bfqd->bfq_max_budget;
++}
++
++/*
++ * Return min budget, which is a fraction of the current or default
++ * max budget (trying with 1/32)
++ */
++static int bfq_min_budget(struct bfq_data *bfqd)
++{
++ if (bfqd->budgets_assigned < bfq_stats_min_budgets)
++ return bfq_default_max_budget / 32;
++ else
++ return bfqd->bfq_max_budget / 32;
++}
++
++static void bfq_arm_slice_timer(struct bfq_data *bfqd)
++{
++ struct bfq_queue *bfqq = bfqd->in_service_queue;
++ struct bfq_io_cq *bic;
++ unsigned long sl;
++
++ BUG_ON(!RB_EMPTY_ROOT(&bfqq->sort_list));
++
++ /* Processes have exited, don't wait. */
++ bic = bfqd->in_service_bic;
++ if (!bic || atomic_read(&bic->icq.ioc->active_ref) == 0)
++ return;
++
++ bfq_mark_bfqq_wait_request(bfqq);
++
++ /*
++ * We don't want to idle for seeks, but we do want to allow
++ * fair distribution of slice time for a process doing back-to-back
++ * seeks. So allow a little bit of time for him to submit a new rq.
++ *
++ * To prevent processes with (partly) seeky workloads from
++ * being too ill-treated, grant them a small fraction of the
++ * assigned budget before reducing the waiting time to
++ * BFQ_MIN_TT. This happened to help reduce latency.
++ */
++ sl = bfqd->bfq_slice_idle;
++ /*
++ * Unless the queue is being weight-raised or the scenario is
++ * asymmetric, grant only minimum idle time if the queue either
++ * has been seeky for long enough or has already proved to be
++ * constantly seeky.
++ */
++ if (bfq_sample_valid(bfqq->seek_samples) &&
++ ((BFQQ_SEEKY(bfqq) && bfqq->entity.service >
++ bfq_max_budget(bfqq->bfqd) / 8) ||
++ bfq_bfqq_constantly_seeky(bfqq)) && bfqq->wr_coeff == 1 &&
++ bfq_symmetric_scenario(bfqd))
++ sl = min(sl, msecs_to_jiffies(BFQ_MIN_TT));
++ else if (bfqq->wr_coeff > 1)
++ sl = sl * 3;
++ bfqd->last_idling_start = ktime_get();
++ mod_timer(&bfqd->idle_slice_timer, jiffies + sl);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
++#endif
++ bfq_log(bfqd, "arm idle: %u/%u ms",
++ jiffies_to_msecs(sl), jiffies_to_msecs(bfqd->bfq_slice_idle));
++}
++
++/*
++ * Set the maximum time for the in-service queue to consume its
++ * budget. This prevents seeky processes from lowering the disk
++ * throughput (always guaranteed with a time slice scheme as in CFQ).
++ */
++static void bfq_set_budget_timeout(struct bfq_data *bfqd)
++{
++ struct bfq_queue *bfqq = bfqd->in_service_queue;
++ unsigned int timeout_coeff;
++
++ if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
++ timeout_coeff = 1;
++ else
++ timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
++
++ bfqd->last_budget_start = ktime_get();
++
++ bfq_clear_bfqq_budget_new(bfqq);
++ bfqq->budget_timeout = jiffies +
++ bfqd->bfq_timeout[bfq_bfqq_sync(bfqq)] * timeout_coeff;
++
++ bfq_log_bfqq(bfqd, bfqq, "set budget_timeout %u",
++ jiffies_to_msecs(bfqd->bfq_timeout[bfq_bfqq_sync(bfqq)] *
++ timeout_coeff));
++}
++
++/*
++ * Move request from internal lists to the request queue dispatch list.
++ */
++static void bfq_dispatch_insert(struct request_queue *q, struct request *rq)
++{
++ struct bfq_data *bfqd = q->elevator->elevator_data;
++ struct bfq_queue *bfqq = RQ_BFQQ(rq);
++
++ /*
++ * For consistency, the next instruction should have been executed
++ * after removing the request from the queue and dispatching it.
++ * We execute instead this instruction before bfq_remove_request()
++ * (and hence introduce a temporary inconsistency), for efficiency.
++ * In fact, in a forced_dispatch, this prevents two counters related
++ * to bfqq->dispatched to risk to be uselessly decremented if bfqq
++ * is not in service, and then to be incremented again after
++ * incrementing bfqq->dispatched.
++ */
++ bfqq->dispatched++;
++ bfq_remove_request(rq);
++ elv_dispatch_sort(q, rq);
++
++ if (bfq_bfqq_sync(bfqq))
++ bfqd->sync_flight++;
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ bfqg_stats_update_dispatch(bfqq_group(bfqq), blk_rq_bytes(rq),
++ rq->cmd_flags);
++#endif
++}
++
++/*
++ * Return expired entry, or NULL to just start from scratch in rbtree.
++ */
++static struct request *bfq_check_fifo(struct bfq_queue *bfqq)
++{
++ struct request *rq = NULL;
++
++ if (bfq_bfqq_fifo_expire(bfqq))
++ return NULL;
++
++ bfq_mark_bfqq_fifo_expire(bfqq);
++
++ if (list_empty(&bfqq->fifo))
++ return NULL;
++
++ rq = rq_entry_fifo(bfqq->fifo.next);
++
++ if (time_before(jiffies, rq->fifo_time))
++ return NULL;
++
++ return rq;
++}
++
++static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
++{
++ struct bfq_entity *entity = &bfqq->entity;
++
++ return entity->budget - entity->service;
++}
++
++static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
++{
++ BUG_ON(bfqq != bfqd->in_service_queue);
++
++ __bfq_bfqd_reset_in_service(bfqd);
++
++ if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
++ /*
++ * Overloading budget_timeout field to store the time
++ * at which the queue remains with no backlog; used by
++ * the weight-raising mechanism.
++ */
++ bfqq->budget_timeout = jiffies;
++ bfq_del_bfqq_busy(bfqd, bfqq, 1);
++ } else
++ bfq_activate_bfqq(bfqd, bfqq);
++}
++
++/**
++ * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
++ * @bfqd: device data.
++ * @bfqq: queue to update.
++ * @reason: reason for expiration.
++ *
++ * Handle the feedback on @bfqq budget at queue expiration.
++ * See the body for detailed comments.
++ */
++static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq,
++ enum bfqq_expiration reason)
++{
++ struct request *next_rq;
++ int budget, min_budget;
++
++ budget = bfqq->max_budget;
++ min_budget = bfq_min_budget(bfqd);
++
++ BUG_ON(bfqq != bfqd->in_service_queue);
++
++ bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
++ bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
++ bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
++ budget, bfq_min_budget(bfqd));
++ bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
++ bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
++
++ if (bfq_bfqq_sync(bfqq)) {
++ switch (reason) {
++ /*
++ * Caveat: in all the following cases we trade latency
++ * for throughput.
++ */
++ case BFQ_BFQQ_TOO_IDLE:
++ /*
++ * This is the only case where we may reduce
++ * the budget: if there is no request of the
++ * process still waiting for completion, then
++ * we assume (tentatively) that the timer has
++ * expired because the batch of requests of
++ * the process could have been served with a
++ * smaller budget. Hence, betting that
++ * process will behave in the same way when it
++ * becomes backlogged again, we reduce its
++ * next budget. As long as we guess right,
++ * this budget cut reduces the latency
++ * experienced by the process.
++ *
++ * However, if there are still outstanding
++ * requests, then the process may have not yet
++ * issued its next request just because it is
++ * still waiting for the completion of some of
++ * the still outstanding ones. So in this
++ * subcase we do not reduce its budget, on the
++ * contrary we increase it to possibly boost
++ * the throughput, as discussed in the
++ * comments to the BUDGET_TIMEOUT case.
++ */
++ if (bfqq->dispatched > 0) /* still outstanding reqs */
++ budget = min(budget * 2, bfqd->bfq_max_budget);
++ else {
++ if (budget > 5 * min_budget)
++ budget -= 4 * min_budget;
++ else
++ budget = min_budget;
++ }
++ break;
++ case BFQ_BFQQ_BUDGET_TIMEOUT:
++ /*
++ * We double the budget here because: 1) it
++ * gives the chance to boost the throughput if
++ * this is not a seeky process (which may have
++ * bumped into this timeout because of, e.g.,
++ * ZBR), 2) together with charge_full_budget
++ * it helps give seeky processes higher
++ * timestamps, and hence be served less
++ * frequently.
++ */
++ budget = min(budget * 2, bfqd->bfq_max_budget);
++ break;
++ case BFQ_BFQQ_BUDGET_EXHAUSTED:
++ /*
++ * The process still has backlog, and did not
++ * let either the budget timeout or the disk
++ * idling timeout expire. Hence it is not
++ * seeky, has a short thinktime and may be
++ * happy with a higher budget too. So
++ * definitely increase the budget of this good
++ * candidate to boost the disk throughput.
++ */
++ budget = min(budget * 4, bfqd->bfq_max_budget);
++ break;
++ case BFQ_BFQQ_NO_MORE_REQUESTS:
++ /*
++ * Leave the budget unchanged.
++ */
++ default:
++ return;
++ }
++ } else
++ /*
++ * Async queues get always the maximum possible budget
++ * (their ability to dispatch is limited by
++ * @bfqd->bfq_max_budget_async_rq).
++ */
++ budget = bfqd->bfq_max_budget;
++
++ bfqq->max_budget = budget;
++
++ if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
++ !bfqd->bfq_user_max_budget)
++ bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
++
++ /*
++ * Make sure that we have enough budget for the next request.
++ * Since the finish time of the bfqq must be kept in sync with
++ * the budget, be sure to call __bfq_bfqq_expire() after the
++ * update.
++ */
++ next_rq = bfqq->next_rq;
++ if (next_rq)
++ bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
++ bfq_serv_to_charge(next_rq, bfqq));
++ else
++ bfqq->entity.budget = bfqq->max_budget;
++
++ bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
++ next_rq ? blk_rq_sectors(next_rq) : 0,
++ bfqq->entity.budget);
++}
++
++static unsigned long bfq_calc_max_budget(u64 peak_rate, u64 timeout)
++{
++ unsigned long max_budget;
++
++ /*
++ * The max_budget calculated when autotuning is equal to the
++ * amount of sectors transfered in timeout_sync at the
++ * estimated peak rate.
++ */
++ max_budget = (unsigned long)(peak_rate * 1000 *
++ timeout >> BFQ_RATE_SHIFT);
++
++ return max_budget;
++}
++
++/*
++ * In addition to updating the peak rate, checks whether the process
++ * is "slow", and returns 1 if so. This slow flag is used, in addition
++ * to the budget timeout, to reduce the amount of service provided to
++ * seeky processes, and hence reduce their chances to lower the
++ * throughput. See the code for more details.
++ */
++static bool bfq_update_peak_rate(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++ bool compensate, enum bfqq_expiration reason)
++{
++ u64 bw, usecs, expected, timeout;
++ ktime_t delta;
++ int update = 0;
++
++ if (!bfq_bfqq_sync(bfqq) || bfq_bfqq_budget_new(bfqq))
++ return false;
++
++ if (compensate)
++ delta = bfqd->last_idling_start;
++ else
++ delta = ktime_get();
++ delta = ktime_sub(delta, bfqd->last_budget_start);
++ usecs = ktime_to_us(delta);
++
++ /* Don't trust short/unrealistic values. */
++ if (usecs < 100 || usecs >= LONG_MAX)
++ return false;
++
++ /*
++ * Calculate the bandwidth for the last slice. We use a 64 bit
++ * value to store the peak rate, in sectors per usec in fixed
++ * point math. We do so to have enough precision in the estimate
++ * and to avoid overflows.
++ */
++ bw = (u64)bfqq->entity.service << BFQ_RATE_SHIFT;
++ do_div(bw, (unsigned long)usecs);
++
++ timeout = jiffies_to_msecs(bfqd->bfq_timeout[BLK_RW_SYNC]);
++
++ /*
++ * Use only long (> 20ms) intervals to filter out spikes for
++ * the peak rate estimation.
++ */
++ if (usecs > 20000) {
++ if (bw > bfqd->peak_rate ||
++ (!BFQQ_SEEKY(bfqq) &&
++ reason == BFQ_BFQQ_BUDGET_TIMEOUT)) {
++ bfq_log(bfqd, "measured bw =%llu", bw);
++ /*
++ * To smooth oscillations use a low-pass filter with
++ * alpha=7/8, i.e.,
++ * new_rate = (7/8) * old_rate + (1/8) * bw
++ */
++ do_div(bw, 8);
++ if (bw == 0)
++ return 0;
++ bfqd->peak_rate *= 7;
++ do_div(bfqd->peak_rate, 8);
++ bfqd->peak_rate += bw;
++ update = 1;
++ bfq_log(bfqd, "new peak_rate=%llu", bfqd->peak_rate);
++ }
++
++ update |= bfqd->peak_rate_samples == BFQ_PEAK_RATE_SAMPLES - 1;
++
++ if (bfqd->peak_rate_samples < BFQ_PEAK_RATE_SAMPLES)
++ bfqd->peak_rate_samples++;
++
++ if (bfqd->peak_rate_samples == BFQ_PEAK_RATE_SAMPLES &&
++ update) {
++ int dev_type = blk_queue_nonrot(bfqd->queue);
++
++ if (bfqd->bfq_user_max_budget == 0) {
++ bfqd->bfq_max_budget =
++ bfq_calc_max_budget(bfqd->peak_rate,
++ timeout);
++ bfq_log(bfqd, "new max_budget=%d",
++ bfqd->bfq_max_budget);
++ }
++ if (bfqd->device_speed == BFQ_BFQD_FAST &&
++ bfqd->peak_rate < device_speed_thresh[dev_type]) {
++ bfqd->device_speed = BFQ_BFQD_SLOW;
++ bfqd->RT_prod = R_slow[dev_type] *
++ T_slow[dev_type];
++ } else if (bfqd->device_speed == BFQ_BFQD_SLOW &&
++ bfqd->peak_rate > device_speed_thresh[dev_type]) {
++ bfqd->device_speed = BFQ_BFQD_FAST;
++ bfqd->RT_prod = R_fast[dev_type] *
++ T_fast[dev_type];
++ }
++ }
++ }
++
++ /*
++ * If the process has been served for a too short time
++ * interval to let its possible sequential accesses prevail on
++ * the initial seek time needed to move the disk head on the
++ * first sector it requested, then give the process a chance
++ * and for the moment return false.
++ */
++ if (bfqq->entity.budget <= bfq_max_budget(bfqd) / 8)
++ return false;
++
++ /*
++ * A process is considered ``slow'' (i.e., seeky, so that we
++ * cannot treat it fairly in the service domain, as it would
++ * slow down too much the other processes) if, when a slice
++ * ends for whatever reason, it has received service at a
++ * rate that would not be high enough to complete the budget
++ * before the budget timeout expiration.
++ */
++ expected = bw * 1000 * timeout >> BFQ_RATE_SHIFT;
++
++ /*
++ * Caveat: processes doing IO in the slower disk zones will
++ * tend to be slow(er) even if not seeky. And the estimated
++ * peak rate will actually be an average over the disk
++ * surface. Hence, to not be too harsh with unlucky processes,
++ * we keep a budget/3 margin of safety before declaring a
++ * process slow.
++ */
++ return expected > (4 * bfqq->entity.budget) / 3;
++}
++
++/*
++ * To be deemed as soft real-time, an application must meet two
++ * requirements. First, the application must not require an average
++ * bandwidth higher than the approximate bandwidth required to playback or
++ * record a compressed high-definition video.
++ * The next function is invoked on the completion of the last request of a
++ * batch, to compute the next-start time instant, soft_rt_next_start, such
++ * that, if the next request of the application does not arrive before
++ * soft_rt_next_start, then the above requirement on the bandwidth is met.
++ *
++ * The second requirement is that the request pattern of the application is
++ * isochronous, i.e., that, after issuing a request or a batch of requests,
++ * the application stops issuing new requests until all its pending requests
++ * have been completed. After that, the application may issue a new batch,
++ * and so on.
++ * For this reason the next function is invoked to compute
++ * soft_rt_next_start only for applications that meet this requirement,
++ * whereas soft_rt_next_start is set to infinity for applications that do
++ * not.
++ *
++ * Unfortunately, even a greedy application may happen to behave in an
++ * isochronous way if the CPU load is high. In fact, the application may
++ * stop issuing requests while the CPUs are busy serving other processes,
++ * then restart, then stop again for a while, and so on. In addition, if
++ * the disk achieves a low enough throughput with the request pattern
++ * issued by the application (e.g., because the request pattern is random
++ * and/or the device is slow), then the application may meet the above
++ * bandwidth requirement too. To prevent such a greedy application to be
++ * deemed as soft real-time, a further rule is used in the computation of
++ * soft_rt_next_start: soft_rt_next_start must be higher than the current
++ * time plus the maximum time for which the arrival of a request is waited
++ * for when a sync queue becomes idle, namely bfqd->bfq_slice_idle.
++ * This filters out greedy applications, as the latter issue instead their
++ * next request as soon as possible after the last one has been completed
++ * (in contrast, when a batch of requests is completed, a soft real-time
++ * application spends some time processing data).
++ *
++ * Unfortunately, the last filter may easily generate false positives if
++ * only bfqd->bfq_slice_idle is used as a reference time interval and one
++ * or both the following cases occur:
++ * 1) HZ is so low that the duration of a jiffy is comparable to or higher
++ * than bfqd->bfq_slice_idle. This happens, e.g., on slow devices with
++ * HZ=100.
++ * 2) jiffies, instead of increasing at a constant rate, may stop increasing
++ * for a while, then suddenly 'jump' by several units to recover the lost
++ * increments. This seems to happen, e.g., inside virtual machines.
++ * To address this issue, we do not use as a reference time interval just
++ * bfqd->bfq_slice_idle, but bfqd->bfq_slice_idle plus a few jiffies. In
++ * particular we add the minimum number of jiffies for which the filter
++ * seems to be quite precise also in embedded systems and KVM/QEMU virtual
++ * machines.
++ */
++static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq)
++{
++ return max(bfqq->last_idle_bklogged +
++ HZ * bfqq->service_from_backlogged /
++ bfqd->bfq_wr_max_softrt_rate,
++ jiffies + bfqq->bfqd->bfq_slice_idle + 4);
++}
++
++/*
++ * Return the largest-possible time instant such that, for as long as possible,
++ * the current time will be lower than this time instant according to the macro
++ * time_is_before_jiffies().
++ */
++static unsigned long bfq_infinity_from_now(unsigned long now)
++{
++ return now + ULONG_MAX / 2;
++}
++
++/**
++ * bfq_bfqq_expire - expire a queue.
++ * @bfqd: device owning the queue.
++ * @bfqq: the queue to expire.
++ * @compensate: if true, compensate for the time spent idling.
++ * @reason: the reason causing the expiration.
++ *
++ *
++ * If the process associated to the queue is slow (i.e., seeky), or in
++ * case of budget timeout, or, finally, if it is async, we
++ * artificially charge it an entire budget (independently of the
++ * actual service it received). As a consequence, the queue will get
++ * higher timestamps than the correct ones upon reactivation, and
++ * hence it will be rescheduled as if it had received more service
++ * than what it actually received. In the end, this class of processes
++ * will receive less service in proportion to how slowly they consume
++ * their budgets (and hence how seriously they tend to lower the
++ * throughput).
++ *
++ * In contrast, when a queue expires because it has been idling for
++ * too much or because it exhausted its budget, we do not touch the
++ * amount of service it has received. Hence when the queue will be
++ * reactivated and its timestamps updated, the latter will be in sync
++ * with the actual service received by the queue until expiration.
++ *
++ * Charging a full budget to the first type of queues and the exact
++ * service to the others has the effect of using the WF2Q+ policy to
++ * schedule the former on a timeslice basis, without violating the
++ * service domain guarantees of the latter.
++ */
++static void bfq_bfqq_expire(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq,
++ bool compensate,
++ enum bfqq_expiration reason)
++{
++ bool slow;
++
++ BUG_ON(bfqq != bfqd->in_service_queue);
++
++ /*
++ * Update disk peak rate for autotuning and check whether the
++ * process is slow (see bfq_update_peak_rate).
++ */
++ slow = bfq_update_peak_rate(bfqd, bfqq, compensate, reason);
++
++ /*
++ * As above explained, 'punish' slow (i.e., seeky), timed-out
++ * and async queues, to favor sequential sync workloads.
++ *
++ * Processes doing I/O in the slower disk zones will tend to be
++ * slow(er) even if not seeky. Hence, since the estimated peak
++ * rate is actually an average over the disk surface, these
++ * processes may timeout just for bad luck. To avoid punishing
++ * them we do not charge a full budget to a process that
++ * succeeded in consuming at least 2/3 of its budget.
++ */
++ if (slow || (reason == BFQ_BFQQ_BUDGET_TIMEOUT &&
++ bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3))
++ bfq_bfqq_charge_full_budget(bfqq);
++
++ bfqq->service_from_backlogged += bfqq->entity.service;
++
++ if (BFQQ_SEEKY(bfqq) && reason == BFQ_BFQQ_BUDGET_TIMEOUT &&
++ !bfq_bfqq_constantly_seeky(bfqq)) {
++ bfq_mark_bfqq_constantly_seeky(bfqq);
++ if (!blk_queue_nonrot(bfqd->queue))
++ bfqd->const_seeky_busy_in_flight_queues++;
++ }
++
++ if (reason == BFQ_BFQQ_TOO_IDLE &&
++ bfqq->entity.service <= 2 * bfqq->entity.budget / 10)
++ bfq_clear_bfqq_IO_bound(bfqq);
++
++ if (bfqd->low_latency && bfqq->wr_coeff == 1)
++ bfqq->last_wr_start_finish = jiffies;
++
++ if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
++ RB_EMPTY_ROOT(&bfqq->sort_list)) {
++ /*
++ * If we get here, and there are no outstanding requests,
++ * then the request pattern is isochronous (see the comments
++ * to the function bfq_bfqq_softrt_next_start()). Hence we
++ * can compute soft_rt_next_start. If, instead, the queue
++ * still has outstanding requests, then we have to wait
++ * for the completion of all the outstanding requests to
++ * discover whether the request pattern is actually
++ * isochronous.
++ */
++ if (bfqq->dispatched == 0)
++ bfqq->soft_rt_next_start =
++ bfq_bfqq_softrt_next_start(bfqd, bfqq);
++ else {
++ /*
++ * The application is still waiting for the
++ * completion of one or more requests:
++ * prevent it from possibly being incorrectly
++ * deemed as soft real-time by setting its
++ * soft_rt_next_start to infinity. In fact,
++ * without this assignment, the application
++ * would be incorrectly deemed as soft
++ * real-time if:
++ * 1) it issued a new request before the
++ * completion of all its in-flight
++ * requests, and
++ * 2) at that time, its soft_rt_next_start
++ * happened to be in the past.
++ */
++ bfqq->soft_rt_next_start =
++ bfq_infinity_from_now(jiffies);
++ /*
++ * Schedule an update of soft_rt_next_start to when
++ * the task may be discovered to be isochronous.
++ */
++ bfq_mark_bfqq_softrt_update(bfqq);
++ }
++ }
++
++ bfq_log_bfqq(bfqd, bfqq,
++ "expire (%d, slow %d, num_disp %d, idle_win %d)", reason,
++ slow, bfqq->dispatched, bfq_bfqq_idle_window(bfqq));
++
++ /*
++ * Increase, decrease or leave budget unchanged according to
++ * reason.
++ */
++ __bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
++ __bfq_bfqq_expire(bfqd, bfqq);
++}
++
++/*
++ * Budget timeout is not implemented through a dedicated timer, but
++ * just checked on request arrivals and completions, as well as on
++ * idle timer expirations.
++ */
++static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
++{
++ if (bfq_bfqq_budget_new(bfqq) ||
++ time_before(jiffies, bfqq->budget_timeout))
++ return false;
++ return true;
++}
++
++/*
++ * If we expire a queue that is waiting for the arrival of a new
++ * request, we may prevent the fictitious timestamp back-shifting that
++ * allows the guarantees of the queue to be preserved (see [1] for
++ * this tricky aspect). Hence we return true only if this condition
++ * does not hold, or if the queue is slow enough to deserve only to be
++ * kicked off for preserving a high throughput.
++*/
++static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
++{
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "may_budget_timeout: wait_request %d left %d timeout %d",
++ bfq_bfqq_wait_request(bfqq),
++ bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3,
++ bfq_bfqq_budget_timeout(bfqq));
++
++ return (!bfq_bfqq_wait_request(bfqq) ||
++ bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3)
++ &&
++ bfq_bfqq_budget_timeout(bfqq);
++}
++
++/*
++ * For a queue that becomes empty, device idling is allowed only if
++ * this function returns true for that queue. As a consequence, since
++ * device idling plays a critical role for both throughput boosting
++ * and service guarantees, the return value of this function plays a
++ * critical role as well.
++ *
++ * In a nutshell, this function returns true only if idling is
++ * beneficial for throughput or, even if detrimental for throughput,
++ * idling is however necessary to preserve service guarantees (low
++ * latency, desired throughput distribution, ...). In particular, on
++ * NCQ-capable devices, this function tries to return false, so as to
++ * help keep the drives' internal queues full, whenever this helps the
++ * device boost the throughput without causing any service-guarantee
++ * issue.
++ *
++ * In more detail, the return value of this function is obtained by,
++ * first, computing a number of boolean variables that take into
++ * account throughput and service-guarantee issues, and, then,
++ * combining these variables in a logical expression. Most of the
++ * issues taken into account are not trivial. We discuss these issues
++ * while introducing the variables.
++ */
++static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
++{
++ struct bfq_data *bfqd = bfqq->bfqd;
++ bool idling_boosts_thr, idling_boosts_thr_without_issues,
++ all_queues_seeky, on_hdd_and_not_all_queues_seeky,
++ idling_needed_for_service_guarantees,
++ asymmetric_scenario;
++
++ /*
++ * The next variable takes into account the cases where idling
++ * boosts the throughput.
++ *
++ * The value of the variable is computed considering, first, that
++ * idling is virtually always beneficial for the throughput if:
++ * (a) the device is not NCQ-capable, or
++ * (b) regardless of the presence of NCQ, the device is rotational
++ * and the request pattern for bfqq is I/O-bound and sequential.
++ *
++ * Secondly, and in contrast to the above item (b), idling an
++ * NCQ-capable flash-based device would not boost the
++ * throughput even with sequential I/O; rather it would lower
++ * the throughput in proportion to how fast the device
++ * is. Accordingly, the next variable is true if any of the
++ * above conditions (a) and (b) is true, and, in particular,
++ * happens to be false if bfqd is an NCQ-capable flash-based
++ * device.
++ */
++ idling_boosts_thr = !bfqd->hw_tag ||
++ (!blk_queue_nonrot(bfqd->queue) && bfq_bfqq_IO_bound(bfqq) &&
++ bfq_bfqq_idle_window(bfqq));
++
++ /*
++ * The value of the next variable,
++ * idling_boosts_thr_without_issues, is equal to that of
++ * idling_boosts_thr, unless a special case holds. In this
++ * special case, described below, idling may cause problems to
++ * weight-raised queues.
++ *
++ * When the request pool is saturated (e.g., in the presence
++ * of write hogs), if the processes associated with
++ * non-weight-raised queues ask for requests at a lower rate,
++ * then processes associated with weight-raised queues have a
++ * higher probability to get a request from the pool
++ * immediately (or at least soon) when they need one. Thus
++ * they have a higher probability to actually get a fraction
++ * of the device throughput proportional to their high
++ * weight. This is especially true with NCQ-capable drives,
++ * which enqueue several requests in advance, and further
++ * reorder internally-queued requests.
++ *
++ * For this reason, we force to false the value of
++ * idling_boosts_thr_without_issues if there are weight-raised
++ * busy queues. In this case, and if bfqq is not weight-raised,
++ * this guarantees that the device is not idled for bfqq (if,
++ * instead, bfqq is weight-raised, then idling will be
++ * guaranteed by another variable, see below). Combined with
++ * the timestamping rules of BFQ (see [1] for details), this
++ * behavior causes bfqq, and hence any sync non-weight-raised
++ * queue, to get a lower number of requests served, and thus
++ * to ask for a lower number of requests from the request
++ * pool, before the busy weight-raised queues get served
++ * again. This often mitigates starvation problems in the
++ * presence of heavy write workloads and NCQ, thereby
++ * guaranteeing a higher application and system responsiveness
++ * in these hostile scenarios.
++ */
++ idling_boosts_thr_without_issues = idling_boosts_thr &&
++ bfqd->wr_busy_queues == 0;
++
++ /*
++ * There are then two cases where idling must be performed not
++ * for throughput concerns, but to preserve service
++ * guarantees. In the description of these cases, we say, for
++ * short, that a queue is sequential/random if the process
++ * associated to the queue issues sequential/random requests
++ * (in the second case the queue may be tagged as seeky or
++ * even constantly_seeky).
++ *
++ * To introduce the first case, we note that, since
++ * bfq_bfqq_idle_window(bfqq) is false if the device is
++ * NCQ-capable and bfqq is random (see
++ * bfq_update_idle_window()), then, from the above two
++ * assignments it follows that
++ * idling_boosts_thr_without_issues is false if the device is
++ * NCQ-capable and bfqq is random. Therefore, for this case,
++ * device idling would never be allowed if we used just
++ * idling_boosts_thr_without_issues to decide whether to allow
++ * it. And, beneficially, this would imply that throughput
++ * would always be boosted also with random I/O on NCQ-capable
++ * HDDs.
++ *
++ * But we must be careful on this point, to avoid an unfair
++ * treatment for bfqq. In fact, because of the same above
++ * assignments, idling_boosts_thr_without_issues is, on the
++ * other hand, true if 1) the device is an HDD and bfqq is
++ * sequential, and 2) there are no busy weight-raised
++ * queues. As a consequence, if we used just
++ * idling_boosts_thr_without_issues to decide whether to idle
++ * the device, then with an HDD we might easily bump into a
++ * scenario where queues that are sequential and I/O-bound
++ * would enjoy idling, whereas random queues would not. The
++ * latter might then get a low share of the device throughput,
++ * simply because the former would get many requests served
++ * after being set as in service, while the latter would not.
++ *
++ * To address this issue, we start by setting to true a
++ * sentinel variable, on_hdd_and_not_all_queues_seeky, if the
++ * device is rotational and not all queues with pending or
++ * in-flight requests are constantly seeky (i.e., there are
++ * active sequential queues, and bfqq might then be mistreated
++ * if it does not enjoy idling because it is random).
++ */
++ all_queues_seeky = bfq_bfqq_constantly_seeky(bfqq) &&
++ bfqd->busy_in_flight_queues ==
++ bfqd->const_seeky_busy_in_flight_queues;
++
++ on_hdd_and_not_all_queues_seeky =
++ !blk_queue_nonrot(bfqd->queue) && !all_queues_seeky;
++
++ /*
++ * To introduce the second case where idling needs to be
++ * performed to preserve service guarantees, we can note that
++ * allowing the drive to enqueue more than one request at a
++ * time, and hence delegating de facto final scheduling
++ * decisions to the drive's internal scheduler, causes loss of
++ * control on the actual request service order. In particular,
++ * the critical situation is when requests from different
++ * processes happens to be present, at the same time, in the
++ * internal queue(s) of the drive. In such a situation, the
++ * drive, by deciding the service order of the
++ * internally-queued requests, does determine also the actual
++ * throughput distribution among these processes. But the
++ * drive typically has no notion or concern about per-process
++ * throughput distribution, and makes its decisions only on a
++ * per-request basis. Therefore, the service distribution
++ * enforced by the drive's internal scheduler is likely to
++ * coincide with the desired device-throughput distribution
++ * only in a completely symmetric scenario where:
++ * (i) each of these processes must get the same throughput as
++ * the others;
++ * (ii) all these processes have the same I/O pattern
++ * (either sequential or random).
++ * In fact, in such a scenario, the drive will tend to treat
++ * the requests of each of these processes in about the same
++ * way as the requests of the others, and thus to provide
++ * each of these processes with about the same throughput
++ * (which is exactly the desired throughput distribution). In
++ * contrast, in any asymmetric scenario, device idling is
++ * certainly needed to guarantee that bfqq receives its
++ * assigned fraction of the device throughput (see [1] for
++ * details).
++ *
++ * We address this issue by controlling, actually, only the
++ * symmetry sub-condition (i), i.e., provided that
++ * sub-condition (i) holds, idling is not performed,
++ * regardless of whether sub-condition (ii) holds. In other
++ * words, only if sub-condition (i) holds, then idling is
++ * allowed, and the device tends to be prevented from queueing
++ * many requests, possibly of several processes. The reason
++ * for not controlling also sub-condition (ii) is that, first,
++ * in the case of an HDD, the asymmetry in terms of types of
++ * I/O patterns is already taken in to account in the above
++ * sentinel variable
++ * on_hdd_and_not_all_queues_seeky. Secondly, in the case of a
++ * flash-based device, we prefer however to privilege
++ * throughput (and idling lowers throughput for this type of
++ * devices), for the following reasons:
++ * 1) differently from HDDs, the service time of random
++ * requests is not orders of magnitudes lower than the service
++ * time of sequential requests; thus, even if processes doing
++ * sequential I/O get a preferential treatment with respect to
++ * others doing random I/O, the consequences are not as
++ * dramatic as with HDDs;
++ * 2) if a process doing random I/O does need strong
++ * throughput guarantees, it is hopefully already being
++ * weight-raised, or the user is likely to have assigned it a
++ * higher weight than the other processes (and thus
++ * sub-condition (i) is likely to be false, which triggers
++ * idling).
++ *
++ * According to the above considerations, the next variable is
++ * true (only) if sub-condition (i) holds. To compute the
++ * value of this variable, we not only use the return value of
++ * the function bfq_symmetric_scenario(), but also check
++ * whether bfqq is being weight-raised, because
++ * bfq_symmetric_scenario() does not take into account also
++ * weight-raised queues (see comments to
++ * bfq_weights_tree_add()).
++ *
++ * As a side note, it is worth considering that the above
++ * device-idling countermeasures may however fail in the
++ * following unlucky scenario: if idling is (correctly)
++ * disabled in a time period during which all symmetry
++ * sub-conditions hold, and hence the device is allowed to
++ * enqueue many requests, but at some later point in time some
++ * sub-condition stops to hold, then it may become impossible
++ * to let requests be served in the desired order until all
++ * the requests already queued in the device have been served.
++ */
++ asymmetric_scenario = bfqq->wr_coeff > 1 ||
++ !bfq_symmetric_scenario(bfqd);
++
++ /*
++ * Finally, there is a case where maximizing throughput is the
++ * best choice even if it may cause unfairness toward
++ * bfqq. Such a case is when bfqq became active in a burst of
++ * queue activations. Queues that became active during a large
++ * burst benefit only from throughput, as discussed in the
++ * comments to bfq_handle_burst. Thus, if bfqq became active
++ * in a burst and not idling the device maximizes throughput,
++ * then the device must no be idled, because not idling the
++ * device provides bfqq and all other queues in the burst with
++ * maximum benefit. Combining this and the two cases above, we
++ * can now establish when idling is actually needed to
++ * preserve service guarantees.
++ */
++ idling_needed_for_service_guarantees =
++ (on_hdd_and_not_all_queues_seeky || asymmetric_scenario) &&
++ !bfq_bfqq_in_large_burst(bfqq);
++
++ /*
++ * We have now all the components we need to compute the return
++ * value of the function, which is true only if both the following
++ * conditions hold:
++ * 1) bfqq is sync, because idling make sense only for sync queues;
++ * 2) idling either boosts the throughput (without issues), or
++ * is necessary to preserve service guarantees.
++ */
++ return bfq_bfqq_sync(bfqq) &&
++ (idling_boosts_thr_without_issues ||
++ idling_needed_for_service_guarantees);
++}
++
++/*
++ * If the in-service queue is empty but the function bfq_bfqq_may_idle
++ * returns true, then:
++ * 1) the queue must remain in service and cannot be expired, and
++ * 2) the device must be idled to wait for the possible arrival of a new
++ * request for the queue.
++ * See the comments to the function bfq_bfqq_may_idle for the reasons
++ * why performing device idling is the best choice to boost the throughput
++ * and preserve service guarantees when bfq_bfqq_may_idle itself
++ * returns true.
++ */
++static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
++{
++ struct bfq_data *bfqd = bfqq->bfqd;
++
++ return RB_EMPTY_ROOT(&bfqq->sort_list) && bfqd->bfq_slice_idle != 0 &&
++ bfq_bfqq_may_idle(bfqq);
++}
++
++/*
++ * Select a queue for service. If we have a current queue in service,
++ * check whether to continue servicing it, or retrieve and set a new one.
++ */
++static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
++{
++ struct bfq_queue *bfqq;
++ struct request *next_rq;
++ enum bfqq_expiration reason = BFQ_BFQQ_BUDGET_TIMEOUT;
++
++ bfqq = bfqd->in_service_queue;
++ if (!bfqq)
++ goto new_queue;
++
++ bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
++
++ if (bfq_may_expire_for_budg_timeout(bfqq) &&
++ !timer_pending(&bfqd->idle_slice_timer) &&
++ !bfq_bfqq_must_idle(bfqq))
++ goto expire;
++
++ next_rq = bfqq->next_rq;
++ /*
++ * If bfqq has requests queued and it has enough budget left to
++ * serve them, keep the queue, otherwise expire it.
++ */
++ if (next_rq) {
++ if (bfq_serv_to_charge(next_rq, bfqq) >
++ bfq_bfqq_budget_left(bfqq)) {
++ reason = BFQ_BFQQ_BUDGET_EXHAUSTED;
++ goto expire;
++ } else {
++ /*
++ * The idle timer may be pending because we may
++ * not disable disk idling even when a new request
++ * arrives.
++ */
++ if (timer_pending(&bfqd->idle_slice_timer)) {
++ /*
++ * If we get here: 1) at least a new request
++ * has arrived but we have not disabled the
++ * timer because the request was too small,
++ * 2) then the block layer has unplugged
++ * the device, causing the dispatch to be
++ * invoked.
++ *
++ * Since the device is unplugged, now the
++ * requests are probably large enough to
++ * provide a reasonable throughput.
++ * So we disable idling.
++ */
++ bfq_clear_bfqq_wait_request(bfqq);
++ del_timer(&bfqd->idle_slice_timer);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ bfqg_stats_update_idle_time(bfqq_group(bfqq));
++#endif
++ }
++ goto keep_queue;
++ }
++ }
++
++ /*
++ * No requests pending. However, if the in-service queue is idling
++ * for a new request, or has requests waiting for a completion and
++ * may idle after their completion, then keep it anyway.
++ */
++ if (timer_pending(&bfqd->idle_slice_timer) ||
++ (bfqq->dispatched != 0 && bfq_bfqq_may_idle(bfqq))) {
++ bfqq = NULL;
++ goto keep_queue;
++ }
++
++ reason = BFQ_BFQQ_NO_MORE_REQUESTS;
++expire:
++ bfq_bfqq_expire(bfqd, bfqq, false, reason);
++new_queue:
++ bfqq = bfq_set_in_service_queue(bfqd);
++ bfq_log(bfqd, "select_queue: new queue %d returned",
++ bfqq ? bfqq->pid : 0);
++keep_queue:
++ return bfqq;
++}
++
++static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
++{
++ struct bfq_entity *entity = &bfqq->entity;
++
++ if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
++ bfq_log_bfqq(bfqd, bfqq,
++ "raising period dur %u/%u msec, old coeff %u, w %d(%d)",
++ jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
++ jiffies_to_msecs(bfqq->wr_cur_max_time),
++ bfqq->wr_coeff,
++ bfqq->entity.weight, bfqq->entity.orig_weight);
++
++ BUG_ON(bfqq != bfqd->in_service_queue && entity->weight !=
++ entity->orig_weight * bfqq->wr_coeff);
++ if (entity->prio_changed)
++ bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
++
++ /*
++ * If the queue was activated in a burst, or
++ * too much time has elapsed from the beginning
++ * of this weight-raising period, then end weight
++ * raising.
++ */
++ if (bfq_bfqq_in_large_burst(bfqq) ||
++ time_is_before_jiffies(bfqq->last_wr_start_finish +
++ bfqq->wr_cur_max_time)) {
++ bfqq->last_wr_start_finish = jiffies;
++ bfq_log_bfqq(bfqd, bfqq,
++ "wrais ending at %lu, rais_max_time %u",
++ bfqq->last_wr_start_finish,
++ jiffies_to_msecs(bfqq->wr_cur_max_time));
++ bfq_bfqq_end_wr(bfqq);
++ }
++ }
++ /* Update weight both if it must be raised and if it must be lowered */
++ if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
++ __bfq_entity_update_weight_prio(
++ bfq_entity_service_tree(entity),
++ entity);
++}
++
++/*
++ * Dispatch one request from bfqq, moving it to the request queue
++ * dispatch list.
++ */
++static int bfq_dispatch_request(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq)
++{
++ int dispatched = 0;
++ struct request *rq;
++ unsigned long service_to_charge;
++
++ BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list));
++
++ /* Follow expired path, else get first next available. */
++ rq = bfq_check_fifo(bfqq);
++ if (!rq)
++ rq = bfqq->next_rq;
++ service_to_charge = bfq_serv_to_charge(rq, bfqq);
++
++ if (service_to_charge > bfq_bfqq_budget_left(bfqq)) {
++ /*
++ * This may happen if the next rq is chosen in fifo order
++ * instead of sector order. The budget is properly
++ * dimensioned to be always sufficient to serve the next
++ * request only if it is chosen in sector order. The reason
++ * is that it would be quite inefficient and little useful
++ * to always make sure that the budget is large enough to
++ * serve even the possible next rq in fifo order.
++ * In fact, requests are seldom served in fifo order.
++ *
++ * Expire the queue for budget exhaustion, and make sure
++ * that the next act_budget is enough to serve the next
++ * request, even if it comes from the fifo expired path.
++ */
++ bfqq->next_rq = rq;
++ /*
++ * Since this dispatch is failed, make sure that
++ * a new one will be performed
++ */
++ if (!bfqd->rq_in_driver)
++ bfq_schedule_dispatch(bfqd);
++ goto expire;
++ }
++
++ /* Finally, insert request into driver dispatch list. */
++ bfq_bfqq_served(bfqq, service_to_charge);
++ bfq_dispatch_insert(bfqd->queue, rq);
++
++ bfq_update_wr_data(bfqd, bfqq);
++
++ bfq_log_bfqq(bfqd, bfqq,
++ "dispatched %u sec req (%llu), budg left %d",
++ blk_rq_sectors(rq),
++ (unsigned long long) blk_rq_pos(rq),
++ bfq_bfqq_budget_left(bfqq));
++
++ dispatched++;
++
++ if (!bfqd->in_service_bic) {
++ atomic_long_inc(&RQ_BIC(rq)->icq.ioc->refcount);
++ bfqd->in_service_bic = RQ_BIC(rq);
++ }
++
++ if (bfqd->busy_queues > 1 && ((!bfq_bfqq_sync(bfqq) &&
++ dispatched >= bfqd->bfq_max_budget_async_rq) ||
++ bfq_class_idle(bfqq)))
++ goto expire;
++
++ return dispatched;
++
++expire:
++ bfq_bfqq_expire(bfqd, bfqq, false, BFQ_BFQQ_BUDGET_EXHAUSTED);
++ return dispatched;
++}
++
++static int __bfq_forced_dispatch_bfqq(struct bfq_queue *bfqq)
++{
++ int dispatched = 0;
++
++ while (bfqq->next_rq) {
++ bfq_dispatch_insert(bfqq->bfqd->queue, bfqq->next_rq);
++ dispatched++;
++ }
++
++ BUG_ON(!list_empty(&bfqq->fifo));
++ return dispatched;
++}
++
++/*
++ * Drain our current requests.
++ * Used for barriers and when switching io schedulers on-the-fly.
++ */
++static int bfq_forced_dispatch(struct bfq_data *bfqd)
++{
++ struct bfq_queue *bfqq, *n;
++ struct bfq_service_tree *st;
++ int dispatched = 0;
++
++ bfqq = bfqd->in_service_queue;
++ if (bfqq)
++ __bfq_bfqq_expire(bfqd, bfqq);
++
++ /*
++ * Loop through classes, and be careful to leave the scheduler
++ * in a consistent state, as feedback mechanisms and vtime
++ * updates cannot be disabled during the process.
++ */
++ list_for_each_entry_safe(bfqq, n, &bfqd->active_list, bfqq_list) {
++ st = bfq_entity_service_tree(&bfqq->entity);
++
++ dispatched += __bfq_forced_dispatch_bfqq(bfqq);
++ bfqq->max_budget = bfq_max_budget(bfqd);
++
++ bfq_forget_idle(st);
++ }
++
++ BUG_ON(bfqd->busy_queues != 0);
++
++ return dispatched;
++}
++
++static int bfq_dispatch_requests(struct request_queue *q, int force)
++{
++ struct bfq_data *bfqd = q->elevator->elevator_data;
++ struct bfq_queue *bfqq;
++ int max_dispatch;
++
++ bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
++ if (bfqd->busy_queues == 0)
++ return 0;
++
++ if (unlikely(force))
++ return bfq_forced_dispatch(bfqd);
++
++ bfqq = bfq_select_queue(bfqd);
++ if (!bfqq)
++ return 0;
++
++ if (bfq_class_idle(bfqq))
++ max_dispatch = 1;
++
++ if (!bfq_bfqq_sync(bfqq))
++ max_dispatch = bfqd->bfq_max_budget_async_rq;
++
++ if (!bfq_bfqq_sync(bfqq) && bfqq->dispatched >= max_dispatch) {
++ if (bfqd->busy_queues > 1)
++ return 0;
++ if (bfqq->dispatched >= 4 * max_dispatch)
++ return 0;
++ }
++
++ if (bfqd->sync_flight != 0 && !bfq_bfqq_sync(bfqq))
++ return 0;
++
++ bfq_clear_bfqq_wait_request(bfqq);
++ BUG_ON(timer_pending(&bfqd->idle_slice_timer));
++
++ if (!bfq_dispatch_request(bfqd, bfqq))
++ return 0;
++
++ bfq_log_bfqq(bfqd, bfqq, "dispatched %s request",
++ bfq_bfqq_sync(bfqq) ? "sync" : "async");
++
++ return 1;
++}
++
++/*
++ * Task holds one reference to the queue, dropped when task exits. Each rq
++ * in-flight on this queue also holds a reference, dropped when rq is freed.
++ *
++ * Queue lock must be held here.
++ */
++static void bfq_put_queue(struct bfq_queue *bfqq)
++{
++ struct bfq_data *bfqd = bfqq->bfqd;
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ struct bfq_group *bfqg = bfqq_group(bfqq);
++#endif
++
++ BUG_ON(atomic_read(&bfqq->ref) <= 0);
++
++ bfq_log_bfqq(bfqd, bfqq, "put_queue: %p %d", bfqq,
++ atomic_read(&bfqq->ref));
++ if (!atomic_dec_and_test(&bfqq->ref))
++ return;
++
++ BUG_ON(rb_first(&bfqq->sort_list));
++ BUG_ON(bfqq->allocated[READ] + bfqq->allocated[WRITE] != 0);
++ BUG_ON(bfqq->entity.tree);
++ BUG_ON(bfq_bfqq_busy(bfqq));
++ BUG_ON(bfqd->in_service_queue == bfqq);
++
++ if (bfq_bfqq_sync(bfqq))
++ /*
++ * The fact that this queue is being destroyed does not
++ * invalidate the fact that this queue may have been
++ * activated during the current burst. As a consequence,
++ * although the queue does not exist anymore, and hence
++ * needs to be removed from the burst list if there,
++ * the burst size has not to be decremented.
++ */
++ hlist_del_init(&bfqq->burst_list_node);
++
++ bfq_log_bfqq(bfqd, bfqq, "put_queue: %p freed", bfqq);
++
++ kmem_cache_free(bfq_pool, bfqq);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ bfqg_put(bfqg);
++#endif
++}
++
++static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
++{
++ if (bfqq == bfqd->in_service_queue) {
++ __bfq_bfqq_expire(bfqd, bfqq);
++ bfq_schedule_dispatch(bfqd);
++ }
++
++ bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq,
++ atomic_read(&bfqq->ref));
++
++ bfq_put_queue(bfqq);
++}
++
++static void bfq_init_icq(struct io_cq *icq)
++{
++ struct bfq_io_cq *bic = icq_to_bic(icq);
++
++ bic->ttime.last_end_request = jiffies;
++}
++
++static void bfq_exit_icq(struct io_cq *icq)
++{
++ struct bfq_io_cq *bic = icq_to_bic(icq);
++ struct bfq_data *bfqd = bic_to_bfqd(bic);
++
++ if (bic->bfqq[BLK_RW_ASYNC]) {
++ bfq_exit_bfqq(bfqd, bic->bfqq[BLK_RW_ASYNC]);
++ bic->bfqq[BLK_RW_ASYNC] = NULL;
++ }
++
++ if (bic->bfqq[BLK_RW_SYNC]) {
++ bfq_exit_bfqq(bfqd, bic->bfqq[BLK_RW_SYNC]);
++ bic->bfqq[BLK_RW_SYNC] = NULL;
++ }
++}
++
++/*
++ * Update the entity prio values; note that the new values will not
++ * be used until the next (re)activation.
++ */
++static void
++bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
++{
++ struct task_struct *tsk = current;
++ int ioprio_class;
++
++ ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
++ switch (ioprio_class) {
++ default:
++ dev_err(bfqq->bfqd->queue->backing_dev_info.dev,
++ "bfq: bad prio class %d\n", ioprio_class);
++ case IOPRIO_CLASS_NONE:
++ /*
++ * No prio set, inherit CPU scheduling settings.
++ */
++ bfqq->new_ioprio = task_nice_ioprio(tsk);
++ bfqq->new_ioprio_class = task_nice_ioclass(tsk);
++ break;
++ case IOPRIO_CLASS_RT:
++ bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
++ bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
++ break;
++ case IOPRIO_CLASS_BE:
++ bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
++ bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
++ break;
++ case IOPRIO_CLASS_IDLE:
++ bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
++ bfqq->new_ioprio = 7;
++ bfq_clear_bfqq_idle_window(bfqq);
++ break;
++ }
++
++ if (bfqq->new_ioprio < 0 || bfqq->new_ioprio >= IOPRIO_BE_NR) {
++ pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
++ bfqq->new_ioprio);
++ BUG();
++ }
++
++ bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
++ bfqq->entity.prio_changed = 1;
++}
++
++static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
++{
++ struct bfq_data *bfqd;
++ struct bfq_queue *bfqq, *new_bfqq;
++ unsigned long uninitialized_var(flags);
++ int ioprio = bic->icq.ioc->ioprio;
++
++ bfqd = bfq_get_bfqd_locked(&(bic->icq.q->elevator->elevator_data),
++ &flags);
++ /*
++ * This condition may trigger on a newly created bic, be sure to
++ * drop the lock before returning.
++ */
++ if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
++ goto out;
++
++ bic->ioprio = ioprio;
++
++ bfqq = bic->bfqq[BLK_RW_ASYNC];
++ if (bfqq) {
++ new_bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic,
++ GFP_ATOMIC);
++ if (new_bfqq) {
++ bic->bfqq[BLK_RW_ASYNC] = new_bfqq;
++ bfq_log_bfqq(bfqd, bfqq,
++ "check_ioprio_change: bfqq %p %d",
++ bfqq, atomic_read(&bfqq->ref));
++ bfq_put_queue(bfqq);
++ }
++ }
++
++ bfqq = bic->bfqq[BLK_RW_SYNC];
++ if (bfqq)
++ bfq_set_next_ioprio_data(bfqq, bic);
++
++out:
++ bfq_put_bfqd_unlock(bfqd, &flags);
++}
++
++static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++ struct bfq_io_cq *bic, pid_t pid, int is_sync)
++{
++ RB_CLEAR_NODE(&bfqq->entity.rb_node);
++ INIT_LIST_HEAD(&bfqq->fifo);
++ INIT_HLIST_NODE(&bfqq->burst_list_node);
++
++ atomic_set(&bfqq->ref, 0);
++ bfqq->bfqd = bfqd;
++
++ if (bic)
++ bfq_set_next_ioprio_data(bfqq, bic);
++
++ if (is_sync) {
++ if (!bfq_class_idle(bfqq))
++ bfq_mark_bfqq_idle_window(bfqq);
++ bfq_mark_bfqq_sync(bfqq);
++ } else
++ bfq_clear_bfqq_sync(bfqq);
++ bfq_mark_bfqq_IO_bound(bfqq);
++
++ /* Tentative initial value to trade off between thr and lat */
++ bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
++ bfqq->pid = pid;
++
++ bfqq->wr_coeff = 1;
++ bfqq->last_wr_start_finish = 0;
++ /*
++ * Set to the value for which bfqq will not be deemed as
++ * soft rt when it becomes backlogged.
++ */
++ bfqq->soft_rt_next_start = bfq_infinity_from_now(jiffies);
++}
++
++static struct bfq_queue *bfq_find_alloc_queue(struct bfq_data *bfqd,
++ struct bio *bio, int is_sync,
++ struct bfq_io_cq *bic,
++ gfp_t gfp_mask)
++{
++ struct bfq_group *bfqg;
++ struct bfq_queue *bfqq, *new_bfqq = NULL;
++ struct blkcg *blkcg;
++
++retry:
++ rcu_read_lock();
++
++ blkcg = bio_blkcg(bio);
++ bfqg = bfq_find_alloc_group(bfqd, blkcg);
++ /* bic always exists here */
++ bfqq = bic_to_bfqq(bic, is_sync);
++
++ /*
++ * Always try a new alloc if we fall back to the OOM bfqq
++ * originally, since it should just be a temporary situation.
++ */
++ if (!bfqq || bfqq == &bfqd->oom_bfqq) {
++ bfqq = NULL;
++ if (new_bfqq) {
++ bfqq = new_bfqq;
++ new_bfqq = NULL;
++ } else if (gfpflags_allow_blocking(gfp_mask)) {
++ rcu_read_unlock();
++ spin_unlock_irq(bfqd->queue->queue_lock);
++ new_bfqq = kmem_cache_alloc_node(bfq_pool,
++ gfp_mask | __GFP_ZERO,
++ bfqd->queue->node);
++ spin_lock_irq(bfqd->queue->queue_lock);
++ if (new_bfqq)
++ goto retry;
++ } else {
++ bfqq = kmem_cache_alloc_node(bfq_pool,
++ gfp_mask | __GFP_ZERO,
++ bfqd->queue->node);
++ }
++
++ if (bfqq) {
++ bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
++ is_sync);
++ bfq_init_entity(&bfqq->entity, bfqg);
++ bfq_log_bfqq(bfqd, bfqq, "allocated");
++ } else {
++ bfqq = &bfqd->oom_bfqq;
++ bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
++ }
++ }
++
++ if (new_bfqq)
++ kmem_cache_free(bfq_pool, new_bfqq);
++
++ rcu_read_unlock();
++
++ return bfqq;
++}
++
++static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
++ struct bfq_group *bfqg,
++ int ioprio_class, int ioprio)
++{
++ switch (ioprio_class) {
++ case IOPRIO_CLASS_RT:
++ return &bfqg->async_bfqq[0][ioprio];
++ case IOPRIO_CLASS_NONE:
++ ioprio = IOPRIO_NORM;
++ /* fall through */
++ case IOPRIO_CLASS_BE:
++ return &bfqg->async_bfqq[1][ioprio];
++ case IOPRIO_CLASS_IDLE:
++ return &bfqg->async_idle_bfqq;
++ default:
++ BUG();
++ }
++}
++
++static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
++ struct bio *bio, int is_sync,
++ struct bfq_io_cq *bic, gfp_t gfp_mask)
++{
++ const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
++ const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
++ struct bfq_queue **async_bfqq = NULL;
++ struct bfq_queue *bfqq = NULL;
++
++ if (!is_sync) {
++ struct blkcg *blkcg;
++ struct bfq_group *bfqg;
++
++ rcu_read_lock();
++ blkcg = bio_blkcg(bio);
++ rcu_read_unlock();
++ bfqg = bfq_find_alloc_group(bfqd, blkcg);
++ async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
++ ioprio);
++ bfqq = *async_bfqq;
++ }
++
++ if (!bfqq)
++ bfqq = bfq_find_alloc_queue(bfqd, bio, is_sync, bic, gfp_mask);
++
++ /*
++ * Pin the queue now that it's allocated, scheduler exit will
++ * prune it.
++ */
++ if (!is_sync && !(*async_bfqq)) {
++ atomic_inc(&bfqq->ref);
++ bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
++ bfqq, atomic_read(&bfqq->ref));
++ *async_bfqq = bfqq;
++ }
++
++ atomic_inc(&bfqq->ref);
++ bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq,
++ atomic_read(&bfqq->ref));
++ return bfqq;
++}
++
++static void bfq_update_io_thinktime(struct bfq_data *bfqd,
++ struct bfq_io_cq *bic)
++{
++ unsigned long elapsed = jiffies - bic->ttime.last_end_request;
++ unsigned long ttime = min(elapsed, 2UL * bfqd->bfq_slice_idle);
++
++ bic->ttime.ttime_samples = (7*bic->ttime.ttime_samples + 256) / 8;
++ bic->ttime.ttime_total = (7*bic->ttime.ttime_total + 256*ttime) / 8;
++ bic->ttime.ttime_mean = (bic->ttime.ttime_total + 128) /
++ bic->ttime.ttime_samples;
++}
++
++static void bfq_update_io_seektime(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq,
++ struct request *rq)
++{
++ sector_t sdist;
++ u64 total;
++
++ if (bfqq->last_request_pos < blk_rq_pos(rq))
++ sdist = blk_rq_pos(rq) - bfqq->last_request_pos;
++ else
++ sdist = bfqq->last_request_pos - blk_rq_pos(rq);
++
++ /*
++ * Don't allow the seek distance to get too large from the
++ * odd fragment, pagein, etc.
++ */
++ if (bfqq->seek_samples == 0) /* first request, not really a seek */
++ sdist = 0;
++ else if (bfqq->seek_samples <= 60) /* second & third seek */
++ sdist = min(sdist, (bfqq->seek_mean * 4) + 2*1024*1024);
++ else
++ sdist = min(sdist, (bfqq->seek_mean * 4) + 2*1024*64);
++
++ bfqq->seek_samples = (7*bfqq->seek_samples + 256) / 8;
++ bfqq->seek_total = (7*bfqq->seek_total + (u64)256*sdist) / 8;
++ total = bfqq->seek_total + (bfqq->seek_samples/2);
++ do_div(total, bfqq->seek_samples);
++ bfqq->seek_mean = (sector_t)total;
++
++ bfq_log_bfqq(bfqd, bfqq, "dist=%llu mean=%llu", (u64)sdist,
++ (u64)bfqq->seek_mean);
++}
++
++/*
++ * Disable idle window if the process thinks too long or seeks so much that
++ * it doesn't matter.
++ */
++static void bfq_update_idle_window(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq,
++ struct bfq_io_cq *bic)
++{
++ int enable_idle;
++
++ /* Don't idle for async or idle io prio class. */
++ if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq))
++ return;
++
++ enable_idle = bfq_bfqq_idle_window(bfqq);
++
++ if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
++ bfqd->bfq_slice_idle == 0 ||
++ (bfqd->hw_tag && BFQQ_SEEKY(bfqq) &&
++ bfqq->wr_coeff == 1))
++ enable_idle = 0;
++ else if (bfq_sample_valid(bic->ttime.ttime_samples)) {
++ if (bic->ttime.ttime_mean > bfqd->bfq_slice_idle &&
++ bfqq->wr_coeff == 1)
++ enable_idle = 0;
++ else
++ enable_idle = 1;
++ }
++ bfq_log_bfqq(bfqd, bfqq, "update_idle_window: enable_idle %d",
++ enable_idle);
++
++ if (enable_idle)
++ bfq_mark_bfqq_idle_window(bfqq);
++ else
++ bfq_clear_bfqq_idle_window(bfqq);
++}
++
++/*
++ * Called when a new fs request (rq) is added to bfqq. Check if there's
++ * something we should do about it.
++ */
++static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++ struct request *rq)
++{
++ struct bfq_io_cq *bic = RQ_BIC(rq);
++
++ if (rq->cmd_flags & REQ_META)
++ bfqq->meta_pending++;
++
++ bfq_update_io_thinktime(bfqd, bic);
++ bfq_update_io_seektime(bfqd, bfqq, rq);
++ if (!BFQQ_SEEKY(bfqq) && bfq_bfqq_constantly_seeky(bfqq)) {
++ bfq_clear_bfqq_constantly_seeky(bfqq);
++ if (!blk_queue_nonrot(bfqd->queue)) {
++ BUG_ON(!bfqd->const_seeky_busy_in_flight_queues);
++ bfqd->const_seeky_busy_in_flight_queues--;
++ }
++ }
++ if (bfqq->entity.service > bfq_max_budget(bfqd) / 8 ||
++ !BFQQ_SEEKY(bfqq))
++ bfq_update_idle_window(bfqd, bfqq, bic);
++
++ bfq_log_bfqq(bfqd, bfqq,
++ "rq_enqueued: idle_window=%d (seeky %d, mean %llu)",
++ bfq_bfqq_idle_window(bfqq), BFQQ_SEEKY(bfqq),
++ (unsigned long long) bfqq->seek_mean);
++
++ bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
++
++ if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
++ bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
++ blk_rq_sectors(rq) < 32;
++ bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
++
++ /*
++ * There is just this request queued: if the request
++ * is small and the queue is not to be expired, then
++ * just exit.
++ *
++ * In this way, if the disk is being idled to wait for
++ * a new request from the in-service queue, we avoid
++ * unplugging the device and committing the disk to serve
++ * just a small request. On the contrary, we wait for
++ * the block layer to decide when to unplug the device:
++ * hopefully, new requests will be merged to this one
++ * quickly, then the device will be unplugged and
++ * larger requests will be dispatched.
++ */
++ if (small_req && !budget_timeout)
++ return;
++
++ /*
++ * A large enough request arrived, or the queue is to
++ * be expired: in both cases disk idling is to be
++ * stopped, so clear wait_request flag and reset
++ * timer.
++ */
++ bfq_clear_bfqq_wait_request(bfqq);
++ del_timer(&bfqd->idle_slice_timer);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ bfqg_stats_update_idle_time(bfqq_group(bfqq));
++#endif
++
++ /*
++ * The queue is not empty, because a new request just
++ * arrived. Hence we can safely expire the queue, in
++ * case of budget timeout, without risking that the
++ * timestamps of the queue are not updated correctly.
++ * See [1] for more details.
++ */
++ if (budget_timeout)
++ bfq_bfqq_expire(bfqd, bfqq, false,
++ BFQ_BFQQ_BUDGET_TIMEOUT);
++
++ /*
++ * Let the request rip immediately, or let a new queue be
++ * selected if bfqq has just been expired.
++ */
++ __blk_run_queue(bfqd->queue);
++ }
++}
++
++static void bfq_insert_request(struct request_queue *q, struct request *rq)
++{
++ struct bfq_data *bfqd = q->elevator->elevator_data;
++ struct bfq_queue *bfqq = RQ_BFQQ(rq);
++
++ assert_spin_locked(bfqd->queue->queue_lock);
++
++ bfq_add_request(rq);
++
++ rq->fifo_time = jiffies + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
++ list_add_tail(&rq->queuelist, &bfqq->fifo);
++
++ bfq_rq_enqueued(bfqd, bfqq, rq);
++}
++
++static void bfq_update_hw_tag(struct bfq_data *bfqd)
++{
++ bfqd->max_rq_in_driver = max(bfqd->max_rq_in_driver,
++ bfqd->rq_in_driver);
++
++ if (bfqd->hw_tag == 1)
++ return;
++
++ /*
++ * This sample is valid if the number of outstanding requests
++ * is large enough to allow a queueing behavior. Note that the
++ * sum is not exact, as it's not taking into account deactivated
++ * requests.
++ */
++ if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD)
++ return;
++
++ if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
++ return;
++
++ bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
++ bfqd->max_rq_in_driver = 0;
++ bfqd->hw_tag_samples = 0;
++}
++
++static void bfq_completed_request(struct request_queue *q, struct request *rq)
++{
++ struct bfq_queue *bfqq = RQ_BFQQ(rq);
++ struct bfq_data *bfqd = bfqq->bfqd;
++ bool sync = bfq_bfqq_sync(bfqq);
++
++ bfq_log_bfqq(bfqd, bfqq, "completed one req with %u sects left (%d)",
++ blk_rq_sectors(rq), sync);
++
++ bfq_update_hw_tag(bfqd);
++
++ BUG_ON(!bfqd->rq_in_driver);
++ BUG_ON(!bfqq->dispatched);
++ bfqd->rq_in_driver--;
++ bfqq->dispatched--;
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ bfqg_stats_update_completion(bfqq_group(bfqq),
++ rq_start_time_ns(rq),
++ rq_io_start_time_ns(rq), rq->cmd_flags);
++#endif
++
++ if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
++ bfq_weights_tree_remove(bfqd, &bfqq->entity,
++ &bfqd->queue_weights_tree);
++ if (!blk_queue_nonrot(bfqd->queue)) {
++ BUG_ON(!bfqd->busy_in_flight_queues);
++ bfqd->busy_in_flight_queues--;
++ if (bfq_bfqq_constantly_seeky(bfqq)) {
++ BUG_ON(!bfqd->
++ const_seeky_busy_in_flight_queues);
++ bfqd->const_seeky_busy_in_flight_queues--;
++ }
++ }
++ }
++
++ if (sync) {
++ bfqd->sync_flight--;
++ RQ_BIC(rq)->ttime.last_end_request = jiffies;
++ }
++
++ /*
++ * If we are waiting to discover whether the request pattern of the
++ * task associated with the queue is actually isochronous, and
++ * both requisites for this condition to hold are satisfied, then
++ * compute soft_rt_next_start (see the comments to the function
++ * bfq_bfqq_softrt_next_start()).
++ */
++ if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
++ RB_EMPTY_ROOT(&bfqq->sort_list))
++ bfqq->soft_rt_next_start =
++ bfq_bfqq_softrt_next_start(bfqd, bfqq);
++
++ /*
++ * If this is the in-service queue, check if it needs to be expired,
++ * or if we want to idle in case it has no pending requests.
++ */
++ if (bfqd->in_service_queue == bfqq) {
++ if (bfq_bfqq_budget_new(bfqq))
++ bfq_set_budget_timeout(bfqd);
++
++ if (bfq_bfqq_must_idle(bfqq)) {
++ bfq_arm_slice_timer(bfqd);
++ goto out;
++ } else if (bfq_may_expire_for_budg_timeout(bfqq))
++ bfq_bfqq_expire(bfqd, bfqq, false,
++ BFQ_BFQQ_BUDGET_TIMEOUT);
++ else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
++ (bfqq->dispatched == 0 ||
++ !bfq_bfqq_may_idle(bfqq)))
++ bfq_bfqq_expire(bfqd, bfqq, false,
++ BFQ_BFQQ_NO_MORE_REQUESTS);
++ }
++
++ if (!bfqd->rq_in_driver)
++ bfq_schedule_dispatch(bfqd);
++
++out:
++ return;
++}
++
++static int __bfq_may_queue(struct bfq_queue *bfqq)
++{
++ if (bfq_bfqq_wait_request(bfqq) && bfq_bfqq_must_alloc(bfqq)) {
++ bfq_clear_bfqq_must_alloc(bfqq);
++ return ELV_MQUEUE_MUST;
++ }
++
++ return ELV_MQUEUE_MAY;
++}
++
++static int bfq_may_queue(struct request_queue *q, int rw)
++{
++ struct bfq_data *bfqd = q->elevator->elevator_data;
++ struct task_struct *tsk = current;
++ struct bfq_io_cq *bic;
++ struct bfq_queue *bfqq;
++
++ /*
++ * Don't force setup of a queue from here, as a call to may_queue
++ * does not necessarily imply that a request actually will be
++ * queued. So just lookup a possibly existing queue, or return
++ * 'may queue' if that fails.
++ */
++ bic = bfq_bic_lookup(bfqd, tsk->io_context);
++ if (!bic)
++ return ELV_MQUEUE_MAY;
++
++ bfqq = bic_to_bfqq(bic, rw_is_sync(rw));
++ if (bfqq)
++ return __bfq_may_queue(bfqq);
++
++ return ELV_MQUEUE_MAY;
++}
++
++/*
++ * Queue lock held here.
++ */
++static void bfq_put_request(struct request *rq)
++{
++ struct bfq_queue *bfqq = RQ_BFQQ(rq);
++
++ if (bfqq) {
++ const int rw = rq_data_dir(rq);
++
++ BUG_ON(!bfqq->allocated[rw]);
++ bfqq->allocated[rw]--;
++
++ rq->elv.priv[0] = NULL;
++ rq->elv.priv[1] = NULL;
++
++ bfq_log_bfqq(bfqq->bfqd, bfqq, "put_request %p, %d",
++ bfqq, atomic_read(&bfqq->ref));
++ bfq_put_queue(bfqq);
++ }
++}
++
++/*
++ * Allocate bfq data structures associated with this request.
++ */
++static int bfq_set_request(struct request_queue *q, struct request *rq,
++ struct bio *bio, gfp_t gfp_mask)
++{
++ struct bfq_data *bfqd = q->elevator->elevator_data;
++ struct bfq_io_cq *bic = icq_to_bic(rq->elv.icq);
++ const int rw = rq_data_dir(rq);
++ const int is_sync = rq_is_sync(rq);
++ struct bfq_queue *bfqq;
++ unsigned long flags;
++
++ might_sleep_if(gfpflags_allow_blocking(gfp_mask));
++
++ bfq_check_ioprio_change(bic, bio);
++
++ spin_lock_irqsave(q->queue_lock, flags);
++
++ if (!bic)
++ goto queue_fail;
++
++ bfq_bic_update_cgroup(bic, bio);
++
++ bfqq = bic_to_bfqq(bic, is_sync);
++ if (!bfqq || bfqq == &bfqd->oom_bfqq) {
++ bfqq = bfq_get_queue(bfqd, bio, is_sync, bic, gfp_mask);
++ bic_set_bfqq(bic, bfqq, is_sync);
++ if (is_sync) {
++ if (bfqd->large_burst)
++ bfq_mark_bfqq_in_large_burst(bfqq);
++ else
++ bfq_clear_bfqq_in_large_burst(bfqq);
++ }
++ }
++
++ bfqq->allocated[rw]++;
++ atomic_inc(&bfqq->ref);
++ bfq_log_bfqq(bfqd, bfqq, "set_request: bfqq %p, %d", bfqq,
++ atomic_read(&bfqq->ref));
++
++ rq->elv.priv[0] = bic;
++ rq->elv.priv[1] = bfqq;
++
++ spin_unlock_irqrestore(q->queue_lock, flags);
++
++ return 0;
++
++queue_fail:
++ bfq_schedule_dispatch(bfqd);
++ spin_unlock_irqrestore(q->queue_lock, flags);
++
++ return 1;
++}
++
++static void bfq_kick_queue(struct work_struct *work)
++{
++ struct bfq_data *bfqd =
++ container_of(work, struct bfq_data, unplug_work);
++ struct request_queue *q = bfqd->queue;
++
++ spin_lock_irq(q->queue_lock);
++ __blk_run_queue(q);
++ spin_unlock_irq(q->queue_lock);
++}
++
++/*
++ * Handler of the expiration of the timer running if the in-service queue
++ * is idling inside its time slice.
++ */
++static void bfq_idle_slice_timer(unsigned long data)
++{
++ struct bfq_data *bfqd = (struct bfq_data *)data;
++ struct bfq_queue *bfqq;
++ unsigned long flags;
++ enum bfqq_expiration reason;
++
++ spin_lock_irqsave(bfqd->queue->queue_lock, flags);
++
++ bfqq = bfqd->in_service_queue;
++ /*
++ * Theoretical race here: the in-service queue can be NULL or
++ * different from the queue that was idling if the timer handler
++ * spins on the queue_lock and a new request arrives for the
++ * current queue and there is a full dispatch cycle that changes
++ * the in-service queue. This can hardly happen, but in the worst
++ * case we just expire a queue too early.
++ */
++ if (bfqq) {
++ bfq_log_bfqq(bfqd, bfqq, "slice_timer expired");
++ if (bfq_bfqq_budget_timeout(bfqq))
++ /*
++ * Also here the queue can be safely expired
++ * for budget timeout without wasting
++ * guarantees
++ */
++ reason = BFQ_BFQQ_BUDGET_TIMEOUT;
++ else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
++ /*
++ * The queue may not be empty upon timer expiration,
++ * because we may not disable the timer when the
++ * first request of the in-service queue arrives
++ * during disk idling.
++ */
++ reason = BFQ_BFQQ_TOO_IDLE;
++ else
++ goto schedule_dispatch;
++
++ bfq_bfqq_expire(bfqd, bfqq, true, reason);
++ }
++
++schedule_dispatch:
++ bfq_schedule_dispatch(bfqd);
++
++ spin_unlock_irqrestore(bfqd->queue->queue_lock, flags);
++}
++
++static void bfq_shutdown_timer_wq(struct bfq_data *bfqd)
++{
++ del_timer_sync(&bfqd->idle_slice_timer);
++ cancel_work_sync(&bfqd->unplug_work);
++}
++
++static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
++ struct bfq_queue **bfqq_ptr)
++{
++ struct bfq_group *root_group = bfqd->root_group;
++ struct bfq_queue *bfqq = *bfqq_ptr;
++
++ bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
++ if (bfqq) {
++ bfq_bfqq_move(bfqd, bfqq, &bfqq->entity, root_group);
++ bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
++ bfqq, atomic_read(&bfqq->ref));
++ bfq_put_queue(bfqq);
++ *bfqq_ptr = NULL;
++ }
++}
++
++/*
++ * Release all the bfqg references to its async queues. If we are
++ * deallocating the group these queues may still contain requests, so
++ * we reparent them to the root cgroup (i.e., the only one that will
++ * exist for sure until all the requests on a device are gone).
++ */
++static void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
++{
++ int i, j;
++
++ for (i = 0; i < 2; i++)
++ for (j = 0; j < IOPRIO_BE_NR; j++)
++ __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
++
++ __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
++}
++
++static void bfq_exit_queue(struct elevator_queue *e)
++{
++ struct bfq_data *bfqd = e->elevator_data;
++ struct request_queue *q = bfqd->queue;
++ struct bfq_queue *bfqq, *n;
++
++ bfq_shutdown_timer_wq(bfqd);
++
++ spin_lock_irq(q->queue_lock);
++
++ BUG_ON(bfqd->in_service_queue);
++ list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
++ bfq_deactivate_bfqq(bfqd, bfqq, 0);
++
++ spin_unlock_irq(q->queue_lock);
++
++ bfq_shutdown_timer_wq(bfqd);
++
++ synchronize_rcu();
++
++ BUG_ON(timer_pending(&bfqd->idle_slice_timer));
++
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ blkcg_deactivate_policy(q, &blkcg_policy_bfq);
++#else
++ kfree(bfqd->root_group);
++#endif
++
++ kfree(bfqd);
++}
++
++static void bfq_init_root_group(struct bfq_group *root_group,
++ struct bfq_data *bfqd)
++{
++ int i;
++
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ root_group->entity.parent = NULL;
++ root_group->my_entity = NULL;
++ root_group->bfqd = bfqd;
++#endif
++ for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
++ root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
++}
++
++static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
++{
++ struct bfq_data *bfqd;
++ struct elevator_queue *eq;
++
++ eq = elevator_alloc(q, e);
++ if (!eq)
++ return -ENOMEM;
++
++ bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
++ if (!bfqd) {
++ kobject_put(&eq->kobj);
++ return -ENOMEM;
++ }
++ eq->elevator_data = bfqd;
++
++ /*
++ * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
++ * Grab a permanent reference to it, so that the normal code flow
++ * will not attempt to free it.
++ */
++ bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
++ atomic_inc(&bfqd->oom_bfqq.ref);
++ bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
++ bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
++ bfqd->oom_bfqq.entity.new_weight =
++ bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
++ /*
++ * Trigger weight initialization, according to ioprio, at the
++ * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
++ * class won't be changed any more.
++ */
++ bfqd->oom_bfqq.entity.prio_changed = 1;
++
++ bfqd->queue = q;
++
++ spin_lock_irq(q->queue_lock);
++ q->elevator = eq;
++ spin_unlock_irq(q->queue_lock);
++
++ bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
++ if (!bfqd->root_group)
++ goto out_free;
++ bfq_init_root_group(bfqd->root_group, bfqd);
++ bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ bfqd->active_numerous_groups = 0;
++#endif
++
++ init_timer(&bfqd->idle_slice_timer);
++ bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
++ bfqd->idle_slice_timer.data = (unsigned long)bfqd;
++
++ bfqd->queue_weights_tree = RB_ROOT;
++ bfqd->group_weights_tree = RB_ROOT;
++
++ INIT_WORK(&bfqd->unplug_work, bfq_kick_queue);
++
++ INIT_LIST_HEAD(&bfqd->active_list);
++ INIT_LIST_HEAD(&bfqd->idle_list);
++ INIT_HLIST_HEAD(&bfqd->burst_list);
++
++ bfqd->hw_tag = -1;
++
++ bfqd->bfq_max_budget = bfq_default_max_budget;
++
++ bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
++ bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
++ bfqd->bfq_back_max = bfq_back_max;
++ bfqd->bfq_back_penalty = bfq_back_penalty;
++ bfqd->bfq_slice_idle = bfq_slice_idle;
++ bfqd->bfq_class_idle_last_service = 0;
++ bfqd->bfq_max_budget_async_rq = bfq_max_budget_async_rq;
++ bfqd->bfq_timeout[BLK_RW_ASYNC] = bfq_timeout_async;
++ bfqd->bfq_timeout[BLK_RW_SYNC] = bfq_timeout_sync;
++
++ bfqd->bfq_requests_within_timer = 120;
++
++ bfqd->bfq_large_burst_thresh = 11;
++ bfqd->bfq_burst_interval = msecs_to_jiffies(500);
++
++ bfqd->low_latency = true;
++
++ bfqd->bfq_wr_coeff = 20;
++ bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
++ bfqd->bfq_wr_max_time = 0;
++ bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
++ bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
++ bfqd->bfq_wr_max_softrt_rate = 7000; /*
++ * Approximate rate required
++ * to playback or record a
++ * high-definition compressed
++ * video.
++ */
++ bfqd->wr_busy_queues = 0;
++ bfqd->busy_in_flight_queues = 0;
++ bfqd->const_seeky_busy_in_flight_queues = 0;
++
++ /*
++ * Begin by assuming, optimistically, that the device peak rate is
++ * equal to the highest reference rate.
++ */
++ bfqd->RT_prod = R_fast[blk_queue_nonrot(bfqd->queue)] *
++ T_fast[blk_queue_nonrot(bfqd->queue)];
++ bfqd->peak_rate = R_fast[blk_queue_nonrot(bfqd->queue)];
++ bfqd->device_speed = BFQ_BFQD_FAST;
++
++ return 0;
++
++out_free:
++ kfree(bfqd);
++ kobject_put(&eq->kobj);
++ return -ENOMEM;
++}
++
++static void bfq_slab_kill(void)
++{
++ kmem_cache_destroy(bfq_pool);
++}
++
++static int __init bfq_slab_setup(void)
++{
++ bfq_pool = KMEM_CACHE(bfq_queue, 0);
++ if (!bfq_pool)
++ return -ENOMEM;
++ return 0;
++}
++
++static ssize_t bfq_var_show(unsigned int var, char *page)
++{
++ return sprintf(page, "%d\n", var);
++}
++
++static ssize_t bfq_var_store(unsigned long *var, const char *page,
++ size_t count)
++{
++ unsigned long new_val;
++ int ret = kstrtoul(page, 10, &new_val);
++
++ if (ret == 0)
++ *var = new_val;
++
++ return count;
++}
++
++static ssize_t bfq_wr_max_time_show(struct elevator_queue *e, char *page)
++{
++ struct bfq_data *bfqd = e->elevator_data;
++
++ return sprintf(page, "%d\n", bfqd->bfq_wr_max_time > 0 ?
++ jiffies_to_msecs(bfqd->bfq_wr_max_time) :
++ jiffies_to_msecs(bfq_wr_duration(bfqd)));
++}
++
++static ssize_t bfq_weights_show(struct elevator_queue *e, char *page)
++{
++ struct bfq_queue *bfqq;
++ struct bfq_data *bfqd = e->elevator_data;
++ ssize_t num_char = 0;
++
++ num_char += sprintf(page + num_char, "Tot reqs queued %d\n\n",
++ bfqd->queued);
++
++ spin_lock_irq(bfqd->queue->queue_lock);
++
++ num_char += sprintf(page + num_char, "Active:\n");
++ list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list) {
++ num_char += sprintf(page + num_char,
++ "pid%d: weight %hu, nr_queued %d %d, ",
++ bfqq->pid,
++ bfqq->entity.weight,
++ bfqq->queued[0],
++ bfqq->queued[1]);
++ num_char += sprintf(page + num_char,
++ "dur %d/%u\n",
++ jiffies_to_msecs(
++ jiffies -
++ bfqq->last_wr_start_finish),
++ jiffies_to_msecs(bfqq->wr_cur_max_time));
++ }
++
++ num_char += sprintf(page + num_char, "Idle:\n");
++ list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list) {
++ num_char += sprintf(page + num_char,
++ "pid%d: weight %hu, dur %d/%u\n",
++ bfqq->pid,
++ bfqq->entity.weight,
++ jiffies_to_msecs(jiffies -
++ bfqq->last_wr_start_finish),
++ jiffies_to_msecs(bfqq->wr_cur_max_time));
++ }
++
++ spin_unlock_irq(bfqd->queue->queue_lock);
++
++ return num_char;
++}
++
++#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
++static ssize_t __FUNC(struct elevator_queue *e, char *page) \
++{ \
++ struct bfq_data *bfqd = e->elevator_data; \
++ unsigned int __data = __VAR; \
++ if (__CONV) \
++ __data = jiffies_to_msecs(__data); \
++ return bfq_var_show(__data, (page)); \
++}
++SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 1);
++SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 1);
++SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
++SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
++SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 1);
++SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
++SHOW_FUNCTION(bfq_max_budget_async_rq_show,
++ bfqd->bfq_max_budget_async_rq, 0);
++SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout[BLK_RW_SYNC], 1);
++SHOW_FUNCTION(bfq_timeout_async_show, bfqd->bfq_timeout[BLK_RW_ASYNC], 1);
++SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
++SHOW_FUNCTION(bfq_wr_coeff_show, bfqd->bfq_wr_coeff, 0);
++SHOW_FUNCTION(bfq_wr_rt_max_time_show, bfqd->bfq_wr_rt_max_time, 1);
++SHOW_FUNCTION(bfq_wr_min_idle_time_show, bfqd->bfq_wr_min_idle_time, 1);
++SHOW_FUNCTION(bfq_wr_min_inter_arr_async_show, bfqd->bfq_wr_min_inter_arr_async,
++ 1);
++SHOW_FUNCTION(bfq_wr_max_softrt_rate_show, bfqd->bfq_wr_max_softrt_rate, 0);
++#undef SHOW_FUNCTION
++
++#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
++static ssize_t \
++__FUNC(struct elevator_queue *e, const char *page, size_t count) \
++{ \
++ struct bfq_data *bfqd = e->elevator_data; \
++ unsigned long uninitialized_var(__data); \
++ int ret = bfq_var_store(&__data, (page), count); \
++ if (__data < (MIN)) \
++ __data = (MIN); \
++ else if (__data > (MAX)) \
++ __data = (MAX); \
++ if (__CONV) \
++ *(__PTR) = msecs_to_jiffies(__data); \
++ else \
++ *(__PTR) = __data; \
++ return ret; \
++}
++STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
++ INT_MAX, 1);
++STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
++ INT_MAX, 1);
++STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
++STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
++ INT_MAX, 0);
++STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 1);
++STORE_FUNCTION(bfq_max_budget_async_rq_store, &bfqd->bfq_max_budget_async_rq,
++ 1, INT_MAX, 0);
++STORE_FUNCTION(bfq_timeout_async_store, &bfqd->bfq_timeout[BLK_RW_ASYNC], 0,
++ INT_MAX, 1);
++STORE_FUNCTION(bfq_wr_coeff_store, &bfqd->bfq_wr_coeff, 1, INT_MAX, 0);
++STORE_FUNCTION(bfq_wr_max_time_store, &bfqd->bfq_wr_max_time, 0, INT_MAX, 1);
++STORE_FUNCTION(bfq_wr_rt_max_time_store, &bfqd->bfq_wr_rt_max_time, 0, INT_MAX,
++ 1);
++STORE_FUNCTION(bfq_wr_min_idle_time_store, &bfqd->bfq_wr_min_idle_time, 0,
++ INT_MAX, 1);
++STORE_FUNCTION(bfq_wr_min_inter_arr_async_store,
++ &bfqd->bfq_wr_min_inter_arr_async, 0, INT_MAX, 1);
++STORE_FUNCTION(bfq_wr_max_softrt_rate_store, &bfqd->bfq_wr_max_softrt_rate, 0,
++ INT_MAX, 0);
++#undef STORE_FUNCTION
++
++/* do nothing for the moment */
++static ssize_t bfq_weights_store(struct elevator_queue *e,
++ const char *page, size_t count)
++{
++ return count;
++}
++
++static unsigned long bfq_estimated_max_budget(struct bfq_data *bfqd)
++{
++ u64 timeout = jiffies_to_msecs(bfqd->bfq_timeout[BLK_RW_SYNC]);
++
++ if (bfqd->peak_rate_samples >= BFQ_PEAK_RATE_SAMPLES)
++ return bfq_calc_max_budget(bfqd->peak_rate, timeout);
++ else
++ return bfq_default_max_budget;
++}
++
++static ssize_t bfq_max_budget_store(struct elevator_queue *e,
++ const char *page, size_t count)
++{
++ struct bfq_data *bfqd = e->elevator_data;
++ unsigned long uninitialized_var(__data);
++ int ret = bfq_var_store(&__data, (page), count);
++
++ if (__data == 0)
++ bfqd->bfq_max_budget = bfq_estimated_max_budget(bfqd);
++ else {
++ if (__data > INT_MAX)
++ __data = INT_MAX;
++ bfqd->bfq_max_budget = __data;
++ }
++
++ bfqd->bfq_user_max_budget = __data;
++
++ return ret;
++}
++
++static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
++ const char *page, size_t count)
++{
++ struct bfq_data *bfqd = e->elevator_data;
++ unsigned long uninitialized_var(__data);
++ int ret = bfq_var_store(&__data, (page), count);
++
++ if (__data < 1)
++ __data = 1;
++ else if (__data > INT_MAX)
++ __data = INT_MAX;
++
++ bfqd->bfq_timeout[BLK_RW_SYNC] = msecs_to_jiffies(__data);
++ if (bfqd->bfq_user_max_budget == 0)
++ bfqd->bfq_max_budget = bfq_estimated_max_budget(bfqd);
++
++ return ret;
++}
++
++static ssize_t bfq_low_latency_store(struct elevator_queue *e,
++ const char *page, size_t count)
++{
++ struct bfq_data *bfqd = e->elevator_data;
++ unsigned long uninitialized_var(__data);
++ int ret = bfq_var_store(&__data, (page), count);
++
++ if (__data > 1)
++ __data = 1;
++ if (__data == 0 && bfqd->low_latency != 0)
++ bfq_end_wr(bfqd);
++ bfqd->low_latency = __data;
++
++ return ret;
++}
++
++#define BFQ_ATTR(name) \
++ __ATTR(name, S_IRUGO|S_IWUSR, bfq_##name##_show, bfq_##name##_store)
++
++static struct elv_fs_entry bfq_attrs[] = {
++ BFQ_ATTR(fifo_expire_sync),
++ BFQ_ATTR(fifo_expire_async),
++ BFQ_ATTR(back_seek_max),
++ BFQ_ATTR(back_seek_penalty),
++ BFQ_ATTR(slice_idle),
++ BFQ_ATTR(max_budget),
++ BFQ_ATTR(max_budget_async_rq),
++ BFQ_ATTR(timeout_sync),
++ BFQ_ATTR(timeout_async),
++ BFQ_ATTR(low_latency),
++ BFQ_ATTR(wr_coeff),
++ BFQ_ATTR(wr_max_time),
++ BFQ_ATTR(wr_rt_max_time),
++ BFQ_ATTR(wr_min_idle_time),
++ BFQ_ATTR(wr_min_inter_arr_async),
++ BFQ_ATTR(wr_max_softrt_rate),
++ BFQ_ATTR(weights),
++ __ATTR_NULL
++};
++
++static struct elevator_type iosched_bfq = {
++ .ops = {
++ .elevator_merge_fn = bfq_merge,
++ .elevator_merged_fn = bfq_merged_request,
++ .elevator_merge_req_fn = bfq_merged_requests,
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ .elevator_bio_merged_fn = bfq_bio_merged,
++#endif
++ .elevator_allow_merge_fn = bfq_allow_merge,
++ .elevator_dispatch_fn = bfq_dispatch_requests,
++ .elevator_add_req_fn = bfq_insert_request,
++ .elevator_activate_req_fn = bfq_activate_request,
++ .elevator_deactivate_req_fn = bfq_deactivate_request,
++ .elevator_completed_req_fn = bfq_completed_request,
++ .elevator_former_req_fn = elv_rb_former_request,
++ .elevator_latter_req_fn = elv_rb_latter_request,
++ .elevator_init_icq_fn = bfq_init_icq,
++ .elevator_exit_icq_fn = bfq_exit_icq,
++ .elevator_set_req_fn = bfq_set_request,
++ .elevator_put_req_fn = bfq_put_request,
++ .elevator_may_queue_fn = bfq_may_queue,
++ .elevator_init_fn = bfq_init_queue,
++ .elevator_exit_fn = bfq_exit_queue,
++ },
++ .icq_size = sizeof(struct bfq_io_cq),
++ .icq_align = __alignof__(struct bfq_io_cq),
++ .elevator_attrs = bfq_attrs,
++ .elevator_name = "bfq",
++ .elevator_owner = THIS_MODULE,
++};
++
++static int __init bfq_init(void)
++{
++ int ret;
++
++ /*
++ * Can be 0 on HZ < 1000 setups.
++ */
++ if (bfq_slice_idle == 0)
++ bfq_slice_idle = 1;
++
++ if (bfq_timeout_async == 0)
++ bfq_timeout_async = 1;
++
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ ret = blkcg_policy_register(&blkcg_policy_bfq);
++ if (ret)
++ return ret;
++#endif
++
++ ret = -ENOMEM;
++ if (bfq_slab_setup())
++ goto err_pol_unreg;
++
++ /*
++ * Times to load large popular applications for the typical systems
++ * installed on the reference devices (see the comments before the
++ * definitions of the two arrays).
++ */
++ T_slow[0] = msecs_to_jiffies(2600);
++ T_slow[1] = msecs_to_jiffies(1000);
++ T_fast[0] = msecs_to_jiffies(5500);
++ T_fast[1] = msecs_to_jiffies(2000);
++
++ /*
++ * Thresholds that determine the switch between speed classes (see
++ * the comments before the definition of the array).
++ */
++ device_speed_thresh[0] = (R_fast[0] + R_slow[0]) / 2;
++ device_speed_thresh[1] = (R_fast[1] + R_slow[1]) / 2;
++
++ ret = elv_register(&iosched_bfq);
++ if (ret)
++ goto err_pol_unreg;
++
++ pr_info("BFQ I/O-scheduler: v7r11");
++
++ return 0;
++
++err_pol_unreg:
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ blkcg_policy_unregister(&blkcg_policy_bfq);
++#endif
++ return ret;
++}
++
++static void __exit bfq_exit(void)
++{
++ elv_unregister(&iosched_bfq);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ blkcg_policy_unregister(&blkcg_policy_bfq);
++#endif
++ bfq_slab_kill();
++}
++
++module_init(bfq_init);
++module_exit(bfq_exit);
++
++MODULE_AUTHOR("Arianna Avanzini, Fabio Checconi, Paolo Valente");
++MODULE_LICENSE("GPL");
+diff --git a/block/bfq-sched.c b/block/bfq-sched.c
+new file mode 100644
+index 0000000..a5ed694
+--- /dev/null
++++ b/block/bfq-sched.c
+@@ -0,0 +1,1199 @@
++/*
++ * BFQ: Hierarchical B-WF2Q+ scheduler.
++ *
++ * Based on ideas and code from CFQ:
++ * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
++ *
++ * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
++ * Paolo Valente <paolo.valente@unimore.it>
++ *
++ * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
++ */
++
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++#define for_each_entity(entity) \
++ for (; entity ; entity = entity->parent)
++
++#define for_each_entity_safe(entity, parent) \
++ for (; entity && ({ parent = entity->parent; 1; }); entity = parent)
++
++
++static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
++ int extract,
++ struct bfq_data *bfqd);
++
++static struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
++
++static void bfq_update_budget(struct bfq_entity *next_in_service)
++{
++ struct bfq_entity *bfqg_entity;
++ struct bfq_group *bfqg;
++ struct bfq_sched_data *group_sd;
++
++ BUG_ON(!next_in_service);
++
++ group_sd = next_in_service->sched_data;
++
++ bfqg = container_of(group_sd, struct bfq_group, sched_data);
++ /*
++ * bfq_group's my_entity field is not NULL only if the group
++ * is not the root group. We must not touch the root entity
++ * as it must never become an in-service entity.
++ */
++ bfqg_entity = bfqg->my_entity;
++ if (bfqg_entity)
++ bfqg_entity->budget = next_in_service->budget;
++}
++
++static int bfq_update_next_in_service(struct bfq_sched_data *sd)
++{
++ struct bfq_entity *next_in_service;
++
++ if (sd->in_service_entity)
++ /* will update/requeue at the end of service */
++ return 0;
++
++ /*
++ * NOTE: this can be improved in many ways, such as returning
++ * 1 (and thus propagating upwards the update) only when the
++ * budget changes, or caching the bfqq that will be scheduled
++ * next from this subtree. By now we worry more about
++ * correctness than about performance...
++ */
++ next_in_service = bfq_lookup_next_entity(sd, 0, NULL);
++ sd->next_in_service = next_in_service;
++
++ if (next_in_service)
++ bfq_update_budget(next_in_service);
++
++ return 1;
++}
++
++static void bfq_check_next_in_service(struct bfq_sched_data *sd,
++ struct bfq_entity *entity)
++{
++ BUG_ON(sd->next_in_service != entity);
++}
++#else
++#define for_each_entity(entity) \
++ for (; entity ; entity = NULL)
++
++#define for_each_entity_safe(entity, parent) \
++ for (parent = NULL; entity ; entity = parent)
++
++static int bfq_update_next_in_service(struct bfq_sched_data *sd)
++{
++ return 0;
++}
++
++static void bfq_check_next_in_service(struct bfq_sched_data *sd,
++ struct bfq_entity *entity)
++{
++}
++
++static void bfq_update_budget(struct bfq_entity *next_in_service)
++{
++}
++#endif
++
++/*
++ * Shift for timestamp calculations. This actually limits the maximum
++ * service allowed in one timestamp delta (small shift values increase it),
++ * the maximum total weight that can be used for the queues in the system
++ * (big shift values increase it), and the period of virtual time
++ * wraparounds.
++ */
++#define WFQ_SERVICE_SHIFT 22
++
++/**
++ * bfq_gt - compare two timestamps.
++ * @a: first ts.
++ * @b: second ts.
++ *
++ * Return @a > @b, dealing with wrapping correctly.
++ */
++static int bfq_gt(u64 a, u64 b)
++{
++ return (s64)(a - b) > 0;
++}
++
++static struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity)
++{
++ struct bfq_queue *bfqq = NULL;
++
++ BUG_ON(!entity);
++
++ if (!entity->my_sched_data)
++ bfqq = container_of(entity, struct bfq_queue, entity);
++
++ return bfqq;
++}
++
++
++/**
++ * bfq_delta - map service into the virtual time domain.
++ * @service: amount of service.
++ * @weight: scale factor (weight of an entity or weight sum).
++ */
++static u64 bfq_delta(unsigned long service, unsigned long weight)
++{
++ u64 d = (u64)service << WFQ_SERVICE_SHIFT;
++
++ do_div(d, weight);
++ return d;
++}
++
++/**
++ * bfq_calc_finish - assign the finish time to an entity.
++ * @entity: the entity to act upon.
++ * @service: the service to be charged to the entity.
++ */
++static void bfq_calc_finish(struct bfq_entity *entity, unsigned long service)
++{
++ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++
++ BUG_ON(entity->weight == 0);
++
++ entity->finish = entity->start +
++ bfq_delta(service, entity->weight);
++
++ if (bfqq) {
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "calc_finish: serv %lu, w %d",
++ service, entity->weight);
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "calc_finish: start %llu, finish %llu, delta %llu",
++ entity->start, entity->finish,
++ bfq_delta(service, entity->weight));
++ }
++}
++
++/**
++ * bfq_entity_of - get an entity from a node.
++ * @node: the node field of the entity.
++ *
++ * Convert a node pointer to the relative entity. This is used only
++ * to simplify the logic of some functions and not as the generic
++ * conversion mechanism because, e.g., in the tree walking functions,
++ * the check for a %NULL value would be redundant.
++ */
++static struct bfq_entity *bfq_entity_of(struct rb_node *node)
++{
++ struct bfq_entity *entity = NULL;
++
++ if (node)
++ entity = rb_entry(node, struct bfq_entity, rb_node);
++
++ return entity;
++}
++
++/**
++ * bfq_extract - remove an entity from a tree.
++ * @root: the tree root.
++ * @entity: the entity to remove.
++ */
++static void bfq_extract(struct rb_root *root, struct bfq_entity *entity)
++{
++ BUG_ON(entity->tree != root);
++
++ entity->tree = NULL;
++ rb_erase(&entity->rb_node, root);
++}
++
++/**
++ * bfq_idle_extract - extract an entity from the idle tree.
++ * @st: the service tree of the owning @entity.
++ * @entity: the entity being removed.
++ */
++static void bfq_idle_extract(struct bfq_service_tree *st,
++ struct bfq_entity *entity)
++{
++ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++ struct rb_node *next;
++
++ BUG_ON(entity->tree != &st->idle);
++
++ if (entity == st->first_idle) {
++ next = rb_next(&entity->rb_node);
++ st->first_idle = bfq_entity_of(next);
++ }
++
++ if (entity == st->last_idle) {
++ next = rb_prev(&entity->rb_node);
++ st->last_idle = bfq_entity_of(next);
++ }
++
++ bfq_extract(&st->idle, entity);
++
++ if (bfqq)
++ list_del(&bfqq->bfqq_list);
++}
++
++/**
++ * bfq_insert - generic tree insertion.
++ * @root: tree root.
++ * @entity: entity to insert.
++ *
++ * This is used for the idle and the active tree, since they are both
++ * ordered by finish time.
++ */
++static void bfq_insert(struct rb_root *root, struct bfq_entity *entity)
++{
++ struct bfq_entity *entry;
++ struct rb_node **node = &root->rb_node;
++ struct rb_node *parent = NULL;
++
++ BUG_ON(entity->tree);
++
++ while (*node) {
++ parent = *node;
++ entry = rb_entry(parent, struct bfq_entity, rb_node);
++
++ if (bfq_gt(entry->finish, entity->finish))
++ node = &parent->rb_left;
++ else
++ node = &parent->rb_right;
++ }
++
++ rb_link_node(&entity->rb_node, parent, node);
++ rb_insert_color(&entity->rb_node, root);
++
++ entity->tree = root;
++}
++
++/**
++ * bfq_update_min - update the min_start field of a entity.
++ * @entity: the entity to update.
++ * @node: one of its children.
++ *
++ * This function is called when @entity may store an invalid value for
++ * min_start due to updates to the active tree. The function assumes
++ * that the subtree rooted at @node (which may be its left or its right
++ * child) has a valid min_start value.
++ */
++static void bfq_update_min(struct bfq_entity *entity, struct rb_node *node)
++{
++ struct bfq_entity *child;
++
++ if (node) {
++ child = rb_entry(node, struct bfq_entity, rb_node);
++ if (bfq_gt(entity->min_start, child->min_start))
++ entity->min_start = child->min_start;
++ }
++}
++
++/**
++ * bfq_update_active_node - recalculate min_start.
++ * @node: the node to update.
++ *
++ * @node may have changed position or one of its children may have moved,
++ * this function updates its min_start value. The left and right subtrees
++ * are assumed to hold a correct min_start value.
++ */
++static void bfq_update_active_node(struct rb_node *node)
++{
++ struct bfq_entity *entity = rb_entry(node, struct bfq_entity, rb_node);
++
++ entity->min_start = entity->start;
++ bfq_update_min(entity, node->rb_right);
++ bfq_update_min(entity, node->rb_left);
++}
++
++/**
++ * bfq_update_active_tree - update min_start for the whole active tree.
++ * @node: the starting node.
++ *
++ * @node must be the deepest modified node after an update. This function
++ * updates its min_start using the values held by its children, assuming
++ * that they did not change, and then updates all the nodes that may have
++ * changed in the path to the root. The only nodes that may have changed
++ * are the ones in the path or their siblings.
++ */
++static void bfq_update_active_tree(struct rb_node *node)
++{
++ struct rb_node *parent;
++
++up:
++ bfq_update_active_node(node);
++
++ parent = rb_parent(node);
++ if (!parent)
++ return;
++
++ if (node == parent->rb_left && parent->rb_right)
++ bfq_update_active_node(parent->rb_right);
++ else if (parent->rb_left)
++ bfq_update_active_node(parent->rb_left);
++
++ node = parent;
++ goto up;
++}
++
++static void bfq_weights_tree_add(struct bfq_data *bfqd,
++ struct bfq_entity *entity,
++ struct rb_root *root);
++
++static void bfq_weights_tree_remove(struct bfq_data *bfqd,
++ struct bfq_entity *entity,
++ struct rb_root *root);
++
++
++/**
++ * bfq_active_insert - insert an entity in the active tree of its
++ * group/device.
++ * @st: the service tree of the entity.
++ * @entity: the entity being inserted.
++ *
++ * The active tree is ordered by finish time, but an extra key is kept
++ * per each node, containing the minimum value for the start times of
++ * its children (and the node itself), so it's possible to search for
++ * the eligible node with the lowest finish time in logarithmic time.
++ */
++static void bfq_active_insert(struct bfq_service_tree *st,
++ struct bfq_entity *entity)
++{
++ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++ struct rb_node *node = &entity->rb_node;
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ struct bfq_sched_data *sd = NULL;
++ struct bfq_group *bfqg = NULL;
++ struct bfq_data *bfqd = NULL;
++#endif
++
++ bfq_insert(&st->active, entity);
++
++ if (node->rb_left)
++ node = node->rb_left;
++ else if (node->rb_right)
++ node = node->rb_right;
++
++ bfq_update_active_tree(node);
++
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ sd = entity->sched_data;
++ bfqg = container_of(sd, struct bfq_group, sched_data);
++ BUG_ON(!bfqg);
++ bfqd = (struct bfq_data *)bfqg->bfqd;
++#endif
++ if (bfqq)
++ list_add(&bfqq->bfqq_list, &bfqq->bfqd->active_list);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ else { /* bfq_group */
++ BUG_ON(!bfqd);
++ bfq_weights_tree_add(bfqd, entity, &bfqd->group_weights_tree);
++ }
++ if (bfqg != bfqd->root_group) {
++ BUG_ON(!bfqg);
++ BUG_ON(!bfqd);
++ bfqg->active_entities++;
++ if (bfqg->active_entities == 2)
++ bfqd->active_numerous_groups++;
++ }
++#endif
++}
++
++/**
++ * bfq_ioprio_to_weight - calc a weight from an ioprio.
++ * @ioprio: the ioprio value to convert.
++ */
++static unsigned short bfq_ioprio_to_weight(int ioprio)
++{
++ BUG_ON(ioprio < 0 || ioprio >= IOPRIO_BE_NR);
++ return IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF - ioprio;
++}
++
++/**
++ * bfq_weight_to_ioprio - calc an ioprio from a weight.
++ * @weight: the weight value to convert.
++ *
++ * To preserve as much as possible the old only-ioprio user interface,
++ * 0 is used as an escape ioprio value for weights (numerically) equal or
++ * larger than IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF.
++ */
++static unsigned short bfq_weight_to_ioprio(int weight)
++{
++ BUG_ON(weight < BFQ_MIN_WEIGHT || weight > BFQ_MAX_WEIGHT);
++ return IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF - weight < 0 ?
++ 0 : IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF - weight;
++}
++
++static void bfq_get_entity(struct bfq_entity *entity)
++{
++ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++
++ if (bfqq) {
++ atomic_inc(&bfqq->ref);
++ bfq_log_bfqq(bfqq->bfqd, bfqq, "get_entity: %p %d",
++ bfqq, atomic_read(&bfqq->ref));
++ }
++}
++
++/**
++ * bfq_find_deepest - find the deepest node that an extraction can modify.
++ * @node: the node being removed.
++ *
++ * Do the first step of an extraction in an rb tree, looking for the
++ * node that will replace @node, and returning the deepest node that
++ * the following modifications to the tree can touch. If @node is the
++ * last node in the tree return %NULL.
++ */
++static struct rb_node *bfq_find_deepest(struct rb_node *node)
++{
++ struct rb_node *deepest;
++
++ if (!node->rb_right && !node->rb_left)
++ deepest = rb_parent(node);
++ else if (!node->rb_right)
++ deepest = node->rb_left;
++ else if (!node->rb_left)
++ deepest = node->rb_right;
++ else {
++ deepest = rb_next(node);
++ if (deepest->rb_right)
++ deepest = deepest->rb_right;
++ else if (rb_parent(deepest) != node)
++ deepest = rb_parent(deepest);
++ }
++
++ return deepest;
++}
++
++/**
++ * bfq_active_extract - remove an entity from the active tree.
++ * @st: the service_tree containing the tree.
++ * @entity: the entity being removed.
++ */
++static void bfq_active_extract(struct bfq_service_tree *st,
++ struct bfq_entity *entity)
++{
++ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++ struct rb_node *node;
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ struct bfq_sched_data *sd = NULL;
++ struct bfq_group *bfqg = NULL;
++ struct bfq_data *bfqd = NULL;
++#endif
++
++ node = bfq_find_deepest(&entity->rb_node);
++ bfq_extract(&st->active, entity);
++
++ if (node)
++ bfq_update_active_tree(node);
++
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ sd = entity->sched_data;
++ bfqg = container_of(sd, struct bfq_group, sched_data);
++ BUG_ON(!bfqg);
++ bfqd = (struct bfq_data *)bfqg->bfqd;
++#endif
++ if (bfqq)
++ list_del(&bfqq->bfqq_list);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ else { /* bfq_group */
++ BUG_ON(!bfqd);
++ bfq_weights_tree_remove(bfqd, entity,
++ &bfqd->group_weights_tree);
++ }
++ if (bfqg != bfqd->root_group) {
++ BUG_ON(!bfqg);
++ BUG_ON(!bfqd);
++ BUG_ON(!bfqg->active_entities);
++ bfqg->active_entities--;
++ if (bfqg->active_entities == 1) {
++ BUG_ON(!bfqd->active_numerous_groups);
++ bfqd->active_numerous_groups--;
++ }
++ }
++#endif
++}
++
++/**
++ * bfq_idle_insert - insert an entity into the idle tree.
++ * @st: the service tree containing the tree.
++ * @entity: the entity to insert.
++ */
++static void bfq_idle_insert(struct bfq_service_tree *st,
++ struct bfq_entity *entity)
++{
++ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++ struct bfq_entity *first_idle = st->first_idle;
++ struct bfq_entity *last_idle = st->last_idle;
++
++ if (!first_idle || bfq_gt(first_idle->finish, entity->finish))
++ st->first_idle = entity;
++ if (!last_idle || bfq_gt(entity->finish, last_idle->finish))
++ st->last_idle = entity;
++
++ bfq_insert(&st->idle, entity);
++
++ if (bfqq)
++ list_add(&bfqq->bfqq_list, &bfqq->bfqd->idle_list);
++}
++
++/**
++ * bfq_forget_entity - remove an entity from the wfq trees.
++ * @st: the service tree.
++ * @entity: the entity being removed.
++ *
++ * Update the device status and forget everything about @entity, putting
++ * the device reference to it, if it is a queue. Entities belonging to
++ * groups are not refcounted.
++ */
++static void bfq_forget_entity(struct bfq_service_tree *st,
++ struct bfq_entity *entity)
++{
++ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++ struct bfq_sched_data *sd;
++
++ BUG_ON(!entity->on_st);
++
++ entity->on_st = 0;
++ st->wsum -= entity->weight;
++ if (bfqq) {
++ sd = entity->sched_data;
++ bfq_log_bfqq(bfqq->bfqd, bfqq, "forget_entity: %p %d",
++ bfqq, atomic_read(&bfqq->ref));
++ bfq_put_queue(bfqq);
++ }
++}
++
++/**
++ * bfq_put_idle_entity - release the idle tree ref of an entity.
++ * @st: service tree for the entity.
++ * @entity: the entity being released.
++ */
++static void bfq_put_idle_entity(struct bfq_service_tree *st,
++ struct bfq_entity *entity)
++{
++ bfq_idle_extract(st, entity);
++ bfq_forget_entity(st, entity);
++}
++
++/**
++ * bfq_forget_idle - update the idle tree if necessary.
++ * @st: the service tree to act upon.
++ *
++ * To preserve the global O(log N) complexity we only remove one entry here;
++ * as the idle tree will not grow indefinitely this can be done safely.
++ */
++static void bfq_forget_idle(struct bfq_service_tree *st)
++{
++ struct bfq_entity *first_idle = st->first_idle;
++ struct bfq_entity *last_idle = st->last_idle;
++
++ if (RB_EMPTY_ROOT(&st->active) && last_idle &&
++ !bfq_gt(last_idle->finish, st->vtime)) {
++ /*
++ * Forget the whole idle tree, increasing the vtime past
++ * the last finish time of idle entities.
++ */
++ st->vtime = last_idle->finish;
++ }
++
++ if (first_idle && !bfq_gt(first_idle->finish, st->vtime))
++ bfq_put_idle_entity(st, first_idle);
++}
++
++static struct bfq_service_tree *
++__bfq_entity_update_weight_prio(struct bfq_service_tree *old_st,
++ struct bfq_entity *entity)
++{
++ struct bfq_service_tree *new_st = old_st;
++
++ if (entity->prio_changed) {
++ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++ unsigned short prev_weight, new_weight;
++ struct bfq_data *bfqd = NULL;
++ struct rb_root *root;
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ struct bfq_sched_data *sd;
++ struct bfq_group *bfqg;
++#endif
++
++ if (bfqq)
++ bfqd = bfqq->bfqd;
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ else {
++ sd = entity->my_sched_data;
++ bfqg = container_of(sd, struct bfq_group, sched_data);
++ BUG_ON(!bfqg);
++ bfqd = (struct bfq_data *)bfqg->bfqd;
++ BUG_ON(!bfqd);
++ }
++#endif
++
++ BUG_ON(old_st->wsum < entity->weight);
++ old_st->wsum -= entity->weight;
++
++ if (entity->new_weight != entity->orig_weight) {
++ if (entity->new_weight < BFQ_MIN_WEIGHT ||
++ entity->new_weight > BFQ_MAX_WEIGHT) {
++ pr_crit("update_weight_prio: new_weight %d\n",
++ entity->new_weight);
++ BUG();
++ }
++ entity->orig_weight = entity->new_weight;
++ if (bfqq)
++ bfqq->ioprio =
++ bfq_weight_to_ioprio(entity->orig_weight);
++ }
++
++ if (bfqq)
++ bfqq->ioprio_class = bfqq->new_ioprio_class;
++ entity->prio_changed = 0;
++
++ /*
++ * NOTE: here we may be changing the weight too early,
++ * this will cause unfairness. The correct approach
++ * would have required additional complexity to defer
++ * weight changes to the proper time instants (i.e.,
++ * when entity->finish <= old_st->vtime).
++ */
++ new_st = bfq_entity_service_tree(entity);
++
++ prev_weight = entity->weight;
++ new_weight = entity->orig_weight *
++ (bfqq ? bfqq->wr_coeff : 1);
++ /*
++ * If the weight of the entity changes, remove the entity
++ * from its old weight counter (if there is a counter
++ * associated with the entity), and add it to the counter
++ * associated with its new weight.
++ */
++ if (prev_weight != new_weight) {
++ root = bfqq ? &bfqd->queue_weights_tree :
++ &bfqd->group_weights_tree;
++ bfq_weights_tree_remove(bfqd, entity, root);
++ }
++ entity->weight = new_weight;
++ /*
++ * Add the entity to its weights tree only if it is
++ * not associated with a weight-raised queue.
++ */
++ if (prev_weight != new_weight &&
++ (bfqq ? bfqq->wr_coeff == 1 : 1))
++ /* If we get here, root has been initialized. */
++ bfq_weights_tree_add(bfqd, entity, root);
++
++ new_st->wsum += entity->weight;
++
++ if (new_st != old_st)
++ entity->start = new_st->vtime;
++ }
++
++ return new_st;
++}
++
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++static void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg);
++#endif
++
++/**
++ * bfq_bfqq_served - update the scheduler status after selection for
++ * service.
++ * @bfqq: the queue being served.
++ * @served: bytes to transfer.
++ *
++ * NOTE: this can be optimized, as the timestamps of upper level entities
++ * are synchronized every time a new bfqq is selected for service. By now,
++ * we keep it to better check consistency.
++ */
++static void bfq_bfqq_served(struct bfq_queue *bfqq, int served)
++{
++ struct bfq_entity *entity = &bfqq->entity;
++ struct bfq_service_tree *st;
++
++ for_each_entity(entity) {
++ st = bfq_entity_service_tree(entity);
++
++ entity->service += served;
++ BUG_ON(entity->service > entity->budget);
++ BUG_ON(st->wsum == 0);
++
++ st->vtime += bfq_delta(served, st->wsum);
++ bfq_forget_idle(st);
++ }
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ bfqg_stats_set_start_empty_time(bfqq_group(bfqq));
++#endif
++ bfq_log_bfqq(bfqq->bfqd, bfqq, "bfqq_served %d secs", served);
++}
++
++/**
++ * bfq_bfqq_charge_full_budget - set the service to the entity budget.
++ * @bfqq: the queue that needs a service update.
++ *
++ * When it's not possible to be fair in the service domain, because
++ * a queue is not consuming its budget fast enough (the meaning of
++ * fast depends on the timeout parameter), we charge it a full
++ * budget. In this way we should obtain a sort of time-domain
++ * fairness among all the seeky/slow queues.
++ */
++static void bfq_bfqq_charge_full_budget(struct bfq_queue *bfqq)
++{
++ struct bfq_entity *entity = &bfqq->entity;
++
++ bfq_log_bfqq(bfqq->bfqd, bfqq, "charge_full_budget");
++
++ bfq_bfqq_served(bfqq, entity->budget - entity->service);
++}
++
++/**
++ * __bfq_activate_entity - activate an entity.
++ * @entity: the entity being activated.
++ *
++ * Called whenever an entity is activated, i.e., it is not active and one
++ * of its children receives a new request, or has to be reactivated due to
++ * budget exhaustion. It uses the current budget of the entity (and the
++ * service received if @entity is active) of the queue to calculate its
++ * timestamps.
++ */
++static void __bfq_activate_entity(struct bfq_entity *entity)
++{
++ struct bfq_sched_data *sd = entity->sched_data;
++ struct bfq_service_tree *st = bfq_entity_service_tree(entity);
++
++ if (entity == sd->in_service_entity) {
++ BUG_ON(entity->tree);
++ /*
++ * If we are requeueing the current entity we have
++ * to take care of not charging to it service it has
++ * not received.
++ */
++ bfq_calc_finish(entity, entity->service);
++ entity->start = entity->finish;
++ sd->in_service_entity = NULL;
++ } else if (entity->tree == &st->active) {
++ /*
++ * Requeueing an entity due to a change of some
++ * next_in_service entity below it. We reuse the
++ * old start time.
++ */
++ bfq_active_extract(st, entity);
++ } else if (entity->tree == &st->idle) {
++ /*
++ * Must be on the idle tree, bfq_idle_extract() will
++ * check for that.
++ */
++ bfq_idle_extract(st, entity);
++ entity->start = bfq_gt(st->vtime, entity->finish) ?
++ st->vtime : entity->finish;
++ } else {
++ /*
++ * The finish time of the entity may be invalid, and
++ * it is in the past for sure, otherwise the queue
++ * would have been on the idle tree.
++ */
++ entity->start = st->vtime;
++ st->wsum += entity->weight;
++ bfq_get_entity(entity);
++
++ BUG_ON(entity->on_st);
++ entity->on_st = 1;
++ }
++
++ st = __bfq_entity_update_weight_prio(st, entity);
++ bfq_calc_finish(entity, entity->budget);
++ bfq_active_insert(st, entity);
++}
++
++/**
++ * bfq_activate_entity - activate an entity and its ancestors if necessary.
++ * @entity: the entity to activate.
++ *
++ * Activate @entity and all the entities on the path from it to the root.
++ */
++static void bfq_activate_entity(struct bfq_entity *entity)
++{
++ struct bfq_sched_data *sd;
++
++ for_each_entity(entity) {
++ __bfq_activate_entity(entity);
++
++ sd = entity->sched_data;
++ if (!bfq_update_next_in_service(sd))
++ /*
++ * No need to propagate the activation to the
++ * upper entities, as they will be updated when
++ * the in-service entity is rescheduled.
++ */
++ break;
++ }
++}
++
++/**
++ * __bfq_deactivate_entity - deactivate an entity from its service tree.
++ * @entity: the entity to deactivate.
++ * @requeue: if false, the entity will not be put into the idle tree.
++ *
++ * Deactivate an entity, independently from its previous state. If the
++ * entity was not on a service tree just return, otherwise if it is on
++ * any scheduler tree, extract it from that tree, and if necessary
++ * and if the caller did not specify @requeue, put it on the idle tree.
++ *
++ * Return %1 if the caller should update the entity hierarchy, i.e.,
++ * if the entity was in service or if it was the next_in_service for
++ * its sched_data; return %0 otherwise.
++ */
++static int __bfq_deactivate_entity(struct bfq_entity *entity, int requeue)
++{
++ struct bfq_sched_data *sd = entity->sched_data;
++ struct bfq_service_tree *st;
++ int was_in_service;
++ int ret = 0;
++
++ if (sd == NULL || !entity->on_st) /* never activated, or inactive */
++ return 0;
++
++ st = bfq_entity_service_tree(entity);
++ was_in_service = entity == sd->in_service_entity;
++
++ BUG_ON(was_in_service && entity->tree);
++
++ if (was_in_service) {
++ bfq_calc_finish(entity, entity->service);
++ sd->in_service_entity = NULL;
++ } else if (entity->tree == &st->active)
++ bfq_active_extract(st, entity);
++ else if (entity->tree == &st->idle)
++ bfq_idle_extract(st, entity);
++ else if (entity->tree)
++ BUG();
++
++ if (was_in_service || sd->next_in_service == entity)
++ ret = bfq_update_next_in_service(sd);
++
++ if (!requeue || !bfq_gt(entity->finish, st->vtime))
++ bfq_forget_entity(st, entity);
++ else
++ bfq_idle_insert(st, entity);
++
++ BUG_ON(sd->in_service_entity == entity);
++ BUG_ON(sd->next_in_service == entity);
++
++ return ret;
++}
++
++/**
++ * bfq_deactivate_entity - deactivate an entity.
++ * @entity: the entity to deactivate.
++ * @requeue: true if the entity can be put on the idle tree
++ */
++static void bfq_deactivate_entity(struct bfq_entity *entity, int requeue)
++{
++ struct bfq_sched_data *sd;
++ struct bfq_entity *parent;
++
++ for_each_entity_safe(entity, parent) {
++ sd = entity->sched_data;
++
++ if (!__bfq_deactivate_entity(entity, requeue))
++ /*
++ * The parent entity is still backlogged, and
++ * we don't need to update it as it is still
++ * in service.
++ */
++ break;
++
++ if (sd->next_in_service)
++ /*
++ * The parent entity is still backlogged and
++ * the budgets on the path towards the root
++ * need to be updated.
++ */
++ goto update;
++
++ /*
++ * If we reach there the parent is no more backlogged and
++ * we want to propagate the dequeue upwards.
++ */
++ requeue = 1;
++ }
++
++ return;
++
++update:
++ entity = parent;
++ for_each_entity(entity) {
++ __bfq_activate_entity(entity);
++
++ sd = entity->sched_data;
++ if (!bfq_update_next_in_service(sd))
++ break;
++ }
++}
++
++/**
++ * bfq_update_vtime - update vtime if necessary.
++ * @st: the service tree to act upon.
++ *
++ * If necessary update the service tree vtime to have at least one
++ * eligible entity, skipping to its start time. Assumes that the
++ * active tree of the device is not empty.
++ *
++ * NOTE: this hierarchical implementation updates vtimes quite often,
++ * we may end up with reactivated processes getting timestamps after a
++ * vtime skip done because we needed a ->first_active entity on some
++ * intermediate node.
++ */
++static void bfq_update_vtime(struct bfq_service_tree *st)
++{
++ struct bfq_entity *entry;
++ struct rb_node *node = st->active.rb_node;
++
++ entry = rb_entry(node, struct bfq_entity, rb_node);
++ if (bfq_gt(entry->min_start, st->vtime)) {
++ st->vtime = entry->min_start;
++ bfq_forget_idle(st);
++ }
++}
++
++/**
++ * bfq_first_active_entity - find the eligible entity with
++ * the smallest finish time
++ * @st: the service tree to select from.
++ *
++ * This function searches the first schedulable entity, starting from the
++ * root of the tree and going on the left every time on this side there is
++ * a subtree with at least one eligible (start >= vtime) entity. The path on
++ * the right is followed only if a) the left subtree contains no eligible
++ * entities and b) no eligible entity has been found yet.
++ */
++static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st)
++{
++ struct bfq_entity *entry, *first = NULL;
++ struct rb_node *node = st->active.rb_node;
++
++ while (node) {
++ entry = rb_entry(node, struct bfq_entity, rb_node);
++left:
++ if (!bfq_gt(entry->start, st->vtime))
++ first = entry;
++
++ BUG_ON(bfq_gt(entry->min_start, st->vtime));
++
++ if (node->rb_left) {
++ entry = rb_entry(node->rb_left,
++ struct bfq_entity, rb_node);
++ if (!bfq_gt(entry->min_start, st->vtime)) {
++ node = node->rb_left;
++ goto left;
++ }
++ }
++ if (first)
++ break;
++ node = node->rb_right;
++ }
++
++ BUG_ON(!first && !RB_EMPTY_ROOT(&st->active));
++ return first;
++}
++
++/**
++ * __bfq_lookup_next_entity - return the first eligible entity in @st.
++ * @st: the service tree.
++ *
++ * Update the virtual time in @st and return the first eligible entity
++ * it contains.
++ */
++static struct bfq_entity *__bfq_lookup_next_entity(struct bfq_service_tree *st,
++ bool force)
++{
++ struct bfq_entity *entity, *new_next_in_service = NULL;
++
++ if (RB_EMPTY_ROOT(&st->active))
++ return NULL;
++
++ bfq_update_vtime(st);
++ entity = bfq_first_active_entity(st);
++ BUG_ON(bfq_gt(entity->start, st->vtime));
++
++ /*
++ * If the chosen entity does not match with the sched_data's
++ * next_in_service and we are forcedly serving the IDLE priority
++ * class tree, bubble up budget update.
++ */
++ if (unlikely(force && entity != entity->sched_data->next_in_service)) {
++ new_next_in_service = entity;
++ for_each_entity(new_next_in_service)
++ bfq_update_budget(new_next_in_service);
++ }
++
++ return entity;
++}
++
++/**
++ * bfq_lookup_next_entity - return the first eligible entity in @sd.
++ * @sd: the sched_data.
++ * @extract: if true the returned entity will be also extracted from @sd.
++ *
++ * NOTE: since we cache the next_in_service entity at each level of the
++ * hierarchy, the complexity of the lookup can be decreased with
++ * absolutely no effort just returning the cached next_in_service value;
++ * we prefer to do full lookups to test the consistency of * the data
++ * structures.
++ */
++static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
++ int extract,
++ struct bfq_data *bfqd)
++{
++ struct bfq_service_tree *st = sd->service_tree;
++ struct bfq_entity *entity;
++ int i = 0;
++
++ BUG_ON(sd->in_service_entity);
++
++ if (bfqd &&
++ jiffies - bfqd->bfq_class_idle_last_service > BFQ_CL_IDLE_TIMEOUT) {
++ entity = __bfq_lookup_next_entity(st + BFQ_IOPRIO_CLASSES - 1,
++ true);
++ if (entity) {
++ i = BFQ_IOPRIO_CLASSES - 1;
++ bfqd->bfq_class_idle_last_service = jiffies;
++ sd->next_in_service = entity;
++ }
++ }
++ for (; i < BFQ_IOPRIO_CLASSES; i++) {
++ entity = __bfq_lookup_next_entity(st + i, false);
++ if (entity) {
++ if (extract) {
++ bfq_check_next_in_service(sd, entity);
++ bfq_active_extract(st + i, entity);
++ sd->in_service_entity = entity;
++ sd->next_in_service = NULL;
++ }
++ break;
++ }
++ }
++
++ return entity;
++}
++
++/*
++ * Get next queue for service.
++ */
++static struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd)
++{
++ struct bfq_entity *entity = NULL;
++ struct bfq_sched_data *sd;
++ struct bfq_queue *bfqq;
++
++ BUG_ON(bfqd->in_service_queue);
++
++ if (bfqd->busy_queues == 0)
++ return NULL;
++
++ sd = &bfqd->root_group->sched_data;
++ for (; sd ; sd = entity->my_sched_data) {
++ entity = bfq_lookup_next_entity(sd, 1, bfqd);
++ BUG_ON(!entity);
++ entity->service = 0;
++ }
++
++ bfqq = bfq_entity_to_bfqq(entity);
++ BUG_ON(!bfqq);
++
++ return bfqq;
++}
++
++static void __bfq_bfqd_reset_in_service(struct bfq_data *bfqd)
++{
++ if (bfqd->in_service_bic) {
++ put_io_context(bfqd->in_service_bic->icq.ioc);
++ bfqd->in_service_bic = NULL;
++ }
++
++ bfqd->in_service_queue = NULL;
++ del_timer(&bfqd->idle_slice_timer);
++}
++
++static void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++ int requeue)
++{
++ struct bfq_entity *entity = &bfqq->entity;
++
++ if (bfqq == bfqd->in_service_queue)
++ __bfq_bfqd_reset_in_service(bfqd);
++
++ bfq_deactivate_entity(entity, requeue);
++}
++
++static void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
++{
++ struct bfq_entity *entity = &bfqq->entity;
++
++ bfq_activate_entity(entity);
++}
++
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++static void bfqg_stats_update_dequeue(struct bfq_group *bfqg);
++#endif
++
++/*
++ * Called when the bfqq no longer has requests pending, remove it from
++ * the service tree.
++ */
++static void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++ int requeue)
++{
++ BUG_ON(!bfq_bfqq_busy(bfqq));
++ BUG_ON(!RB_EMPTY_ROOT(&bfqq->sort_list));
++
++ bfq_log_bfqq(bfqd, bfqq, "del from busy");
++
++ bfq_clear_bfqq_busy(bfqq);
++
++ BUG_ON(bfqd->busy_queues == 0);
++ bfqd->busy_queues--;
++
++ if (!bfqq->dispatched) {
++ bfq_weights_tree_remove(bfqd, &bfqq->entity,
++ &bfqd->queue_weights_tree);
++ if (!blk_queue_nonrot(bfqd->queue)) {
++ BUG_ON(!bfqd->busy_in_flight_queues);
++ bfqd->busy_in_flight_queues--;
++ if (bfq_bfqq_constantly_seeky(bfqq)) {
++ BUG_ON(!bfqd->
++ const_seeky_busy_in_flight_queues);
++ bfqd->const_seeky_busy_in_flight_queues--;
++ }
++ }
++ }
++ if (bfqq->wr_coeff > 1)
++ bfqd->wr_busy_queues--;
++
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ bfqg_stats_update_dequeue(bfqq_group(bfqq));
++#endif
++
++ bfq_deactivate_bfqq(bfqd, bfqq, requeue);
++}
++
++/*
++ * Called when an inactive queue receives a new request.
++ */
++static void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq)
++{
++ BUG_ON(bfq_bfqq_busy(bfqq));
++ BUG_ON(bfqq == bfqd->in_service_queue);
++
++ bfq_log_bfqq(bfqd, bfqq, "add to busy");
++
++ bfq_activate_bfqq(bfqd, bfqq);
++
++ bfq_mark_bfqq_busy(bfqq);
++ bfqd->busy_queues++;
++
++ if (!bfqq->dispatched) {
++ if (bfqq->wr_coeff == 1)
++ bfq_weights_tree_add(bfqd, &bfqq->entity,
++ &bfqd->queue_weights_tree);
++ if (!blk_queue_nonrot(bfqd->queue)) {
++ bfqd->busy_in_flight_queues++;
++ if (bfq_bfqq_constantly_seeky(bfqq))
++ bfqd->const_seeky_busy_in_flight_queues++;
++ }
++ }
++ if (bfqq->wr_coeff > 1)
++ bfqd->wr_busy_queues++;
++}
+diff --git a/block/bfq.h b/block/bfq.h
+new file mode 100644
+index 0000000..2bf54ae
+--- /dev/null
++++ b/block/bfq.h
+@@ -0,0 +1,801 @@
++/*
++ * BFQ-v7r11 for 4.5.0: data structures and common functions prototypes.
++ *
++ * Based on ideas and code from CFQ:
++ * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
++ *
++ * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
++ * Paolo Valente <paolo.valente@unimore.it>
++ *
++ * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
++ */
++
++#ifndef _BFQ_H
++#define _BFQ_H
++
++#include <linux/blktrace_api.h>
++#include <linux/hrtimer.h>
++#include <linux/ioprio.h>
++#include <linux/rbtree.h>
++#include <linux/blk-cgroup.h>
++
++#define BFQ_IOPRIO_CLASSES 3
++#define BFQ_CL_IDLE_TIMEOUT (HZ/5)
++
++#define BFQ_MIN_WEIGHT 1
++#define BFQ_MAX_WEIGHT 1000
++#define BFQ_WEIGHT_CONVERSION_COEFF 10
++
++#define BFQ_DEFAULT_QUEUE_IOPRIO 4
++
++#define BFQ_DEFAULT_GRP_WEIGHT 10
++#define BFQ_DEFAULT_GRP_IOPRIO 0
++#define BFQ_DEFAULT_GRP_CLASS IOPRIO_CLASS_BE
++
++struct bfq_entity;
++
++/**
++ * struct bfq_service_tree - per ioprio_class service tree.
++ * @active: tree for active entities (i.e., those backlogged).
++ * @idle: tree for idle entities (i.e., those not backlogged, with V <= F_i).
++ * @first_idle: idle entity with minimum F_i.
++ * @last_idle: idle entity with maximum F_i.
++ * @vtime: scheduler virtual time.
++ * @wsum: scheduler weight sum; active and idle entities contribute to it.
++ *
++ * Each service tree represents a B-WF2Q+ scheduler on its own. Each
++ * ioprio_class has its own independent scheduler, and so its own
++ * bfq_service_tree. All the fields are protected by the queue lock
++ * of the containing bfqd.
++ */
++struct bfq_service_tree {
++ struct rb_root active;
++ struct rb_root idle;
++
++ struct bfq_entity *first_idle;
++ struct bfq_entity *last_idle;
++
++ u64 vtime;
++ unsigned long wsum;
++};
++
++/**
++ * struct bfq_sched_data - multi-class scheduler.
++ * @in_service_entity: entity in service.
++ * @next_in_service: head-of-the-line entity in the scheduler.
++ * @service_tree: array of service trees, one per ioprio_class.
++ *
++ * bfq_sched_data is the basic scheduler queue. It supports three
++ * ioprio_classes, and can be used either as a toplevel queue or as
++ * an intermediate queue on a hierarchical setup.
++ * @next_in_service points to the active entity of the sched_data
++ * service trees that will be scheduled next.
++ *
++ * The supported ioprio_classes are the same as in CFQ, in descending
++ * priority order, IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, IOPRIO_CLASS_IDLE.
++ * Requests from higher priority queues are served before all the
++ * requests from lower priority queues; among requests of the same
++ * queue requests are served according to B-WF2Q+.
++ * All the fields are protected by the queue lock of the containing bfqd.
++ */
++struct bfq_sched_data {
++ struct bfq_entity *in_service_entity;
++ struct bfq_entity *next_in_service;
++ struct bfq_service_tree service_tree[BFQ_IOPRIO_CLASSES];
++};
++
++/**
++ * struct bfq_weight_counter - counter of the number of all active entities
++ * with a given weight.
++ * @weight: weight of the entities that this counter refers to.
++ * @num_active: number of active entities with this weight.
++ * @weights_node: weights tree member (see bfq_data's @queue_weights_tree
++ * and @group_weights_tree).
++ */
++struct bfq_weight_counter {
++ short int weight;
++ unsigned int num_active;
++ struct rb_node weights_node;
++};
++
++/**
++ * struct bfq_entity - schedulable entity.
++ * @rb_node: service_tree member.
++ * @weight_counter: pointer to the weight counter associated with this entity.
++ * @on_st: flag, true if the entity is on a tree (either the active or
++ * the idle one of its service_tree).
++ * @finish: B-WF2Q+ finish timestamp (aka F_i).
++ * @start: B-WF2Q+ start timestamp (aka S_i).
++ * @tree: tree the entity is enqueued into; %NULL if not on a tree.
++ * @min_start: minimum start time of the (active) subtree rooted at
++ * this entity; used for O(log N) lookups into active trees.
++ * @service: service received during the last round of service.
++ * @budget: budget used to calculate F_i; F_i = S_i + @budget / @weight.
++ * @weight: weight of the queue
++ * @parent: parent entity, for hierarchical scheduling.
++ * @my_sched_data: for non-leaf nodes in the cgroup hierarchy, the
++ * associated scheduler queue, %NULL on leaf nodes.
++ * @sched_data: the scheduler queue this entity belongs to.
++ * @ioprio: the ioprio in use.
++ * @new_weight: when a weight change is requested, the new weight value.
++ * @orig_weight: original weight, used to implement weight boosting
++ * @prio_changed: flag, true when the user requested a weight, ioprio or
++ * ioprio_class change.
++ *
++ * A bfq_entity is used to represent either a bfq_queue (leaf node in the
++ * cgroup hierarchy) or a bfq_group into the upper level scheduler. Each
++ * entity belongs to the sched_data of the parent group in the cgroup
++ * hierarchy. Non-leaf entities have also their own sched_data, stored
++ * in @my_sched_data.
++ *
++ * Each entity stores independently its priority values; this would
++ * allow different weights on different devices, but this
++ * functionality is not exported to userspace by now. Priorities and
++ * weights are updated lazily, first storing the new values into the
++ * new_* fields, then setting the @prio_changed flag. As soon as
++ * there is a transition in the entity state that allows the priority
++ * update to take place the effective and the requested priority
++ * values are synchronized.
++ *
++ * Unless cgroups are used, the weight value is calculated from the
++ * ioprio to export the same interface as CFQ. When dealing with
++ * ``well-behaved'' queues (i.e., queues that do not spend too much
++ * time to consume their budget and have true sequential behavior, and
++ * when there are no external factors breaking anticipation) the
++ * relative weights at each level of the cgroups hierarchy should be
++ * guaranteed. All the fields are protected by the queue lock of the
++ * containing bfqd.
++ */
++struct bfq_entity {
++ struct rb_node rb_node;
++ struct bfq_weight_counter *weight_counter;
++
++ int on_st;
++
++ u64 finish;
++ u64 start;
++
++ struct rb_root *tree;
++
++ u64 min_start;
++
++ int service, budget;
++ unsigned short weight, new_weight;
++ unsigned short orig_weight;
++
++ struct bfq_entity *parent;
++
++ struct bfq_sched_data *my_sched_data;
++ struct bfq_sched_data *sched_data;
++
++ int prio_changed;
++};
++
++struct bfq_group;
++
++/**
++ * struct bfq_queue - leaf schedulable entity.
++ * @ref: reference counter.
++ * @bfqd: parent bfq_data.
++ * @new_ioprio: when an ioprio change is requested, the new ioprio value.
++ * @ioprio_class: the ioprio_class in use.
++ * @new_ioprio_class: when an ioprio_class change is requested, the new
++ * ioprio_class value.
++ * @new_bfqq: shared bfq_queue if queue is cooperating with
++ * one or more other queues.
++ * @sort_list: sorted list of pending requests.
++ * @next_rq: if fifo isn't expired, next request to serve.
++ * @queued: nr of requests queued in @sort_list.
++ * @allocated: currently allocated requests.
++ * @meta_pending: pending metadata requests.
++ * @fifo: fifo list of requests in sort_list.
++ * @entity: entity representing this queue in the scheduler.
++ * @max_budget: maximum budget allowed from the feedback mechanism.
++ * @budget_timeout: budget expiration (in jiffies).
++ * @dispatched: number of requests on the dispatch list or inside driver.
++ * @flags: status flags.
++ * @bfqq_list: node for active/idle bfqq list inside our bfqd.
++ * @burst_list_node: node for the device's burst list.
++ * @seek_samples: number of seeks sampled
++ * @seek_total: sum of the distances of the seeks sampled
++ * @seek_mean: mean seek distance
++ * @last_request_pos: position of the last request enqueued
++ * @requests_within_timer: number of consecutive pairs of request completion
++ * and arrival, such that the queue becomes idle
++ * after the completion, but the next request arrives
++ * within an idle time slice; used only if the queue's
++ * IO_bound has been cleared.
++ * @pid: pid of the process owning the queue, used for logging purposes.
++ * @last_wr_start_finish: start time of the current weight-raising period if
++ * the @bfq-queue is being weight-raised, otherwise
++ * finish time of the last weight-raising period
++ * @wr_cur_max_time: current max raising time for this queue
++ * @soft_rt_next_start: minimum time instant such that, only if a new
++ * request is enqueued after this time instant in an
++ * idle @bfq_queue with no outstanding requests, then
++ * the task associated with the queue it is deemed as
++ * soft real-time (see the comments to the function
++ * bfq_bfqq_softrt_next_start())
++ * @last_idle_bklogged: time of the last transition of the @bfq_queue from
++ * idle to backlogged
++ * @service_from_backlogged: cumulative service received from the @bfq_queue
++ * since the last transition from idle to
++ * backlogged
++ * @bic: pointer to the bfq_io_cq owning the bfq_queue, set to %NULL if the
++ * queue is shared
++ *
++ * A bfq_queue is a leaf request queue; it can be associated with an
++ * io_context or more, if it is async or shared between cooperating
++ * processes. @cgroup holds a reference to the cgroup, to be sure that it
++ * does not disappear while a bfqq still references it (mostly to avoid
++ * races between request issuing and task migration followed by cgroup
++ * destruction).
++ * All the fields are protected by the queue lock of the containing bfqd.
++ */
++struct bfq_queue {
++ atomic_t ref;
++ struct bfq_data *bfqd;
++
++ unsigned short ioprio, new_ioprio;
++ unsigned short ioprio_class, new_ioprio_class;
++
++ /* fields for cooperating queues handling */
++ struct bfq_queue *new_bfqq;
++ struct rb_node pos_node;
++ struct rb_root *pos_root;
++
++ struct rb_root sort_list;
++ struct request *next_rq;
++ int queued[2];
++ int allocated[2];
++ int meta_pending;
++ struct list_head fifo;
++
++ struct bfq_entity entity;
++
++ int max_budget;
++ unsigned long budget_timeout;
++
++ int dispatched;
++
++ unsigned int flags;
++
++ struct list_head bfqq_list;
++
++ struct hlist_node burst_list_node;
++
++ unsigned int seek_samples;
++ u64 seek_total;
++ sector_t seek_mean;
++ sector_t last_request_pos;
++
++ unsigned int requests_within_timer;
++
++ pid_t pid;
++ struct bfq_io_cq *bic;
++
++ /* weight-raising fields */
++ unsigned long wr_cur_max_time;
++ unsigned long soft_rt_next_start;
++ unsigned long last_wr_start_finish;
++ unsigned int wr_coeff;
++ unsigned long last_idle_bklogged;
++ unsigned long service_from_backlogged;
++};
++
++/**
++ * struct bfq_ttime - per process thinktime stats.
++ * @ttime_total: total process thinktime
++ * @ttime_samples: number of thinktime samples
++ * @ttime_mean: average process thinktime
++ */
++struct bfq_ttime {
++ unsigned long last_end_request;
++
++ unsigned long ttime_total;
++ unsigned long ttime_samples;
++ unsigned long ttime_mean;
++};
++
++/**
++ * struct bfq_io_cq - per (request_queue, io_context) structure.
++ * @icq: associated io_cq structure
++ * @bfqq: array of two process queues, the sync and the async
++ * @ttime: associated @bfq_ttime struct
++ * @ioprio: per (request_queue, blkcg) ioprio.
++ * @blkcg_id: id of the blkcg the related io_cq belongs to.
++ */
++struct bfq_io_cq {
++ struct io_cq icq; /* must be the first member */
++ struct bfq_queue *bfqq[2];
++ struct bfq_ttime ttime;
++ int ioprio;
++
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ uint64_t blkcg_id; /* the current blkcg ID */
++#endif
++};
++
++enum bfq_device_speed {
++ BFQ_BFQD_FAST,
++ BFQ_BFQD_SLOW,
++};
++
++/**
++ * struct bfq_data - per device data structure.
++ * @queue: request queue for the managed device.
++ * @root_group: root bfq_group for the device.
++ * @active_numerous_groups: number of bfq_groups containing more than one
++ * active @bfq_entity.
++ * @queue_weights_tree: rbtree of weight counters of @bfq_queues, sorted by
++ * weight. Used to keep track of whether all @bfq_queues
++ * have the same weight. The tree contains one counter
++ * for each distinct weight associated to some active
++ * and not weight-raised @bfq_queue (see the comments to
++ * the functions bfq_weights_tree_[add|remove] for
++ * further details).
++ * @group_weights_tree: rbtree of non-queue @bfq_entity weight counters, sorted
++ * by weight. Used to keep track of whether all
++ * @bfq_groups have the same weight. The tree contains
++ * one counter for each distinct weight associated to
++ * some active @bfq_group (see the comments to the
++ * functions bfq_weights_tree_[add|remove] for further
++ * details).
++ * @busy_queues: number of bfq_queues containing requests (including the
++ * queue in service, even if it is idling).
++ * @busy_in_flight_queues: number of @bfq_queues containing pending or
++ * in-flight requests, plus the @bfq_queue in
++ * service, even if idle but waiting for the
++ * possible arrival of its next sync request. This
++ * field is updated only if the device is rotational,
++ * but used only if the device is also NCQ-capable.
++ * The reason why the field is updated also for non-
++ * NCQ-capable rotational devices is related to the
++ * fact that the value of @hw_tag may be set also
++ * later than when busy_in_flight_queues may need to
++ * be incremented for the first time(s). Taking also
++ * this possibility into account, to avoid unbalanced
++ * increments/decrements, would imply more overhead
++ * than just updating busy_in_flight_queues
++ * regardless of the value of @hw_tag.
++ * @const_seeky_busy_in_flight_queues: number of constantly-seeky @bfq_queues
++ * (that is, seeky queues that expired
++ * for budget timeout at least once)
++ * containing pending or in-flight
++ * requests, including the in-service
++ * @bfq_queue if constantly seeky. This
++ * field is updated only if the device
++ * is rotational, but used only if the
++ * device is also NCQ-capable (see the
++ * comments to @busy_in_flight_queues).
++ * @wr_busy_queues: number of weight-raised busy @bfq_queues.
++ * @queued: number of queued requests.
++ * @rq_in_driver: number of requests dispatched and waiting for completion.
++ * @sync_flight: number of sync requests in the driver.
++ * @max_rq_in_driver: max number of reqs in driver in the last
++ * @hw_tag_samples completed requests.
++ * @hw_tag_samples: nr of samples used to calculate hw_tag.
++ * @hw_tag: flag set to one if the driver is showing a queueing behavior.
++ * @budgets_assigned: number of budgets assigned.
++ * @idle_slice_timer: timer set when idling for the next sequential request
++ * from the queue in service.
++ * @unplug_work: delayed work to restart dispatching on the request queue.
++ * @in_service_queue: bfq_queue in service.
++ * @in_service_bic: bfq_io_cq (bic) associated with the @in_service_queue.
++ * @last_position: on-disk position of the last served request.
++ * @last_budget_start: beginning of the last budget.
++ * @last_idling_start: beginning of the last idle slice.
++ * @peak_rate: peak transfer rate observed for a budget.
++ * @peak_rate_samples: number of samples used to calculate @peak_rate.
++ * @bfq_max_budget: maximum budget allotted to a bfq_queue before
++ * rescheduling.
++ * @active_list: list of all the bfq_queues active on the device.
++ * @idle_list: list of all the bfq_queues idle on the device.
++ * @bfq_fifo_expire: timeout for async/sync requests; when it expires
++ * requests are served in fifo order.
++ * @bfq_back_penalty: weight of backward seeks wrt forward ones.
++ * @bfq_back_max: maximum allowed backward seek.
++ * @bfq_slice_idle: maximum idling time.
++ * @bfq_user_max_budget: user-configured max budget value
++ * (0 for auto-tuning).
++ * @bfq_max_budget_async_rq: maximum budget (in nr of requests) allotted to
++ * async queues.
++ * @bfq_timeout: timeout for bfq_queues to consume their budget; used to
++ * to prevent seeky queues to impose long latencies to well
++ * behaved ones (this also implies that seeky queues cannot
++ * receive guarantees in the service domain; after a timeout
++ * they are charged for the whole allocated budget, to try
++ * to preserve a behavior reasonably fair among them, but
++ * without service-domain guarantees).
++ * @bfq_coop_thresh: number of queue merges after which a @bfq_queue is
++ * no more granted any weight-raising.
++ * @bfq_failed_cooperations: number of consecutive failed cooperation
++ * chances after which weight-raising is restored
++ * to a queue subject to more than bfq_coop_thresh
++ * queue merges.
++ * @bfq_requests_within_timer: number of consecutive requests that must be
++ * issued within the idle time slice to set
++ * again idling to a queue which was marked as
++ * non-I/O-bound (see the definition of the
++ * IO_bound flag for further details).
++ * @last_ins_in_burst: last time at which a queue entered the current
++ * burst of queues being activated shortly after
++ * each other; for more details about this and the
++ * following parameters related to a burst of
++ * activations, see the comments to the function
++ * @bfq_handle_burst.
++ * @bfq_burst_interval: reference time interval used to decide whether a
++ * queue has been activated shortly after
++ * @last_ins_in_burst.
++ * @burst_size: number of queues in the current burst of queue activations.
++ * @bfq_large_burst_thresh: maximum burst size above which the current
++ * queue-activation burst is deemed as 'large'.
++ * @large_burst: true if a large queue-activation burst is in progress.
++ * @burst_list: head of the burst list (as for the above fields, more details
++ * in the comments to the function bfq_handle_burst).
++ * @low_latency: if set to true, low-latency heuristics are enabled.
++ * @bfq_wr_coeff: maximum factor by which the weight of a weight-raised
++ * queue is multiplied.
++ * @bfq_wr_max_time: maximum duration of a weight-raising period (jiffies).
++ * @bfq_wr_rt_max_time: maximum duration for soft real-time processes.
++ * @bfq_wr_min_idle_time: minimum idle period after which weight-raising
++ * may be reactivated for a queue (in jiffies).
++ * @bfq_wr_min_inter_arr_async: minimum period between request arrivals
++ * after which weight-raising may be
++ * reactivated for an already busy queue
++ * (in jiffies).
++ * @bfq_wr_max_softrt_rate: max service-rate for a soft real-time queue,
++ * sectors per seconds.
++ * @RT_prod: cached value of the product R*T used for computing the maximum
++ * duration of the weight raising automatically.
++ * @device_speed: device-speed class for the low-latency heuristic.
++ * @oom_bfqq: fallback dummy bfqq for extreme OOM conditions.
++ *
++ * All the fields are protected by the @queue lock.
++ */
++struct bfq_data {
++ struct request_queue *queue;
++
++ struct bfq_group *root_group;
++
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ int active_numerous_groups;
++#endif
++
++ struct rb_root queue_weights_tree;
++ struct rb_root group_weights_tree;
++
++ int busy_queues;
++ int busy_in_flight_queues;
++ int const_seeky_busy_in_flight_queues;
++ int wr_busy_queues;
++ int queued;
++ int rq_in_driver;
++ int sync_flight;
++
++ int max_rq_in_driver;
++ int hw_tag_samples;
++ int hw_tag;
++
++ int budgets_assigned;
++
++ struct timer_list idle_slice_timer;
++ struct work_struct unplug_work;
++
++ struct bfq_queue *in_service_queue;
++ struct bfq_io_cq *in_service_bic;
++
++ sector_t last_position;
++
++ ktime_t last_budget_start;
++ ktime_t last_idling_start;
++ int peak_rate_samples;
++ u64 peak_rate;
++ int bfq_max_budget;
++
++ struct list_head active_list;
++ struct list_head idle_list;
++
++ unsigned int bfq_fifo_expire[2];
++ unsigned int bfq_back_penalty;
++ unsigned int bfq_back_max;
++ unsigned int bfq_slice_idle;
++ u64 bfq_class_idle_last_service;
++
++ int bfq_user_max_budget;
++ int bfq_max_budget_async_rq;
++ unsigned int bfq_timeout[2];
++
++ unsigned int bfq_coop_thresh;
++ unsigned int bfq_failed_cooperations;
++ unsigned int bfq_requests_within_timer;
++
++ unsigned long last_ins_in_burst;
++ unsigned long bfq_burst_interval;
++ int burst_size;
++ unsigned long bfq_large_burst_thresh;
++ bool large_burst;
++ struct hlist_head burst_list;
++
++ bool low_latency;
++
++ /* parameters of the low_latency heuristics */
++ unsigned int bfq_wr_coeff;
++ unsigned int bfq_wr_max_time;
++ unsigned int bfq_wr_rt_max_time;
++ unsigned int bfq_wr_min_idle_time;
++ unsigned long bfq_wr_min_inter_arr_async;
++ unsigned int bfq_wr_max_softrt_rate;
++ u64 RT_prod;
++ enum bfq_device_speed device_speed;
++
++ struct bfq_queue oom_bfqq;
++};
++
++enum bfqq_state_flags {
++ BFQ_BFQQ_FLAG_busy = 0, /* has requests or is in service */
++ BFQ_BFQQ_FLAG_wait_request, /* waiting for a request */
++ BFQ_BFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
++ BFQ_BFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
++ BFQ_BFQQ_FLAG_idle_window, /* slice idling enabled */
++ BFQ_BFQQ_FLAG_sync, /* synchronous queue */
++ BFQ_BFQQ_FLAG_budget_new, /* no completion with this budget */
++ BFQ_BFQQ_FLAG_IO_bound, /*
++ * bfqq has timed-out at least once
++ * having consumed at most 2/10 of
++ * its budget
++ */
++ BFQ_BFQQ_FLAG_in_large_burst, /*
++ * bfqq activated in a large burst,
++ * see comments to bfq_handle_burst.
++ */
++ BFQ_BFQQ_FLAG_constantly_seeky, /*
++ * bfqq has proved to be slow and
++ * seeky until budget timeout
++ */
++ BFQ_BFQQ_FLAG_softrt_update, /*
++ * may need softrt-next-start
++ * update
++ */
++};
++
++#define BFQ_BFQQ_FNS(name) \
++static void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \
++{ \
++ (bfqq)->flags |= (1 << BFQ_BFQQ_FLAG_##name); \
++} \
++static void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \
++{ \
++ (bfqq)->flags &= ~(1 << BFQ_BFQQ_FLAG_##name); \
++} \
++static int bfq_bfqq_##name(const struct bfq_queue *bfqq) \
++{ \
++ return ((bfqq)->flags & (1 << BFQ_BFQQ_FLAG_##name)) != 0; \
++}
++
++BFQ_BFQQ_FNS(busy);
++BFQ_BFQQ_FNS(wait_request);
++BFQ_BFQQ_FNS(must_alloc);
++BFQ_BFQQ_FNS(fifo_expire);
++BFQ_BFQQ_FNS(idle_window);
++BFQ_BFQQ_FNS(sync);
++BFQ_BFQQ_FNS(budget_new);
++BFQ_BFQQ_FNS(IO_bound);
++BFQ_BFQQ_FNS(in_large_burst);
++BFQ_BFQQ_FNS(constantly_seeky);
++BFQ_BFQQ_FNS(softrt_update);
++#undef BFQ_BFQQ_FNS
++
++/* Logging facilities. */
++#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) \
++ blk_add_trace_msg((bfqd)->queue, "bfq%d " fmt, (bfqq)->pid, ##args)
++
++#define bfq_log(bfqd, fmt, args...) \
++ blk_add_trace_msg((bfqd)->queue, "bfq " fmt, ##args)
++
++/* Expiration reasons. */
++enum bfqq_expiration {
++ BFQ_BFQQ_TOO_IDLE = 0, /*
++ * queue has been idling for
++ * too long
++ */
++ BFQ_BFQQ_BUDGET_TIMEOUT, /* budget took too long to be used */
++ BFQ_BFQQ_BUDGET_EXHAUSTED, /* budget consumed */
++ BFQ_BFQQ_NO_MORE_REQUESTS, /* the queue has no more requests */
++};
++
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++
++struct bfqg_stats {
++ /* total bytes transferred */
++ struct blkg_rwstat service_bytes;
++ /* total IOs serviced, post merge */
++ struct blkg_rwstat serviced;
++ /* number of ios merged */
++ struct blkg_rwstat merged;
++ /* total time spent on device in ns, may not be accurate w/ queueing */
++ struct blkg_rwstat service_time;
++ /* total time spent waiting in scheduler queue in ns */
++ struct blkg_rwstat wait_time;
++ /* number of IOs queued up */
++ struct blkg_rwstat queued;
++ /* total sectors transferred */
++ struct blkg_stat sectors;
++ /* total disk time and nr sectors dispatched by this group */
++ struct blkg_stat time;
++ /* time not charged to this cgroup */
++ struct blkg_stat unaccounted_time;
++ /* sum of number of ios queued across all samples */
++ struct blkg_stat avg_queue_size_sum;
++ /* count of samples taken for average */
++ struct blkg_stat avg_queue_size_samples;
++ /* how many times this group has been removed from service tree */
++ struct blkg_stat dequeue;
++ /* total time spent waiting for it to be assigned a timeslice. */
++ struct blkg_stat group_wait_time;
++ /* time spent idling for this blkcg_gq */
++ struct blkg_stat idle_time;
++ /* total time with empty current active q with other requests queued */
++ struct blkg_stat empty_time;
++ /* fields after this shouldn't be cleared on stat reset */
++ uint64_t start_group_wait_time;
++ uint64_t start_idle_time;
++ uint64_t start_empty_time;
++ uint16_t flags;
++};
++
++/*
++ * struct bfq_group_data - per-blkcg storage for the blkio subsystem.
++ *
++ * @ps: @blkcg_policy_storage that this structure inherits
++ * @weight: weight of the bfq_group
++ */
++struct bfq_group_data {
++ /* must be the first member */
++ struct blkcg_policy_data pd;
++
++ unsigned short weight;
++};
++
++/**
++ * struct bfq_group - per (device, cgroup) data structure.
++ * @entity: schedulable entity to insert into the parent group sched_data.
++ * @sched_data: own sched_data, to contain child entities (they may be
++ * both bfq_queues and bfq_groups).
++ * @bfqd: the bfq_data for the device this group acts upon.
++ * @async_bfqq: array of async queues for all the tasks belonging to
++ * the group, one queue per ioprio value per ioprio_class,
++ * except for the idle class that has only one queue.
++ * @async_idle_bfqq: async queue for the idle class (ioprio is ignored).
++ * @my_entity: pointer to @entity, %NULL for the toplevel group; used
++ * to avoid too many special cases during group creation/
++ * migration.
++ * @active_entities: number of active entities belonging to the group;
++ * unused for the root group. Used to know whether there
++ * are groups with more than one active @bfq_entity
++ * (see the comments to the function
++ * bfq_bfqq_must_not_expire()).
++ *
++ * Each (device, cgroup) pair has its own bfq_group, i.e., for each cgroup
++ * there is a set of bfq_groups, each one collecting the lower-level
++ * entities belonging to the group that are acting on the same device.
++ *
++ * Locking works as follows:
++ * o @bfqd is protected by the queue lock, RCU is used to access it
++ * from the readers.
++ * o All the other fields are protected by the @bfqd queue lock.
++ */
++struct bfq_group {
++ /* must be the first member */
++ struct blkg_policy_data pd;
++
++ struct bfq_entity entity;
++ struct bfq_sched_data sched_data;
++
++ void *bfqd;
++
++ struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR];
++ struct bfq_queue *async_idle_bfqq;
++
++ struct bfq_entity *my_entity;
++
++ int active_entities;
++
++ struct bfqg_stats stats;
++ struct bfqg_stats dead_stats; /* stats pushed from dead children */
++};
++
++#else
++struct bfq_group {
++ struct bfq_sched_data sched_data;
++
++ struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR];
++ struct bfq_queue *async_idle_bfqq;
++};
++#endif
++
++static struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity);
++
++static struct bfq_service_tree *
++bfq_entity_service_tree(struct bfq_entity *entity)
++{
++ struct bfq_sched_data *sched_data = entity->sched_data;
++ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++ unsigned int idx = bfqq ? bfqq->ioprio_class - 1 :
++ BFQ_DEFAULT_GRP_CLASS;
++
++ BUG_ON(idx >= BFQ_IOPRIO_CLASSES);
++ BUG_ON(sched_data == NULL);
++
++ return sched_data->service_tree + idx;
++}
++
++static struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
++{
++ return bic->bfqq[is_sync];
++}
++
++static void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq,
++ bool is_sync)
++{
++ bic->bfqq[is_sync] = bfqq;
++}
++
++static struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
++{
++ return bic->icq.q->elevator->elevator_data;
++}
++
++/**
++ * bfq_get_bfqd_locked - get a lock to a bfqd using a RCU protected pointer.
++ * @ptr: a pointer to a bfqd.
++ * @flags: storage for the flags to be saved.
++ *
++ * This function allows bfqg->bfqd to be protected by the
++ * queue lock of the bfqd they reference; the pointer is dereferenced
++ * under RCU, so the storage for bfqd is assured to be safe as long
++ * as the RCU read side critical section does not end. After the
++ * bfqd->queue->queue_lock is taken the pointer is rechecked, to be
++ * sure that no other writer accessed it. If we raced with a writer,
++ * the function returns NULL, with the queue unlocked, otherwise it
++ * returns the dereferenced pointer, with the queue locked.
++ */
++static struct bfq_data *bfq_get_bfqd_locked(void **ptr, unsigned long *flags)
++{
++ struct bfq_data *bfqd;
++
++ rcu_read_lock();
++ bfqd = rcu_dereference(*(struct bfq_data **)ptr);
++
++ if (bfqd != NULL) {
++ spin_lock_irqsave(bfqd->queue->queue_lock, *flags);
++ if (ptr == NULL)
++ printk(KERN_CRIT "get_bfqd_locked pointer NULL\n");
++ else if (*ptr == bfqd)
++ goto out;
++ spin_unlock_irqrestore(bfqd->queue->queue_lock, *flags);
++ }
++
++ bfqd = NULL;
++out:
++ rcu_read_unlock();
++ return bfqd;
++}
++
++static void bfq_put_bfqd_unlock(struct bfq_data *bfqd, unsigned long *flags)
++{
++ spin_unlock_irqrestore(bfqd->queue->queue_lock, *flags);
++}
++
++static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio);
++static void bfq_put_queue(struct bfq_queue *bfqq);
++static void bfq_dispatch_insert(struct request_queue *q, struct request *rq);
++static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
++ struct bio *bio, int is_sync,
++ struct bfq_io_cq *bic, gfp_t gfp_mask);
++static void bfq_end_wr_async_queues(struct bfq_data *bfqd,
++ struct bfq_group *bfqg);
++static void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg);
++static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq);
++
++#endif /* _BFQ_H */
+--
+2.10.0
+
diff --git a/5003_block-bfq-add-Early-Queue-Merge-EQM-to-BFQ-v7r11-for-4.11.patch b/5003_block-bfq-add-Early-Queue-Merge-EQM-to-BFQ-v7r11-for-4.11.patch
new file mode 100644
index 0000000..8a03246
--- /dev/null
+++ b/5003_block-bfq-add-Early-Queue-Merge-EQM-to-BFQ-v7r11-for-4.11.patch
@@ -0,0 +1,1101 @@
+From d1d10983cb4b593e7970e541c4c2721bbbdc21c8 Mon Sep 17 00:00:00 2001
+From: Mauro Andreolini <mauro.andreolini@unimore.it>
+Date: Sun, 6 Sep 2015 16:09:05 +0200
+Subject: [PATCH 3/4] block, bfq: add Early Queue Merge (EQM) to BFQ-v7r11 for
+ 4.11.0
+
+A set of processes may happen to perform interleaved reads, i.e.,requests
+whose union would give rise to a sequential read pattern. There are two
+typical cases: in the first case, processes read fixed-size chunks of
+data at a fixed distance from each other, while in the second case processes
+may read variable-size chunks at variable distances. The latter case occurs
+for example with QEMU, which splits the I/O generated by the guest into
+multiple chunks, and lets these chunks be served by a pool of cooperating
+processes, iteratively assigning the next chunk of I/O to the first
+available process. CFQ uses actual queue merging for the first type of
+rocesses, whereas it uses preemption to get a sequential read pattern out
+of the read requests performed by the second type of processes. In the end
+it uses two different mechanisms to achieve the same goal: boosting the
+throughput with interleaved I/O.
+
+This patch introduces Early Queue Merge (EQM), a unified mechanism to get a
+sequential read pattern with both types of processes. The main idea is
+checking newly arrived requests against the next request of the active queue
+both in case of actual request insert and in case of request merge. By doing
+so, both the types of processes can be handled by just merging their queues.
+EQM is then simpler and more compact than the pair of mechanisms used in
+CFQ.
+
+Finally, EQM also preserves the typical low-latency properties of BFQ, by
+properly restoring the weight-raising state of a queue when it gets back to
+a non-merged state.
+
+Signed-off-by: Mauro Andreolini <mauro.andreolini@unimore.it>
+Signed-off-by: Arianna Avanzini <avanzini@google.com>
+Signed-off-by: Paolo Valente <paolo.valente@unimore.it>
+Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
+---
+ block/bfq-cgroup.c | 5 +
+ block/bfq-iosched.c | 685 +++++++++++++++++++++++++++++++++++++++++++++++++++-
+ block/bfq.h | 66 +++++
+ 3 files changed, 743 insertions(+), 13 deletions(-)
+
+diff --git a/block/bfq-cgroup.c b/block/bfq-cgroup.c
+index 8b08a57..0367996 100644
+--- a/block/bfq-cgroup.c
++++ b/block/bfq-cgroup.c
+@@ -440,6 +440,7 @@ static void bfq_pd_init(struct blkg_policy_data *pd)
+ */
+ bfqg->bfqd = bfqd;
+ bfqg->active_entities = 0;
++ bfqg->rq_pos_tree = RB_ROOT;
+ }
+
+ static void bfq_pd_free(struct blkg_policy_data *pd)
+@@ -533,6 +534,9 @@ static struct bfq_group *bfq_find_alloc_group(struct bfq_data *bfqd,
+ return bfqg;
+ }
+
++static void bfq_pos_tree_add_move(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq);
++
+ /**
+ * bfq_bfqq_move - migrate @bfqq to @bfqg.
+ * @bfqd: queue descriptor.
+@@ -580,6 +584,7 @@ static void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ bfqg_get(bfqg);
+
+ if (busy) {
++ bfq_pos_tree_add_move(bfqd, bfqq);
+ if (resume)
+ bfq_activate_bfqq(bfqd, bfqq);
+ }
+diff --git a/block/bfq-iosched.c b/block/bfq-iosched.c
+index 85e2169..cf3e9b1 100644
+--- a/block/bfq-iosched.c
++++ b/block/bfq-iosched.c
+@@ -295,6 +295,72 @@ static struct request *bfq_choose_req(struct bfq_data *bfqd,
+ }
+ }
+
++static struct bfq_queue *
++bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
++ sector_t sector, struct rb_node **ret_parent,
++ struct rb_node ***rb_link)
++{
++ struct rb_node **p, *parent;
++ struct bfq_queue *bfqq = NULL;
++
++ parent = NULL;
++ p = &root->rb_node;
++ while (*p) {
++ struct rb_node **n;
++
++ parent = *p;
++ bfqq = rb_entry(parent, struct bfq_queue, pos_node);
++
++ /*
++ * Sort strictly based on sector. Smallest to the left,
++ * largest to the right.
++ */
++ if (sector > blk_rq_pos(bfqq->next_rq))
++ n = &(*p)->rb_right;
++ else if (sector < blk_rq_pos(bfqq->next_rq))
++ n = &(*p)->rb_left;
++ else
++ break;
++ p = n;
++ bfqq = NULL;
++ }
++
++ *ret_parent = parent;
++ if (rb_link)
++ *rb_link = p;
++
++ bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
++ (unsigned long long) sector,
++ bfqq ? bfqq->pid : 0);
++
++ return bfqq;
++}
++
++static void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
++{
++ struct rb_node **p, *parent;
++ struct bfq_queue *__bfqq;
++
++ if (bfqq->pos_root) {
++ rb_erase(&bfqq->pos_node, bfqq->pos_root);
++ bfqq->pos_root = NULL;
++ }
++
++ if (bfq_class_idle(bfqq))
++ return;
++ if (!bfqq->next_rq)
++ return;
++
++ bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
++ __bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
++ blk_rq_pos(bfqq->next_rq), &parent, &p);
++ if (!__bfqq) {
++ rb_link_node(&bfqq->pos_node, parent, p);
++ rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
++ } else
++ bfqq->pos_root = NULL;
++}
++
+ /*
+ * Tell whether there are active queues or groups with differentiated weights.
+ */
+@@ -527,6 +593,57 @@ static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
+ return dur;
+ }
+
++static unsigned int bfq_bfqq_cooperations(struct bfq_queue *bfqq)
++{
++ return bfqq->bic ? bfqq->bic->cooperations : 0;
++}
++
++static void
++bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
++{
++ if (bic->saved_idle_window)
++ bfq_mark_bfqq_idle_window(bfqq);
++ else
++ bfq_clear_bfqq_idle_window(bfqq);
++ if (bic->saved_IO_bound)
++ bfq_mark_bfqq_IO_bound(bfqq);
++ else
++ bfq_clear_bfqq_IO_bound(bfqq);
++ /* Assuming that the flag in_large_burst is already correctly set */
++ if (bic->wr_time_left && bfqq->bfqd->low_latency &&
++ !bfq_bfqq_in_large_burst(bfqq) &&
++ bic->cooperations < bfqq->bfqd->bfq_coop_thresh) {
++ /*
++ * Start a weight raising period with the duration given by
++ * the raising_time_left snapshot.
++ */
++ if (bfq_bfqq_busy(bfqq))
++ bfqq->bfqd->wr_busy_queues++;
++ bfqq->wr_coeff = bfqq->bfqd->bfq_wr_coeff;
++ bfqq->wr_cur_max_time = bic->wr_time_left;
++ bfqq->last_wr_start_finish = jiffies;
++ bfqq->entity.prio_changed = 1;
++ }
++ /*
++ * Clear wr_time_left to prevent bfq_bfqq_save_state() from
++ * getting confused about the queue's need of a weight-raising
++ * period.
++ */
++ bic->wr_time_left = 0;
++}
++
++static int bfqq_process_refs(struct bfq_queue *bfqq)
++{
++ int process_refs, io_refs;
++
++ lockdep_assert_held(bfqq->bfqd->queue->queue_lock);
++
++ io_refs = bfqq->allocated[READ] + bfqq->allocated[WRITE];
++ process_refs = atomic_read(&bfqq->ref) - io_refs - bfqq->entity.on_st;
++ BUG_ON(process_refs < 0);
++ return process_refs;
++}
++
+ /* Empty burst list and add just bfqq (see comments to bfq_handle_burst) */
+ static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+ {
+@@ -763,8 +880,14 @@ static void bfq_add_request(struct request *rq)
+ BUG_ON(!next_rq);
+ bfqq->next_rq = next_rq;
+
++ /*
++ * Adjust priority tree position, if next_rq changes.
++ */
++ if (prev != bfqq->next_rq)
++ bfq_pos_tree_add_move(bfqd, bfqq);
++
+ if (!bfq_bfqq_busy(bfqq)) {
+- bool soft_rt, in_burst,
++ bool soft_rt, coop_or_in_burst,
+ idle_for_long_time = time_is_before_jiffies(
+ bfqq->budget_timeout +
+ bfqd->bfq_wr_min_idle_time);
+@@ -792,11 +915,12 @@ static void bfq_add_request(struct request *rq)
+ bfqd->last_ins_in_burst = jiffies;
+ }
+
+- in_burst = bfq_bfqq_in_large_burst(bfqq);
++ coop_or_in_burst = bfq_bfqq_in_large_burst(bfqq) ||
++ bfq_bfqq_cooperations(bfqq) >= bfqd->bfq_coop_thresh;
+ soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
+- !in_burst &&
++ !coop_or_in_burst &&
+ time_is_before_jiffies(bfqq->soft_rt_next_start);
+- interactive = !in_burst && idle_for_long_time;
++ interactive = !coop_or_in_burst && idle_for_long_time;
+ entity->budget = max_t(unsigned long, bfqq->max_budget,
+ bfq_serv_to_charge(next_rq, bfqq));
+
+@@ -815,6 +939,9 @@ static void bfq_add_request(struct request *rq)
+ if (!bfqd->low_latency)
+ goto add_bfqq_busy;
+
++ if (bfq_bfqq_just_split(bfqq))
++ goto set_prio_changed;
++
+ /*
+ * If the queue:
+ * - is not being boosted,
+@@ -839,7 +966,7 @@ static void bfq_add_request(struct request *rq)
+ } else if (old_wr_coeff > 1) {
+ if (interactive)
+ bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
+- else if (in_burst ||
++ else if (coop_or_in_burst ||
+ (bfqq->wr_cur_max_time ==
+ bfqd->bfq_wr_rt_max_time &&
+ !soft_rt)) {
+@@ -904,6 +1031,7 @@ static void bfq_add_request(struct request *rq)
+ bfqd->bfq_wr_rt_max_time;
+ }
+ }
++set_prio_changed:
+ if (old_wr_coeff != bfqq->wr_coeff)
+ entity->prio_changed = 1;
+ add_bfqq_busy:
+@@ -1046,6 +1174,15 @@ static void bfq_merged_request(struct request_queue *q, struct request *req,
+ bfqd->last_position);
+ BUG_ON(!next_rq);
+ bfqq->next_rq = next_rq;
++ /*
++ * If next_rq changes, update both the queue's budget to
++ * fit the new request and the queue's position in its
++ * rq_pos_tree.
++ */
++ if (prev != bfqq->next_rq) {
++ bfq_updated_next_req(bfqd, bfqq);
++ bfq_pos_tree_add_move(bfqd, bfqq);
++ }
+ }
+ }
+
+@@ -1128,11 +1265,346 @@ static void bfq_end_wr(struct bfq_data *bfqd)
+ spin_unlock_irq(bfqd->queue->queue_lock);
+ }
+
++static sector_t bfq_io_struct_pos(void *io_struct, bool request)
++{
++ if (request)
++ return blk_rq_pos(io_struct);
++ else
++ return ((struct bio *)io_struct)->bi_iter.bi_sector;
++}
++
++static int bfq_rq_close_to_sector(void *io_struct, bool request,
++ sector_t sector)
++{
++ return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
++ BFQQ_SEEK_THR;
++}
++
++static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq,
++ sector_t sector)
++{
++ struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
++ struct rb_node *parent, *node;
++ struct bfq_queue *__bfqq;
++
++ if (RB_EMPTY_ROOT(root))
++ return NULL;
++
++ /*
++ * First, if we find a request starting at the end of the last
++ * request, choose it.
++ */
++ __bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
++ if (__bfqq)
++ return __bfqq;
++
++ /*
++ * If the exact sector wasn't found, the parent of the NULL leaf
++ * will contain the closest sector (rq_pos_tree sorted by
++ * next_request position).
++ */
++ __bfqq = rb_entry(parent, struct bfq_queue, pos_node);
++ if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
++ return __bfqq;
++
++ if (blk_rq_pos(__bfqq->next_rq) < sector)
++ node = rb_next(&__bfqq->pos_node);
++ else
++ node = rb_prev(&__bfqq->pos_node);
++ if (!node)
++ return NULL;
++
++ __bfqq = rb_entry(node, struct bfq_queue, pos_node);
++ if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
++ return __bfqq;
++
++ return NULL;
++}
++
++static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
++ struct bfq_queue *cur_bfqq,
++ sector_t sector)
++{
++ struct bfq_queue *bfqq;
++
++ /*
++ * We shall notice if some of the queues are cooperating,
++ * e.g., working closely on the same area of the device. In
++ * that case, we can group them together and: 1) don't waste
++ * time idling, and 2) serve the union of their requests in
++ * the best possible order for throughput.
++ */
++ bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
++ if (!bfqq || bfqq == cur_bfqq)
++ return NULL;
++
++ return bfqq;
++}
++
++static struct bfq_queue *
++bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
++{
++ int process_refs, new_process_refs;
++ struct bfq_queue *__bfqq;
++
++ /*
++ * If there are no process references on the new_bfqq, then it is
++ * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
++ * may have dropped their last reference (not just their last process
++ * reference).
++ */
++ if (!bfqq_process_refs(new_bfqq))
++ return NULL;
++
++ /* Avoid a circular list and skip interim queue merges. */
++ while ((__bfqq = new_bfqq->new_bfqq)) {
++ if (__bfqq == bfqq)
++ return NULL;
++ new_bfqq = __bfqq;
++ }
++
++ process_refs = bfqq_process_refs(bfqq);
++ new_process_refs = bfqq_process_refs(new_bfqq);
++ /*
++ * If the process for the bfqq has gone away, there is no
++ * sense in merging the queues.
++ */
++ if (process_refs == 0 || new_process_refs == 0)
++ return NULL;
++
++ bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
++ new_bfqq->pid);
++
++ /*
++ * Merging is just a redirection: the requests of the process
++ * owning one of the two queues are redirected to the other queue.
++ * The latter queue, in its turn, is set as shared if this is the
++ * first time that the requests of some process are redirected to
++ * it.
++ *
++ * We redirect bfqq to new_bfqq and not the opposite, because we
++ * are in the context of the process owning bfqq, hence we have
++ * the io_cq of this process. So we can immediately configure this
++ * io_cq to redirect the requests of the process to new_bfqq.
++ *
++ * NOTE, even if new_bfqq coincides with the in-service queue, the
++ * io_cq of new_bfqq is not available, because, if the in-service
++ * queue is shared, bfqd->in_service_bic may not point to the
++ * io_cq of the in-service queue.
++ * Redirecting the requests of the process owning bfqq to the
++ * currently in-service queue is in any case the best option, as
++ * we feed the in-service queue with new requests close to the
++ * last request served and, by doing so, hopefully increase the
++ * throughput.
++ */
++ bfqq->new_bfqq = new_bfqq;
++ atomic_add(process_refs, &new_bfqq->ref);
++ return new_bfqq;
++}
++
++static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
++ struct bfq_queue *new_bfqq)
++{
++ if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
++ (bfqq->ioprio_class != new_bfqq->ioprio_class))
++ return false;
++
++ /*
++ * If either of the queues has already been detected as seeky,
++ * then merging it with the other queue is unlikely to lead to
++ * sequential I/O.
++ */
++ if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
++ return false;
++
++ /*
++ * Interleaved I/O is known to be done by (some) applications
++ * only for reads, so it does not make sense to merge async
++ * queues.
++ */
++ if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
++ return false;
++
++ return true;
++}
++
++/*
++ * Attempt to schedule a merge of bfqq with the currently in-service queue
++ * or with a close queue among the scheduled queues.
++ * Return NULL if no merge was scheduled, a pointer to the shared bfq_queue
++ * structure otherwise.
++ *
++ * The OOM queue is not allowed to participate to cooperation: in fact, since
++ * the requests temporarily redirected to the OOM queue could be redirected
++ * again to dedicated queues at any time, the state needed to correctly
++ * handle merging with the OOM queue would be quite complex and expensive
++ * to maintain. Besides, in such a critical condition as an out of memory,
++ * the benefits of queue merging may be little relevant, or even negligible.
++ */
++static struct bfq_queue *
++bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++ void *io_struct, bool request)
++{
++ struct bfq_queue *in_service_bfqq, *new_bfqq;
++
++ if (bfqq->new_bfqq)
++ return bfqq->new_bfqq;
++ if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
++ return NULL;
++ /* If device has only one backlogged bfq_queue, don't search. */
++ if (bfqd->busy_queues == 1)
++ return NULL;
++
++ in_service_bfqq = bfqd->in_service_queue;
++
++ if (!in_service_bfqq || in_service_bfqq == bfqq ||
++ !bfqd->in_service_bic ||
++ unlikely(in_service_bfqq == &bfqd->oom_bfqq))
++ goto check_scheduled;
++
++ if (bfq_rq_close_to_sector(io_struct, request, bfqd->last_position) &&
++ bfqq->entity.parent == in_service_bfqq->entity.parent &&
++ bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
++ new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
++ if (new_bfqq)
++ return new_bfqq;
++ }
++ /*
++ * Check whether there is a cooperator among currently scheduled
++ * queues. The only thing we need is that the bio/request is not
++ * NULL, as we need it to establish whether a cooperator exists.
++ */
++check_scheduled:
++ new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
++ bfq_io_struct_pos(io_struct, request));
++
++ BUG_ON(new_bfqq && bfqq->entity.parent != new_bfqq->entity.parent);
++
++ if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
++ bfq_may_be_close_cooperator(bfqq, new_bfqq))
++ return bfq_setup_merge(bfqq, new_bfqq);
++
++ return NULL;
++}
++
++static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
++{
++ /*
++ * If !bfqq->bic, the queue is already shared or its requests
++ * have already been redirected to a shared queue; both idle window
++ * and weight raising state have already been saved. Do nothing.
++ */
++ if (!bfqq->bic)
++ return;
++ if (bfqq->bic->wr_time_left)
++ /*
++ * This is the queue of a just-started process, and would
++ * deserve weight raising: we set wr_time_left to the full
++ * weight-raising duration to trigger weight-raising when
++ * and if the queue is split and the first request of the
++ * queue is enqueued.
++ */
++ bfqq->bic->wr_time_left = bfq_wr_duration(bfqq->bfqd);
++ else if (bfqq->wr_coeff > 1) {
++ unsigned long wr_duration =
++ jiffies - bfqq->last_wr_start_finish;
++ /*
++ * It may happen that a queue's weight raising period lasts
++ * longer than its wr_cur_max_time, as weight raising is
++ * handled only when a request is enqueued or dispatched (it
++ * does not use any timer). If the weight raising period is
++ * about to end, don't save it.
++ */
++ if (bfqq->wr_cur_max_time <= wr_duration)
++ bfqq->bic->wr_time_left = 0;
++ else
++ bfqq->bic->wr_time_left =
++ bfqq->wr_cur_max_time - wr_duration;
++ /*
++ * The bfq_queue is becoming shared or the requests of the
++ * process owning the queue are being redirected to a shared
++ * queue. Stop the weight raising period of the queue, as in
++ * both cases it should not be owned by an interactive or
++ * soft real-time application.
++ */
++ bfq_bfqq_end_wr(bfqq);
++ } else
++ bfqq->bic->wr_time_left = 0;
++ bfqq->bic->saved_idle_window = bfq_bfqq_idle_window(bfqq);
++ bfqq->bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
++ bfqq->bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
++ bfqq->bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
++ bfqq->bic->cooperations++;
++ bfqq->bic->failed_cooperations = 0;
++}
++
++static void bfq_get_bic_reference(struct bfq_queue *bfqq)
++{
++ /*
++ * If bfqq->bic has a non-NULL value, the bic to which it belongs
++ * is about to begin using a shared bfq_queue.
++ */
++ if (bfqq->bic)
++ atomic_long_inc(&bfqq->bic->icq.ioc->refcount);
++}
++
++static void
++bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
++ struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
++{
++ bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
++ (unsigned long) new_bfqq->pid);
++ /* Save weight raising and idle window of the merged queues */
++ bfq_bfqq_save_state(bfqq);
++ bfq_bfqq_save_state(new_bfqq);
++ if (bfq_bfqq_IO_bound(bfqq))
++ bfq_mark_bfqq_IO_bound(new_bfqq);
++ bfq_clear_bfqq_IO_bound(bfqq);
++ /*
++ * Grab a reference to the bic, to prevent it from being destroyed
++ * before being possibly touched by a bfq_split_bfqq().
++ */
++ bfq_get_bic_reference(bfqq);
++ bfq_get_bic_reference(new_bfqq);
++ /*
++ * Merge queues (that is, let bic redirect its requests to new_bfqq)
++ */
++ bic_set_bfqq(bic, new_bfqq, 1);
++ bfq_mark_bfqq_coop(new_bfqq);
++ /*
++ * new_bfqq now belongs to at least two bics (it is a shared queue):
++ * set new_bfqq->bic to NULL. bfqq either:
++ * - does not belong to any bic any more, and hence bfqq->bic must
++ * be set to NULL, or
++ * - is a queue whose owning bics have already been redirected to a
++ * different queue, hence the queue is destined to not belong to
++ * any bic soon and bfqq->bic is already NULL (therefore the next
++ * assignment causes no harm).
++ */
++ new_bfqq->bic = NULL;
++ bfqq->bic = NULL;
++ bfq_put_queue(bfqq);
++}
++
++static void bfq_bfqq_increase_failed_cooperations(struct bfq_queue *bfqq)
++{
++ struct bfq_io_cq *bic = bfqq->bic;
++ struct bfq_data *bfqd = bfqq->bfqd;
++
++ if (bic && bfq_bfqq_cooperations(bfqq) >= bfqd->bfq_coop_thresh) {
++ bic->failed_cooperations++;
++ if (bic->failed_cooperations >= bfqd->bfq_failed_cooperations)
++ bic->cooperations = 0;
++ }
++}
++
+ static int bfq_allow_merge(struct request_queue *q, struct request *rq,
+ struct bio *bio)
+ {
+ struct bfq_data *bfqd = q->elevator->elevator_data;
+ struct bfq_io_cq *bic;
++ struct bfq_queue *bfqq, *new_bfqq;
+
+ /*
+ * Disallow merge of a sync bio into an async request.
+@@ -1149,7 +1621,26 @@ static int bfq_allow_merge(struct request_queue *q, struct request *rq,
+ if (!bic)
+ return 0;
+
+- return bic_to_bfqq(bic, bfq_bio_sync(bio)) == RQ_BFQQ(rq);
++ bfqq = bic_to_bfqq(bic, bfq_bio_sync(bio));
++ /*
++ * We take advantage of this function to perform an early merge
++ * of the queues of possible cooperating processes.
++ */
++ if (bfqq) {
++ new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
++ if (new_bfqq) {
++ bfq_merge_bfqqs(bfqd, bic, bfqq, new_bfqq);
++ /*
++ * If we get here, the bio will be queued in the
++ * shared queue, i.e., new_bfqq, so use new_bfqq
++ * to decide whether bio and rq can be merged.
++ */
++ bfqq = new_bfqq;
++ } else
++ bfq_bfqq_increase_failed_cooperations(bfqq);
++ }
++
++ return bfqq == RQ_BFQQ(rq);
+ }
+
+ static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
+@@ -1350,6 +1841,15 @@ static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+
+ __bfq_bfqd_reset_in_service(bfqd);
+
++ /*
++ * If this bfqq is shared between multiple processes, check
++ * to make sure that those processes are still issuing I/Os
++ * within the mean seek distance. If not, it may be time to
++ * break the queues apart again.
++ */
++ if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
++ bfq_mark_bfqq_split_coop(bfqq);
++
+ if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
+ /*
+ * Overloading budget_timeout field to store the time
+@@ -1358,8 +1858,13 @@ static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+ */
+ bfqq->budget_timeout = jiffies;
+ bfq_del_bfqq_busy(bfqd, bfqq, 1);
+- } else
++ } else {
+ bfq_activate_bfqq(bfqd, bfqq);
++ /*
++ * Resort priority tree of potential close cooperators.
++ */
++ bfq_pos_tree_add_move(bfqd, bfqq);
++ }
+ }
+
+ /**
+@@ -2246,10 +2751,12 @@ static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+ /*
+ * If the queue was activated in a burst, or
+ * too much time has elapsed from the beginning
+- * of this weight-raising period, then end weight
+- * raising.
++ * of this weight-raising period, or the queue has
++ * exceeded the acceptable number of cooperations,
++ * then end weight raising.
+ */
+ if (bfq_bfqq_in_large_burst(bfqq) ||
++ bfq_bfqq_cooperations(bfqq) >= bfqd->bfq_coop_thresh ||
+ time_is_before_jiffies(bfqq->last_wr_start_finish +
+ bfqq->wr_cur_max_time)) {
+ bfqq->last_wr_start_finish = jiffies;
+@@ -2478,6 +2985,25 @@ static void bfq_put_queue(struct bfq_queue *bfqq)
+ #endif
+ }
+
++static void bfq_put_cooperator(struct bfq_queue *bfqq)
++{
++ struct bfq_queue *__bfqq, *next;
++
++ /*
++ * If this queue was scheduled to merge with another queue, be
++ * sure to drop the reference taken on that queue (and others in
++ * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
++ */
++ __bfqq = bfqq->new_bfqq;
++ while (__bfqq) {
++ if (__bfqq == bfqq)
++ break;
++ next = __bfqq->new_bfqq;
++ bfq_put_queue(__bfqq);
++ __bfqq = next;
++ }
++}
++
+ static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+ {
+ if (bfqq == bfqd->in_service_queue) {
+@@ -2488,6 +3014,8 @@ static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+ bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq,
+ atomic_read(&bfqq->ref));
+
++ bfq_put_cooperator(bfqq);
++
+ bfq_put_queue(bfqq);
+ }
+
+@@ -2496,6 +3024,25 @@ static void bfq_init_icq(struct io_cq *icq)
+ struct bfq_io_cq *bic = icq_to_bic(icq);
+
+ bic->ttime.last_end_request = jiffies;
++ /*
++ * A newly created bic indicates that the process has just
++ * started doing I/O, and is probably mapping into memory its
++ * executable and libraries: it definitely needs weight raising.
++ * There is however the possibility that the process performs,
++ * for a while, I/O close to some other process. EQM intercepts
++ * this behavior and may merge the queue corresponding to the
++ * process with some other queue, BEFORE the weight of the queue
++ * is raised. Merged queues are not weight-raised (they are assumed
++ * to belong to processes that benefit only from high throughput).
++ * If the merge is basically the consequence of an accident, then
++ * the queue will be split soon and will get back its old weight.
++ * It is then important to write down somewhere that this queue
++ * does need weight raising, even if it did not make it to get its
++ * weight raised before being merged. To this purpose, we overload
++ * the field raising_time_left and assign 1 to it, to mark the queue
++ * as needing weight raising.
++ */
++ bic->wr_time_left = 1;
+ }
+
+ static void bfq_exit_icq(struct io_cq *icq)
+@@ -2509,6 +3056,13 @@ static void bfq_exit_icq(struct io_cq *icq)
+ }
+
+ if (bic->bfqq[BLK_RW_SYNC]) {
++ /*
++ * If the bic is using a shared queue, put the reference
++ * taken on the io_context when the bic started using a
++ * shared bfq_queue.
++ */
++ if (bfq_bfqq_coop(bic->bfqq[BLK_RW_SYNC]))
++ put_io_context(icq->ioc);
+ bfq_exit_bfqq(bfqd, bic->bfqq[BLK_RW_SYNC]);
+ bic->bfqq[BLK_RW_SYNC] = NULL;
+ }
+@@ -2814,6 +3368,10 @@ static void bfq_update_idle_window(struct bfq_data *bfqd,
+ if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq))
+ return;
+
++ /* Idle window just restored, statistics are meaningless. */
++ if (bfq_bfqq_just_split(bfqq))
++ return;
++
+ enable_idle = bfq_bfqq_idle_window(bfqq);
+
+ if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
+@@ -2861,6 +3419,7 @@ static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ if (bfqq->entity.service > bfq_max_budget(bfqd) / 8 ||
+ !BFQQ_SEEKY(bfqq))
+ bfq_update_idle_window(bfqd, bfqq, bic);
++ bfq_clear_bfqq_just_split(bfqq);
+
+ bfq_log_bfqq(bfqd, bfqq,
+ "rq_enqueued: idle_window=%d (seeky %d, mean %llu)",
+@@ -2925,12 +3484,47 @@ static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ static void bfq_insert_request(struct request_queue *q, struct request *rq)
+ {
+ struct bfq_data *bfqd = q->elevator->elevator_data;
+- struct bfq_queue *bfqq = RQ_BFQQ(rq);
++ struct bfq_queue *bfqq = RQ_BFQQ(rq), *new_bfqq;
+
+ assert_spin_locked(bfqd->queue->queue_lock);
+
++ /*
++ * An unplug may trigger a requeue of a request from the device
++ * driver: make sure we are in process context while trying to
++ * merge two bfq_queues.
++ */
++ if (!in_interrupt()) {
++ new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
++ if (new_bfqq) {
++ if (bic_to_bfqq(RQ_BIC(rq), 1) != bfqq)
++ new_bfqq = bic_to_bfqq(RQ_BIC(rq), 1);
++ /*
++ * Release the request's reference to the old bfqq
++ * and make sure one is taken to the shared queue.
++ */
++ new_bfqq->allocated[rq_data_dir(rq)]++;
++ bfqq->allocated[rq_data_dir(rq)]--;
++ atomic_inc(&new_bfqq->ref);
++ bfq_put_queue(bfqq);
++ if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
++ bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
++ bfqq, new_bfqq);
++ rq->elv.priv[1] = new_bfqq;
++ bfqq = new_bfqq;
++ } else
++ bfq_bfqq_increase_failed_cooperations(bfqq);
++ }
++
+ bfq_add_request(rq);
+
++ /*
++ * Here a newly-created bfq_queue has already started a weight-raising
++ * period: clear raising_time_left to prevent bfq_bfqq_save_state()
++ * from assigning it a full weight-raising period. See the detailed
++ * comments about this field in bfq_init_icq().
++ */
++ if (bfqq->bic)
++ bfqq->bic->wr_time_left = 0;
+ rq->fifo_time = jiffies + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
+ list_add_tail(&rq->queuelist, &bfqq->fifo);
+
+@@ -3099,6 +3693,32 @@ static void bfq_put_request(struct request *rq)
+ }
+
+ /*
++ * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
++ * was the last process referring to said bfqq.
++ */
++static struct bfq_queue *
++bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
++{
++ bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
++
++ put_io_context(bic->icq.ioc);
++
++ if (bfqq_process_refs(bfqq) == 1) {
++ bfqq->pid = current->pid;
++ bfq_clear_bfqq_coop(bfqq);
++ bfq_clear_bfqq_split_coop(bfqq);
++ return bfqq;
++ }
++
++ bic_set_bfqq(bic, NULL, 1);
++
++ bfq_put_cooperator(bfqq);
++
++ bfq_put_queue(bfqq);
++ return NULL;
++}
++
++/*
+ * Allocate bfq data structures associated with this request.
+ */
+ static int bfq_set_request(struct request_queue *q, struct request *rq,
+@@ -3110,6 +3730,7 @@ static int bfq_set_request(struct request_queue *q, struct request *rq,
+ const int is_sync = rq_is_sync(rq);
+ struct bfq_queue *bfqq;
+ unsigned long flags;
++ bool split = false;
+
+ might_sleep_if(gfpflags_allow_blocking(gfp_mask));
+
+@@ -3122,15 +3743,30 @@ static int bfq_set_request(struct request_queue *q, struct request *rq,
+
+ bfq_bic_update_cgroup(bic, bio);
+
++new_queue:
+ bfqq = bic_to_bfqq(bic, is_sync);
+ if (!bfqq || bfqq == &bfqd->oom_bfqq) {
+ bfqq = bfq_get_queue(bfqd, bio, is_sync, bic, gfp_mask);
+ bic_set_bfqq(bic, bfqq, is_sync);
+- if (is_sync) {
+- if (bfqd->large_burst)
++ if (split && is_sync) {
++ if ((bic->was_in_burst_list && bfqd->large_burst) ||
++ bic->saved_in_large_burst)
+ bfq_mark_bfqq_in_large_burst(bfqq);
+- else
++ else {
+ bfq_clear_bfqq_in_large_burst(bfqq);
++ if (bic->was_in_burst_list)
++ hlist_add_head(&bfqq->burst_list_node,
++ &bfqd->burst_list);
++ }
++ }
++ } else {
++ /* If the queue was seeky for too long, break it apart. */
++ if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
++ bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
++ bfqq = bfq_split_bfqq(bic, bfqq);
++ split = true;
++ if (!bfqq)
++ goto new_queue;
+ }
+ }
+
+@@ -3142,6 +3778,26 @@ static int bfq_set_request(struct request_queue *q, struct request *rq,
+ rq->elv.priv[0] = bic;
+ rq->elv.priv[1] = bfqq;
+
++ /*
++ * If a bfq_queue has only one process reference, it is owned
++ * by only one bfq_io_cq: we can set the bic field of the
++ * bfq_queue to the address of that structure. Also, if the
++ * queue has just been split, mark a flag so that the
++ * information is available to the other scheduler hooks.
++ */
++ if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
++ bfqq->bic = bic;
++ if (split) {
++ bfq_mark_bfqq_just_split(bfqq);
++ /*
++ * If the queue has just been split from a shared
++ * queue, restore the idle window and the possible
++ * weight raising period.
++ */
++ bfq_bfqq_resume_state(bfqq, bic);
++ }
++ }
++
+ spin_unlock_irqrestore(q->queue_lock, flags);
+
+ return 0;
+@@ -3295,6 +3951,7 @@ static void bfq_init_root_group(struct bfq_group *root_group,
+ root_group->my_entity = NULL;
+ root_group->bfqd = bfqd;
+ #endif
++ root_group->rq_pos_tree = RB_ROOT;
+ for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
+ root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
+ }
+@@ -3375,6 +4032,8 @@ static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
+ bfqd->bfq_timeout[BLK_RW_ASYNC] = bfq_timeout_async;
+ bfqd->bfq_timeout[BLK_RW_SYNC] = bfq_timeout_sync;
+
++ bfqd->bfq_coop_thresh = 2;
++ bfqd->bfq_failed_cooperations = 7000;
+ bfqd->bfq_requests_within_timer = 120;
+
+ bfqd->bfq_large_burst_thresh = 11;
+diff --git a/block/bfq.h b/block/bfq.h
+index 2bf54ae..fcce855 100644
+--- a/block/bfq.h
++++ b/block/bfq.h
+@@ -183,6 +183,8 @@ struct bfq_group;
+ * ioprio_class value.
+ * @new_bfqq: shared bfq_queue if queue is cooperating with
+ * one or more other queues.
++ * @pos_node: request-position tree member (see bfq_group's @rq_pos_tree).
++ * @pos_root: request-position tree root (see bfq_group's @rq_pos_tree).
+ * @sort_list: sorted list of pending requests.
+ * @next_rq: if fifo isn't expired, next request to serve.
+ * @queued: nr of requests queued in @sort_list.
+@@ -304,6 +306,26 @@ struct bfq_ttime {
+ * @ttime: associated @bfq_ttime struct
+ * @ioprio: per (request_queue, blkcg) ioprio.
+ * @blkcg_id: id of the blkcg the related io_cq belongs to.
++ * @wr_time_left: snapshot of the time left before weight raising ends
++ * for the sync queue associated to this process; this
++ * snapshot is taken to remember this value while the weight
++ * raising is suspended because the queue is merged with a
++ * shared queue, and is used to set @raising_cur_max_time
++ * when the queue is split from the shared queue and its
++ * weight is raised again
++ * @saved_idle_window: same purpose as the previous field for the idle
++ * window
++ * @saved_IO_bound: same purpose as the previous two fields for the I/O
++ * bound classification of a queue
++ * @saved_in_large_burst: same purpose as the previous fields for the
++ * value of the field keeping the queue's belonging
++ * to a large burst
++ * @was_in_burst_list: true if the queue belonged to a burst list
++ * before its merge with another cooperating queue
++ * @cooperations: counter of consecutive successful queue merges underwent
++ * by any of the process' @bfq_queues
++ * @failed_cooperations: counter of consecutive failed queue merges of any
++ * of the process' @bfq_queues
+ */
+ struct bfq_io_cq {
+ struct io_cq icq; /* must be the first member */
+@@ -314,6 +336,16 @@ struct bfq_io_cq {
+ #ifdef CONFIG_BFQ_GROUP_IOSCHED
+ uint64_t blkcg_id; /* the current blkcg ID */
+ #endif
++
++ unsigned int wr_time_left;
++ bool saved_idle_window;
++ bool saved_IO_bound;
++
++ bool saved_in_large_burst;
++ bool was_in_burst_list;
++
++ unsigned int cooperations;
++ unsigned int failed_cooperations;
+ };
+
+ enum bfq_device_speed {
+@@ -557,6 +589,9 @@ enum bfqq_state_flags {
+ * may need softrt-next-start
+ * update
+ */
++ BFQ_BFQQ_FLAG_coop, /* bfqq is shared */
++ BFQ_BFQQ_FLAG_split_coop, /* shared bfqq will be split */
++ BFQ_BFQQ_FLAG_just_split, /* queue has just been split */
+ };
+
+ #define BFQ_BFQQ_FNS(name) \
+@@ -583,6 +618,9 @@ BFQ_BFQQ_FNS(budget_new);
+ BFQ_BFQQ_FNS(IO_bound);
+ BFQ_BFQQ_FNS(in_large_burst);
+ BFQ_BFQQ_FNS(constantly_seeky);
++BFQ_BFQQ_FNS(coop);
++BFQ_BFQQ_FNS(split_coop);
++BFQ_BFQQ_FNS(just_split);
+ BFQ_BFQQ_FNS(softrt_update);
+ #undef BFQ_BFQQ_FNS
+
+@@ -675,6 +713,9 @@ struct bfq_group_data {
+ * are groups with more than one active @bfq_entity
+ * (see the comments to the function
+ * bfq_bfqq_must_not_expire()).
++ * @rq_pos_tree: rbtree sorted by next_request position, used when
++ * determining if two or more queues have interleaving
++ * requests (see bfq_find_close_cooperator()).
+ *
+ * Each (device, cgroup) pair has its own bfq_group, i.e., for each cgroup
+ * there is a set of bfq_groups, each one collecting the lower-level
+@@ -701,6 +742,8 @@ struct bfq_group {
+
+ int active_entities;
+
++ struct rb_root rq_pos_tree;
++
+ struct bfqg_stats stats;
+ struct bfqg_stats dead_stats; /* stats pushed from dead children */
+ };
+@@ -711,6 +754,8 @@ struct bfq_group {
+
+ struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR];
+ struct bfq_queue *async_idle_bfqq;
++
++ struct rb_root rq_pos_tree;
+ };
+ #endif
+
+@@ -787,6 +832,27 @@ static void bfq_put_bfqd_unlock(struct bfq_data *bfqd, unsigned long *flags)
+ spin_unlock_irqrestore(bfqd->queue->queue_lock, *flags);
+ }
+
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++
++static struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
++{
++ struct bfq_entity *group_entity = bfqq->entity.parent;
++
++ if (!group_entity)
++ group_entity = &bfqq->bfqd->root_group->entity;
++
++ return container_of(group_entity, struct bfq_group, entity);
++}
++
++#else
++
++static struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
++{
++ return bfqq->bfqd->root_group;
++}
++
++#endif
++
+ static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio);
+ static void bfq_put_queue(struct bfq_queue *bfqq);
+ static void bfq_dispatch_insert(struct request_queue *q, struct request *rq);
+--
+2.10.0
+
diff --git a/5004_blkck-bfq-turn-BFQ-v7r11-for-4.11.0-into-BFQ-v8r11-for-4.patch1 b/5004_blkck-bfq-turn-BFQ-v7r11-for-4.11.0-into-BFQ-v8r11-for-4.patch1
new file mode 100644
index 0000000..01826dc
--- /dev/null
+++ b/5004_blkck-bfq-turn-BFQ-v7r11-for-4.11.0-into-BFQ-v8r11-for-4.patch1
@@ -0,0 +1,9433 @@
+From 4c59741516955aa3cb7f86fef5d9adcd2d67a671 Mon Sep 17 00:00:00 2001
+From: Paolo Valente <paolo.valente@linaro.org>
+Date: Mon, 16 May 2016 11:16:17 +0200
+Subject: [PATCH 4/4] blk, bfq: turn BFQ-v7r11 for 4.11.0 into BFQ-v8r11 for
+ 4.11.0
+
+Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
+---
+ Documentation/block/00-INDEX | 2 +
+ Documentation/block/bfq-iosched.txt | 530 ++++++
+ Makefile | 2 +-
+ block/Kconfig.iosched | 18 +-
+ block/bfq-cgroup.c | 511 +++---
+ block/bfq-iosched.c | 3468 ++++++++++++++++++++++-------------
+ block/bfq-sched.c | 1400 +++++++++++---
+ block/bfq.h | 804 ++++----
+ 8 files changed, 4536 insertions(+), 2199 deletions(-)
+ create mode 100644 Documentation/block/bfq-iosched.txt
+
+diff --git a/Documentation/block/00-INDEX b/Documentation/block/00-INDEX
+index e55103a..8d55b4b 100644
+--- a/Documentation/block/00-INDEX
++++ b/Documentation/block/00-INDEX
+@@ -1,5 +1,7 @@
+ 00-INDEX
+ - This file
++bfq-iosched.txt
++ - BFQ IO scheduler and its tunables
+ biodoc.txt
+ - Notes on the Generic Block Layer Rewrite in Linux 2.5
+ biovecs.txt
+diff --git a/Documentation/block/bfq-iosched.txt b/Documentation/block/bfq-iosched.txt
+new file mode 100644
+index 0000000..13b5248
+--- /dev/null
++++ b/Documentation/block/bfq-iosched.txt
+@@ -0,0 +1,530 @@
++BFQ (Budget Fair Queueing)
++==========================
++
++BFQ is a proportional-share I/O scheduler, with some extra
++low-latency capabilities. In addition to cgroups support (blkio or io
++controllers), BFQ's main features are:
++- BFQ guarantees a high system and application responsiveness, and a
++ low latency for time-sensitive applications, such as audio or video
++ players;
++- BFQ distributes bandwidth, and not just time, among processes or
++ groups (switching back to time distribution when needed to keep
++ throughput high).
++
++On average CPUs, the current version of BFQ can handle devices
++performing at most ~30K IOPS; at most ~50 KIOPS on faster CPUs. As a
++reference, 30-50 KIOPS correspond to very high bandwidths with
++sequential I/O (e.g., 8-12 GB/s if I/O requests are 256 KB large), and
++to 120-200 MB/s with 4KB random I/O.
++
++The table of contents follow. Impatients can just jump to Section 3.
++
++CONTENTS
++
++1. When may BFQ be useful?
++ 1-1 Personal systems
++ 1-2 Server systems
++2. How does BFQ work?
++3. What are BFQ's tunable?
++4. BFQ group scheduling
++ 4-1 Service guarantees provided
++ 4-2 Interface
++
++1. When may BFQ be useful?
++==========================
++
++BFQ provides the following benefits on personal and server systems.
++
++1-1 Personal systems
++--------------------
++
++Low latency for interactive applications
++
++Regardless of the actual background workload, BFQ guarantees that, for
++interactive tasks, the storage device is virtually as responsive as if
++it was idle. For example, even if one or more of the following
++background workloads are being executed:
++- one or more large files are being read, written or copied,
++- a tree of source files is being compiled,
++- one or more virtual machines are performing I/O,
++- a software update is in progress,
++- indexing daemons are scanning filesystems and updating their
++ databases,
++starting an application or loading a file from within an application
++takes about the same time as if the storage device was idle. As a
++comparison, with CFQ, NOOP or DEADLINE, and in the same conditions,
++applications experience high latencies, or even become unresponsive
++until the background workload terminates (also on SSDs).
++
++Low latency for soft real-time applications
++
++Also soft real-time applications, such as audio and video
++players/streamers, enjoy a low latency and a low drop rate, regardless
++of the background I/O workload. As a consequence, these applications
++do not suffer from almost any glitch due to the background workload.
++
++Higher speed for code-development tasks
++
++If some additional workload happens to be executed in parallel, then
++BFQ executes the I/O-related components of typical code-development
++tasks (compilation, checkout, merge, ...) much more quickly than CFQ,
++NOOP or DEADLINE.
++
++High throughput
++
++On hard disks, BFQ achieves up to 30% higher throughput than CFQ, and
++up to 150% higher throughput than DEADLINE and NOOP, with all the
++sequential workloads considered in our tests. With random workloads,
++and with all the workloads on flash-based devices, BFQ achieves,
++instead, about the same throughput as the other schedulers.
++
++Strong fairness, bandwidth and delay guarantees
++
++BFQ distributes the device throughput, and not just the device time,
++among I/O-bound applications in proportion their weights, with any
++workload and regardless of the device parameters. From these bandwidth
++guarantees, it is possible to compute tight per-I/O-request delay
++guarantees by a simple formula. If not configured for strict service
++guarantees, BFQ switches to time-based resource sharing (only) for
++applications that would otherwise cause a throughput loss.
++
++1-2 Server systems
++------------------
++
++Most benefits for server systems follow from the same service
++properties as above. In particular, regardless of whether additional,
++possibly heavy workloads are being served, BFQ guarantees:
++
++. audio and video-streaming with zero or very low jitter and drop
++ rate;
++
++. fast retrieval of WEB pages and embedded objects;
++
++. real-time recording of data in live-dumping applications (e.g.,
++ packet logging);
++
++. responsiveness in local and remote access to a server.
++
++
++2. How does BFQ work?
++=====================
++
++BFQ is a proportional-share I/O scheduler, whose general structure,
++plus a lot of code, are borrowed from CFQ.
++
++- Each process doing I/O on a device is associated with a weight and a
++ (bfq_)queue.
++
++- BFQ grants exclusive access to the device, for a while, to one queue
++ (process) at a time, and implements this service model by
++ associating every queue with a budget, measured in number of
++ sectors.
++
++ - After a queue is granted access to the device, the budget of the
++ queue is decremented, on each request dispatch, by the size of the
++ request.
++
++ - The in-service queue is expired, i.e., its service is suspended,
++ only if one of the following events occurs: 1) the queue finishes
++ its budget, 2) the queue empties, 3) a "budget timeout" fires.
++
++ - The budget timeout prevents processes doing random I/O from
++ holding the device for too long and dramatically reducing
++ throughput.
++
++ - Actually, as in CFQ, a queue associated with a process issuing
++ sync requests may not be expired immediately when it empties. In
++ contrast, BFQ may idle the device for a short time interval,
++ giving the process the chance to go on being served if it issues
++ a new request in time. Device idling typically boosts the
++ throughput on rotational devices, if processes do synchronous
++ and sequential I/O. In addition, under BFQ, device idling is
++ also instrumental in guaranteeing the desired throughput
++ fraction to processes issuing sync requests (see the description
++ of the slice_idle tunable in this document, or [1, 2], for more
++ details).
++
++ - With respect to idling for service guarantees, if several
++ processes are competing for the device at the same time, but
++ all processes (and groups, after the following commit) have
++ the same weight, then BFQ guarantees the expected throughput
++ distribution without ever idling the device. Throughput is
++ thus as high as possible in this common scenario.
++
++ - If low-latency mode is enabled (default configuration), BFQ
++ executes some special heuristics to detect interactive and soft
++ real-time applications (e.g., video or audio players/streamers),
++ and to reduce their latency. The most important action taken to
++ achieve this goal is to give to the queues associated with these
++ applications more than their fair share of the device
++ throughput. For brevity, we call just "weight-raising" the whole
++ sets of actions taken by BFQ to privilege these queues. In
++ particular, BFQ provides a milder form of weight-raising for
++ interactive applications, and a stronger form for soft real-time
++ applications.
++
++ - BFQ automatically deactivates idling for queues born in a burst of
++ queue creations. In fact, these queues are usually associated with
++ the processes of applications and services that benefit mostly
++ from a high throughput. Examples are systemd during boot, or git
++ grep.
++
++ - As CFQ, BFQ merges queues performing interleaved I/O, i.e.,
++ performing random I/O that becomes mostly sequential if
++ merged. Differently from CFQ, BFQ achieves this goal with a more
++ reactive mechanism, called Early Queue Merge (EQM). EQM is so
++ responsive in detecting interleaved I/O (cooperating processes),
++ that it enables BFQ to achieve a high throughput, by queue
++ merging, even for queues for which CFQ needs a different
++ mechanism, preemption, to get a high throughput. As such EQM is a
++ unified mechanism to achieve a high throughput with interleaved
++ I/O.
++
++ - Queues are scheduled according to a variant of WF2Q+, named
++ B-WF2Q+, and implemented using an augmented rb-tree to preserve an
++ O(log N) overall complexity. See [2] for more details. B-WF2Q+ is
++ also ready for hierarchical scheduling. However, for a cleaner
++ logical breakdown, the code that enables and completes
++ hierarchical support is provided in the next commit, which focuses
++ exactly on this feature.
++
++ - B-WF2Q+ guarantees a tight deviation with respect to an ideal,
++ perfectly fair, and smooth service. In particular, B-WF2Q+
++ guarantees that each queue receives a fraction of the device
++ throughput proportional to its weight, even if the throughput
++ fluctuates, and regardless of: the device parameters, the current
++ workload and the budgets assigned to the queue.
++
++ - The last, budget-independence, property (although probably
++ counterintuitive in the first place) is definitely beneficial, for
++ the following reasons:
++
++ - First, with any proportional-share scheduler, the maximum
++ deviation with respect to an ideal service is proportional to
++ the maximum budget (slice) assigned to queues. As a consequence,
++ BFQ can keep this deviation tight not only because of the
++ accurate service of B-WF2Q+, but also because BFQ *does not*
++ need to assign a larger budget to a queue to let the queue
++ receive a higher fraction of the device throughput.
++
++ - Second, BFQ is free to choose, for every process (queue), the
++ budget that best fits the needs of the process, or best
++ leverages the I/O pattern of the process. In particular, BFQ
++ updates queue budgets with a simple feedback-loop algorithm that
++ allows a high throughput to be achieved, while still providing
++ tight latency guarantees to time-sensitive applications. When
++ the in-service queue expires, this algorithm computes the next
++ budget of the queue so as to:
++
++ - Let large budgets be eventually assigned to the queues
++ associated with I/O-bound applications performing sequential
++ I/O: in fact, the longer these applications are served once
++ got access to the device, the higher the throughput is.
++
++ - Let small budgets be eventually assigned to the queues
++ associated with time-sensitive applications (which typically
++ perform sporadic and short I/O), because, the smaller the
++ budget assigned to a queue waiting for service is, the sooner
++ B-WF2Q+ will serve that queue (Subsec 3.3 in [2]).
++
++- If several processes are competing for the device at the same time,
++ but all processes and groups have the same weight, then BFQ
++ guarantees the expected throughput distribution without ever idling
++ the device. It uses preemption instead. Throughput is then much
++ higher in this common scenario.
++
++- ioprio classes are served in strict priority order, i.e.,
++ lower-priority queues are not served as long as there are
++ higher-priority queues. Among queues in the same class, the
++ bandwidth is distributed in proportion to the weight of each
++ queue. A very thin extra bandwidth is however guaranteed to
++ the Idle class, to prevent it from starving.
++
++
++3. What are BFQ's tunable?
++==========================
++
++The tunables back_seek-max, back_seek_penalty, fifo_expire_async and
++fifo_expire_sync below are the same as in CFQ. Their description is
++just copied from that for CFQ. Some considerations in the description
++of slice_idle are copied from CFQ too.
++
++per-process ioprio and weight
++-----------------------------
++
++Unless the cgroups interface is used (see "4. BFQ group scheduling"),
++weights can be assigned to processes only indirectly, through I/O
++priorities, and according to the relation:
++weight = (IOPRIO_BE_NR - ioprio) * 10.
++
++Beware that, if low-latency is set, then BFQ automatically raises the
++weight of the queues associated with interactive and soft real-time
++applications. Unset this tunable if you need/want to control weights.
++
++slice_idle
++----------
++
++This parameter specifies how long BFQ should idle for next I/O
++request, when certain sync BFQ queues become empty. By default
++slice_idle is a non-zero value. Idling has a double purpose: boosting
++throughput and making sure that the desired throughput distribution is
++respected (see the description of how BFQ works, and, if needed, the
++papers referred there).
++
++As for throughput, idling can be very helpful on highly seeky media
++like single spindle SATA/SAS disks where we can cut down on overall
++number of seeks and see improved throughput.
++
++Setting slice_idle to 0 will remove all the idling on queues and one
++should see an overall improved throughput on faster storage devices
++like multiple SATA/SAS disks in hardware RAID configuration.
++
++So depending on storage and workload, it might be useful to set
++slice_idle=0. In general for SATA/SAS disks and software RAID of
++SATA/SAS disks keeping slice_idle enabled should be useful. For any
++configurations where there are multiple spindles behind single LUN
++(Host based hardware RAID controller or for storage arrays), setting
++slice_idle=0 might end up in better throughput and acceptable
++latencies.
++
++Idling is however necessary to have service guarantees enforced in
++case of differentiated weights or differentiated I/O-request lengths.
++To see why, suppose that a given BFQ queue A must get several I/O
++requests served for each request served for another queue B. Idling
++ensures that, if A makes a new I/O request slightly after becoming
++empty, then no request of B is dispatched in the middle, and thus A
++does not lose the possibility to get more than one request dispatched
++before the next request of B is dispatched. Note that idling
++guarantees the desired differentiated treatment of queues only in
++terms of I/O-request dispatches. To guarantee that the actual service
++order then corresponds to the dispatch order, the strict_guarantees
++tunable must be set too.
++
++There is an important flipside for idling: apart from the above cases
++where it is beneficial also for throughput, idling can severely impact
++throughput. One important case is random workload. Because of this
++issue, BFQ tends to avoid idling as much as possible, when it is not
++beneficial also for throughput. As a consequence of this behavior, and
++of further issues described for the strict_guarantees tunable,
++short-term service guarantees may be occasionally violated. And, in
++some cases, these guarantees may be more important than guaranteeing
++maximum throughput. For example, in video playing/streaming, a very
++low drop rate may be more important than maximum throughput. In these
++cases, consider setting the strict_guarantees parameter.
++
++strict_guarantees
++-----------------
++
++If this parameter is set (default: unset), then BFQ
++
++- always performs idling when the in-service queue becomes empty;
++
++- forces the device to serve one I/O request at a time, by dispatching a
++ new request only if there is no outstanding request.
++
++In the presence of differentiated weights or I/O-request sizes, both
++the above conditions are needed to guarantee that every BFQ queue
++receives its allotted share of the bandwidth. The first condition is
++needed for the reasons explained in the description of the slice_idle
++tunable. The second condition is needed because all modern storage
++devices reorder internally-queued requests, which may trivially break
++the service guarantees enforced by the I/O scheduler.
++
++Setting strict_guarantees may evidently affect throughput.
++
++back_seek_max
++-------------
++
++This specifies, given in Kbytes, the maximum "distance" for backward seeking.
++The distance is the amount of space from the current head location to the
++sectors that are backward in terms of distance.
++
++This parameter allows the scheduler to anticipate requests in the "backward"
++direction and consider them as being the "next" if they are within this
++distance from the current head location.
++
++back_seek_penalty
++-----------------
++
++This parameter is used to compute the cost of backward seeking. If the
++backward distance of request is just 1/back_seek_penalty from a "front"
++request, then the seeking cost of two requests is considered equivalent.
++
++So scheduler will not bias toward one or the other request (otherwise scheduler
++will bias toward front request). Default value of back_seek_penalty is 2.
++
++fifo_expire_async
++-----------------
++
++This parameter is used to set the timeout of asynchronous requests. Default
++value of this is 248ms.
++
++fifo_expire_sync
++----------------
++
++This parameter is used to set the timeout of synchronous requests. Default
++value of this is 124ms. In case to favor synchronous requests over asynchronous
++one, this value should be decreased relative to fifo_expire_async.
++
++low_latency
++-----------
++
++This parameter is used to enable/disable BFQ's low latency mode. By
++default, low latency mode is enabled. If enabled, interactive and soft
++real-time applications are privileged and experience a lower latency,
++as explained in more detail in the description of how BFQ works.
++
++DO NOT enable this mode if you need full control on bandwidth
++distribution. In fact, if it is enabled, then BFQ automatically
++increases the bandwidth share of privileged applications, as the main
++means to guarantee a lower latency to them.
++
++timeout_sync
++------------
++
++Maximum amount of device time that can be given to a task (queue) once
++it has been selected for service. On devices with costly seeks,
++increasing this time usually increases maximum throughput. On the
++opposite end, increasing this time coarsens the granularity of the
++short-term bandwidth and latency guarantees, especially if the
++following parameter is set to zero.
++
++max_budget
++----------
++
++Maximum amount of service, measured in sectors, that can be provided
++to a BFQ queue once it is set in service (of course within the limits
++of the above timeout). According to what said in the description of
++the algorithm, larger values increase the throughput in proportion to
++the percentage of sequential I/O requests issued. The price of larger
++values is that they coarsen the granularity of short-term bandwidth
++and latency guarantees.
++
++The default value is 0, which enables auto-tuning: BFQ sets max_budget
++to the maximum number of sectors that can be served during
++timeout_sync, according to the estimated peak rate.
++
++weights
++-------
++
++Read-only parameter, used to show the weights of the currently active
++BFQ queues.
++
++
++wr_ tunables
++------------
++
++BFQ exports a few parameters to control/tune the behavior of
++low-latency heuristics.
++
++wr_coeff
++
++Factor by which the weight of a weight-raised queue is multiplied. If
++the queue is deemed soft real-time, then the weight is further
++multiplied by an additional, constant factor.
++
++wr_max_time
++
++Maximum duration of a weight-raising period for an interactive task
++(ms). If set to zero (default value), then this value is computed
++automatically, as a function of the peak rate of the device. In any
++case, when the value of this parameter is read, it always reports the
++current duration, regardless of whether it has been set manually or
++computed automatically.
++
++wr_max_softrt_rate
++
++Maximum service rate below which a queue is deemed to be associated
++with a soft real-time application, and is then weight-raised
++accordingly (sectors/sec).
++
++wr_min_idle_time
++
++Minimum idle period after which interactive weight-raising may be
++reactivated for a queue (in ms).
++
++wr_rt_max_time
++
++Maximum weight-raising duration for soft real-time queues (in ms). The
++start time from which this duration is considered is automatically
++moved forward if the queue is detected to be still soft real-time
++before the current soft real-time weight-raising period finishes.
++
++wr_min_inter_arr_async
++
++Minimum period between I/O request arrivals after which weight-raising
++may be reactivated for an already busy async queue (in ms).
++
++
++4. Group scheduling with BFQ
++============================
++
++BFQ supports both cgroups-v1 and cgroups-v2 io controllers, namely
++blkio and io. In particular, BFQ supports weight-based proportional
++share. To activate cgroups support, set BFQ_GROUP_IOSCHED.
++
++4-1 Service guarantees provided
++-------------------------------
++
++With BFQ, proportional share means true proportional share of the
++device bandwidth, according to group weights. For example, a group
++with weight 200 gets twice the bandwidth, and not just twice the time,
++of a group with weight 100.
++
++BFQ supports hierarchies (group trees) of any depth. Bandwidth is
++distributed among groups and processes in the expected way: for each
++group, the children of the group share the whole bandwidth of the
++group in proportion to their weights. In particular, this implies
++that, for each leaf group, every process of the group receives the
++same share of the whole group bandwidth, unless the ioprio of the
++process is modified.
++
++The resource-sharing guarantee for a group may partially or totally
++switch from bandwidth to time, if providing bandwidth guarantees to
++the group lowers the throughput too much. This switch occurs on a
++per-process basis: if a process of a leaf group causes throughput loss
++if served in such a way to receive its share of the bandwidth, then
++BFQ switches back to just time-based proportional share for that
++process.
++
++4-2 Interface
++-------------
++
++To get proportional sharing of bandwidth with BFQ for a given device,
++BFQ must of course be the active scheduler for that device.
++
++Within each group directory, the names of the files associated with
++BFQ-specific cgroup parameters and stats begin with the "bfq."
++prefix. So, with cgroups-v1 or cgroups-v2, the full prefix for
++BFQ-specific files is "blkio.bfq." or "io.bfq." For example, the group
++parameter to set the weight of a group with BFQ is blkio.bfq.weight
++or io.bfq.weight.
++
++Parameters to set
++-----------------
++
++For each group, there is only the following parameter to set.
++
++weight (namely blkio.bfq.weight or io.bfq-weight): the weight of the
++group inside its parent. Available values: 1..10000 (default 100). The
++linear mapping between ioprio and weights, described at the beginning
++of the tunable section, is still valid, but all weights higher than
++IOPRIO_BE_NR*10 are mapped to ioprio 0.
++
++Recall that, if low-latency is set, then BFQ automatically raises the
++weight of the queues associated with interactive and soft real-time
++applications. Unset this tunable if you need/want to control weights.
++
++
++[1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
++ Scheduler", Proceedings of the First Workshop on Mobile System
++ Technologies (MST-2015), May 2015.
++ http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
++
++[2] P. Valente and M. Andreolini, "Improving Application
++ Responsiveness with the BFQ Disk I/O Scheduler", Proceedings of
++ the 5th Annual International Systems and Storage Conference
++ (SYSTOR '12), June 2012.
++ Slightly extended version:
++ http://algogroup.unimore.it/people/paolo/disk_sched/bfq-v1-suite-
++ results.pdf
+diff --git a/Makefile b/Makefile
+index 4b074a9..4afff93 100644
+--- a/Makefile
++++ b/Makefile
+@@ -1,7 +1,7 @@
+ VERSION = 4
+ PATCHLEVEL = 11
+ SUBLEVEL = 0
+-EXTRAVERSION =
++EXTRAVERSION = -bfq
+ NAME = Fearless Coyote
+
+ # *DOCUMENTATION*
+diff --git a/block/Kconfig.iosched b/block/Kconfig.iosched
+index b1ab0ca..99a4226 100644
+--- a/block/Kconfig.iosched
++++ b/block/Kconfig.iosched
+@@ -43,20 +43,20 @@ config IOSCHED_BFQ
+ tristate "BFQ I/O scheduler"
+ default n
+ ---help---
+- The BFQ I/O scheduler tries to distribute bandwidth among
+- all processes according to their weights.
+- It aims at distributing the bandwidth as desired, independently of
+- the disk parameters and with any workload. It also tries to
+- guarantee low latency to interactive and soft real-time
+- applications. If compiled built-in (saying Y here), BFQ can
+- be configured to support hierarchical scheduling.
++ The BFQ I/O scheduler distributes bandwidth among all
++ processes according to their weights, regardless of the
++ device parameters and with any workload. It also guarantees
++ a low latency to interactive and soft real-time applications.
++ Details in Documentation/block/bfq-iosched.txt
+
+ config BFQ_GROUP_IOSCHED
+ bool "BFQ hierarchical scheduling support"
+- depends on CGROUPS && IOSCHED_BFQ=y
++ depends on IOSCHED_BFQ && BLK_CGROUP
+ default n
+ ---help---
+- Enable hierarchical scheduling in BFQ, using the blkio controller.
++
++ Enable hierarchical scheduling in BFQ, using the blkio
++ (cgroups-v1) or io (cgroups-v2) controller.
+
+ choice
+ prompt "Default I/O scheduler"
+diff --git a/block/bfq-cgroup.c b/block/bfq-cgroup.c
+index 0367996..39daaf4 100644
+--- a/block/bfq-cgroup.c
++++ b/block/bfq-cgroup.c
+@@ -7,7 +7,9 @@
+ * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
+ * Paolo Valente <paolo.valente@unimore.it>
+ *
+- * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
++ * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
++ *
++ * Copyright (C) 2016 Paolo Valente <paolo.valente@linaro.org>
+ *
+ * Licensed under the GPL-2 as detailed in the accompanying COPYING.BFQ
+ * file.
+@@ -163,8 +165,6 @@ static struct bfq_group *blkg_to_bfqg(struct blkcg_gq *blkg)
+ {
+ struct blkg_policy_data *pd = blkg_to_pd(blkg, &blkcg_policy_bfq);
+
+- BUG_ON(!pd);
+-
+ return pd_to_bfqg(pd);
+ }
+
+@@ -208,59 +208,47 @@ static void bfqg_put(struct bfq_group *bfqg)
+
+ static void bfqg_stats_update_io_add(struct bfq_group *bfqg,
+ struct bfq_queue *bfqq,
+- int rw)
++ unsigned int op)
+ {
+- blkg_rwstat_add(&bfqg->stats.queued, rw, 1);
++ blkg_rwstat_add(&bfqg->stats.queued, op, 1);
+ bfqg_stats_end_empty_time(&bfqg->stats);
+ if (!(bfqq == ((struct bfq_data *)bfqg->bfqd)->in_service_queue))
+ bfqg_stats_set_start_group_wait_time(bfqg, bfqq_group(bfqq));
+ }
+
+-static void bfqg_stats_update_io_remove(struct bfq_group *bfqg, int rw)
+-{
+- blkg_rwstat_add(&bfqg->stats.queued, rw, -1);
+-}
+-
+-static void bfqg_stats_update_io_merged(struct bfq_group *bfqg, int rw)
++static void bfqg_stats_update_io_remove(struct bfq_group *bfqg, unsigned int op)
+ {
+- blkg_rwstat_add(&bfqg->stats.merged, rw, 1);
++ blkg_rwstat_add(&bfqg->stats.queued, op, -1);
+ }
+
+-static void bfqg_stats_update_dispatch(struct bfq_group *bfqg,
+- uint64_t bytes, int rw)
++static void bfqg_stats_update_io_merged(struct bfq_group *bfqg, unsigned int op)
+ {
+- blkg_stat_add(&bfqg->stats.sectors, bytes >> 9);
+- blkg_rwstat_add(&bfqg->stats.serviced, rw, 1);
+- blkg_rwstat_add(&bfqg->stats.service_bytes, rw, bytes);
++ blkg_rwstat_add(&bfqg->stats.merged, op, 1);
+ }
+
+ static void bfqg_stats_update_completion(struct bfq_group *bfqg,
+- uint64_t start_time, uint64_t io_start_time, int rw)
++ uint64_t start_time, uint64_t io_start_time,
++ unsigned int op)
+ {
+ struct bfqg_stats *stats = &bfqg->stats;
+ unsigned long long now = sched_clock();
+
+ if (time_after64(now, io_start_time))
+- blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
++ blkg_rwstat_add(&stats->service_time, op,
++ now - io_start_time);
+ if (time_after64(io_start_time, start_time))
+- blkg_rwstat_add(&stats->wait_time, rw,
++ blkg_rwstat_add(&stats->wait_time, op,
+ io_start_time - start_time);
+ }
+
+ /* @stats = 0 */
+ static void bfqg_stats_reset(struct bfqg_stats *stats)
+ {
+- if (!stats)
+- return;
+-
+ /* queued stats shouldn't be cleared */
+- blkg_rwstat_reset(&stats->service_bytes);
+- blkg_rwstat_reset(&stats->serviced);
+ blkg_rwstat_reset(&stats->merged);
+ blkg_rwstat_reset(&stats->service_time);
+ blkg_rwstat_reset(&stats->wait_time);
+ blkg_stat_reset(&stats->time);
+- blkg_stat_reset(&stats->unaccounted_time);
+ blkg_stat_reset(&stats->avg_queue_size_sum);
+ blkg_stat_reset(&stats->avg_queue_size_samples);
+ blkg_stat_reset(&stats->dequeue);
+@@ -270,19 +258,16 @@ static void bfqg_stats_reset(struct bfqg_stats *stats)
+ }
+
+ /* @to += @from */
+-static void bfqg_stats_merge(struct bfqg_stats *to, struct bfqg_stats *from)
++static void bfqg_stats_add_aux(struct bfqg_stats *to, struct bfqg_stats *from)
+ {
+ if (!to || !from)
+ return;
+
+ /* queued stats shouldn't be cleared */
+- blkg_rwstat_add_aux(&to->service_bytes, &from->service_bytes);
+- blkg_rwstat_add_aux(&to->serviced, &from->serviced);
+ blkg_rwstat_add_aux(&to->merged, &from->merged);
+ blkg_rwstat_add_aux(&to->service_time, &from->service_time);
+ blkg_rwstat_add_aux(&to->wait_time, &from->wait_time);
+ blkg_stat_add_aux(&from->time, &from->time);
+- blkg_stat_add_aux(&to->unaccounted_time, &from->unaccounted_time);
+ blkg_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
+ blkg_stat_add_aux(&to->avg_queue_size_samples,
+ &from->avg_queue_size_samples);
+@@ -311,10 +296,8 @@ static void bfqg_stats_xfer_dead(struct bfq_group *bfqg)
+ if (unlikely(!parent))
+ return;
+
+- bfqg_stats_merge(&parent->dead_stats, &bfqg->stats);
+- bfqg_stats_merge(&parent->dead_stats, &bfqg->dead_stats);
++ bfqg_stats_add_aux(&parent->stats, &bfqg->stats);
+ bfqg_stats_reset(&bfqg->stats);
+- bfqg_stats_reset(&bfqg->dead_stats);
+ }
+
+ static void bfq_init_entity(struct bfq_entity *entity,
+@@ -329,21 +312,17 @@ static void bfq_init_entity(struct bfq_entity *entity,
+ bfqq->ioprio_class = bfqq->new_ioprio_class;
+ bfqg_get(bfqg);
+ }
+- entity->parent = bfqg->my_entity;
++ entity->parent = bfqg->my_entity; /* NULL for root group */
+ entity->sched_data = &bfqg->sched_data;
+ }
+
+ static void bfqg_stats_exit(struct bfqg_stats *stats)
+ {
+- blkg_rwstat_exit(&stats->service_bytes);
+- blkg_rwstat_exit(&stats->serviced);
+ blkg_rwstat_exit(&stats->merged);
+ blkg_rwstat_exit(&stats->service_time);
+ blkg_rwstat_exit(&stats->wait_time);
+ blkg_rwstat_exit(&stats->queued);
+- blkg_stat_exit(&stats->sectors);
+ blkg_stat_exit(&stats->time);
+- blkg_stat_exit(&stats->unaccounted_time);
+ blkg_stat_exit(&stats->avg_queue_size_sum);
+ blkg_stat_exit(&stats->avg_queue_size_samples);
+ blkg_stat_exit(&stats->dequeue);
+@@ -354,15 +333,11 @@ static void bfqg_stats_exit(struct bfqg_stats *stats)
+
+ static int bfqg_stats_init(struct bfqg_stats *stats, gfp_t gfp)
+ {
+- if (blkg_rwstat_init(&stats->service_bytes, gfp) ||
+- blkg_rwstat_init(&stats->serviced, gfp) ||
+- blkg_rwstat_init(&stats->merged, gfp) ||
++ if (blkg_rwstat_init(&stats->merged, gfp) ||
+ blkg_rwstat_init(&stats->service_time, gfp) ||
+ blkg_rwstat_init(&stats->wait_time, gfp) ||
+ blkg_rwstat_init(&stats->queued, gfp) ||
+- blkg_stat_init(&stats->sectors, gfp) ||
+ blkg_stat_init(&stats->time, gfp) ||
+- blkg_stat_init(&stats->unaccounted_time, gfp) ||
+ blkg_stat_init(&stats->avg_queue_size_sum, gfp) ||
+ blkg_stat_init(&stats->avg_queue_size_samples, gfp) ||
+ blkg_stat_init(&stats->dequeue, gfp) ||
+@@ -386,11 +361,27 @@ static struct bfq_group_data *blkcg_to_bfqgd(struct blkcg *blkcg)
+ return cpd_to_bfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_bfq));
+ }
+
++static struct blkcg_policy_data *bfq_cpd_alloc(gfp_t gfp)
++{
++ struct bfq_group_data *bgd;
++
++ bgd = kzalloc(sizeof(*bgd), gfp);
++ if (!bgd)
++ return NULL;
++ return &bgd->pd;
++}
++
+ static void bfq_cpd_init(struct blkcg_policy_data *cpd)
+ {
+ struct bfq_group_data *d = cpd_to_bfqgd(cpd);
+
+- d->weight = BFQ_DEFAULT_GRP_WEIGHT;
++ d->weight = cgroup_subsys_on_dfl(io_cgrp_subsys) ?
++ CGROUP_WEIGHT_DFL : BFQ_WEIGHT_LEGACY_DFL;
++}
++
++static void bfq_cpd_free(struct blkcg_policy_data *cpd)
++{
++ kfree(cpd_to_bfqgd(cpd));
+ }
+
+ static struct blkg_policy_data *bfq_pd_alloc(gfp_t gfp, int node)
+@@ -401,8 +392,7 @@ static struct blkg_policy_data *bfq_pd_alloc(gfp_t gfp, int node)
+ if (!bfqg)
+ return NULL;
+
+- if (bfqg_stats_init(&bfqg->stats, gfp) ||
+- bfqg_stats_init(&bfqg->dead_stats, gfp)) {
++ if (bfqg_stats_init(&bfqg->stats, gfp)) {
+ kfree(bfqg);
+ return NULL;
+ }
+@@ -410,27 +400,20 @@ static struct blkg_policy_data *bfq_pd_alloc(gfp_t gfp, int node)
+ return &bfqg->pd;
+ }
+
+-static void bfq_group_set_parent(struct bfq_group *bfqg,
+- struct bfq_group *parent)
++static void bfq_pd_init(struct blkg_policy_data *pd)
+ {
++ struct blkcg_gq *blkg;
++ struct bfq_group *bfqg;
++ struct bfq_data *bfqd;
+ struct bfq_entity *entity;
++ struct bfq_group_data *d;
+
+- BUG_ON(!parent);
+- BUG_ON(!bfqg);
+- BUG_ON(bfqg == parent);
+-
++ blkg = pd_to_blkg(pd);
++ BUG_ON(!blkg);
++ bfqg = blkg_to_bfqg(blkg);
++ bfqd = blkg->q->elevator->elevator_data;
+ entity = &bfqg->entity;
+- entity->parent = parent->my_entity;
+- entity->sched_data = &parent->sched_data;
+-}
+-
+-static void bfq_pd_init(struct blkg_policy_data *pd)
+-{
+- struct blkcg_gq *blkg = pd_to_blkg(pd);
+- struct bfq_group *bfqg = blkg_to_bfqg(blkg);
+- struct bfq_data *bfqd = blkg->q->elevator->elevator_data;
+- struct bfq_entity *entity = &bfqg->entity;
+- struct bfq_group_data *d = blkcg_to_bfqgd(blkg->blkcg);
++ d = blkcg_to_bfqgd(blkg->blkcg);
+
+ entity->orig_weight = entity->weight = entity->new_weight = d->weight;
+ entity->my_sched_data = &bfqg->sched_data;
+@@ -448,70 +431,53 @@ static void bfq_pd_free(struct blkg_policy_data *pd)
+ struct bfq_group *bfqg = pd_to_bfqg(pd);
+
+ bfqg_stats_exit(&bfqg->stats);
+- bfqg_stats_exit(&bfqg->dead_stats);
+-
+ return kfree(bfqg);
+ }
+
+-/* offset delta from bfqg->stats to bfqg->dead_stats */
+-static const int dead_stats_off_delta = offsetof(struct bfq_group, dead_stats) -
+- offsetof(struct bfq_group, stats);
+-
+-/* to be used by recursive prfill, sums live and dead stats recursively */
+-static u64 bfqg_stat_pd_recursive_sum(struct blkg_policy_data *pd, int off)
++static void bfq_pd_reset_stats(struct blkg_policy_data *pd)
+ {
+- u64 sum = 0;
++ struct bfq_group *bfqg = pd_to_bfqg(pd);
+
+- sum += blkg_stat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_bfq, off);
+- sum += blkg_stat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_bfq,
+- off + dead_stats_off_delta);
+- return sum;
++ bfqg_stats_reset(&bfqg->stats);
+ }
+
+-/* to be used by recursive prfill, sums live and dead rwstats recursively */
+-static struct blkg_rwstat
+-bfqg_rwstat_pd_recursive_sum(struct blkg_policy_data *pd, int off)
++static void bfq_group_set_parent(struct bfq_group *bfqg,
++ struct bfq_group *parent)
+ {
+- struct blkg_rwstat a, b;
++ struct bfq_entity *entity;
+
+- a = blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_bfq, off);
+- b = blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_bfq,
+- off + dead_stats_off_delta);
+- blkg_rwstat_add_aux(&a, &b);
+- return a;
++ BUG_ON(!parent);
++ BUG_ON(!bfqg);
++ BUG_ON(bfqg == parent);
++
++ entity = &bfqg->entity;
++ entity->parent = parent->my_entity;
++ entity->sched_data = &parent->sched_data;
+ }
+
+-static void bfq_pd_reset_stats(struct blkg_policy_data *pd)
++static struct bfq_group *bfq_lookup_bfqg(struct bfq_data *bfqd,
++ struct blkcg *blkcg)
+ {
+- struct bfq_group *bfqg = pd_to_bfqg(pd);
++ struct blkcg_gq *blkg;
+
+- bfqg_stats_reset(&bfqg->stats);
+- bfqg_stats_reset(&bfqg->dead_stats);
++ blkg = blkg_lookup(blkcg, bfqd->queue);
++ if (likely(blkg))
++ return blkg_to_bfqg(blkg);
++ return NULL;
+ }
+
+-static struct bfq_group *bfq_find_alloc_group(struct bfq_data *bfqd,
+- struct blkcg *blkcg)
++static struct bfq_group *bfq_find_set_group(struct bfq_data *bfqd,
++ struct blkcg *blkcg)
+ {
+- struct request_queue *q = bfqd->queue;
+- struct bfq_group *bfqg = NULL, *parent;
+- struct bfq_entity *entity = NULL;
++ struct bfq_group *bfqg, *parent;
++ struct bfq_entity *entity;
+
+ assert_spin_locked(bfqd->queue->queue_lock);
+
+- /* avoid lookup for the common case where there's no blkcg */
+- if (blkcg == &blkcg_root) {
+- bfqg = bfqd->root_group;
+- } else {
+- struct blkcg_gq *blkg;
+-
+- blkg = blkg_lookup_create(blkcg, q);
+- if (!IS_ERR(blkg))
+- bfqg = blkg_to_bfqg(blkg);
+- else /* fallback to root_group */
+- bfqg = bfqd->root_group;
+- }
++ bfqg = bfq_lookup_bfqg(bfqd, blkcg);
+
+- BUG_ON(!bfqg);
++ if (unlikely(!bfqg))
++ return NULL;
+
+ /*
+ * Update chain of bfq_groups as we might be handling a leaf group
+@@ -537,11 +503,15 @@ static struct bfq_group *bfq_find_alloc_group(struct bfq_data *bfqd,
+ static void bfq_pos_tree_add_move(struct bfq_data *bfqd,
+ struct bfq_queue *bfqq);
+
++static void bfq_bfqq_expire(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq,
++ bool compensate,
++ enum bfqq_expiration reason);
++
+ /**
+ * bfq_bfqq_move - migrate @bfqq to @bfqg.
+ * @bfqd: queue descriptor.
+ * @bfqq: the queue to move.
+- * @entity: @bfqq's entity.
+ * @bfqg: the group to move to.
+ *
+ * Move @bfqq to @bfqg, deactivating it from its old group and reactivating
+@@ -552,26 +522,40 @@ static void bfq_pos_tree_add_move(struct bfq_data *bfqd,
+ * rcu_read_lock()).
+ */
+ static void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+- struct bfq_entity *entity, struct bfq_group *bfqg)
++ struct bfq_group *bfqg)
+ {
+- int busy, resume;
+-
+- busy = bfq_bfqq_busy(bfqq);
+- resume = !RB_EMPTY_ROOT(&bfqq->sort_list);
++ struct bfq_entity *entity = &bfqq->entity;
+
+- BUG_ON(resume && !entity->on_st);
+- BUG_ON(busy && !resume && entity->on_st &&
++ BUG_ON(!bfq_bfqq_busy(bfqq) && !RB_EMPTY_ROOT(&bfqq->sort_list));
++ BUG_ON(!RB_EMPTY_ROOT(&bfqq->sort_list) && !entity->on_st);
++ BUG_ON(bfq_bfqq_busy(bfqq) && RB_EMPTY_ROOT(&bfqq->sort_list)
++ && entity->on_st &&
+ bfqq != bfqd->in_service_queue);
++ BUG_ON(!bfq_bfqq_busy(bfqq) && bfqq == bfqd->in_service_queue);
++
++ /* If bfqq is empty, then bfq_bfqq_expire also invokes
++ * bfq_del_bfqq_busy, thereby removing bfqq and its entity
++ * from data structures related to current group. Otherwise we
++ * need to remove bfqq explicitly with bfq_deactivate_bfqq, as
++ * we do below.
++ */
++ if (bfqq == bfqd->in_service_queue)
++ bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
++ false, BFQ_BFQQ_PREEMPTED);
++
++ BUG_ON(entity->on_st && !bfq_bfqq_busy(bfqq)
++ && &bfq_entity_service_tree(entity)->idle !=
++ entity->tree);
+
+- if (busy) {
+- BUG_ON(atomic_read(&bfqq->ref) < 2);
++ BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_busy(bfqq));
+
+- if (!resume)
+- bfq_del_bfqq_busy(bfqd, bfqq, 0);
+- else
+- bfq_deactivate_bfqq(bfqd, bfqq, 0);
+- } else if (entity->on_st)
++ if (bfq_bfqq_busy(bfqq))
++ bfq_deactivate_bfqq(bfqd, bfqq, false, false);
++ else if (entity->on_st) {
++ BUG_ON(&bfq_entity_service_tree(entity)->idle !=
++ entity->tree);
+ bfq_put_idle_entity(bfq_entity_service_tree(entity), entity);
++ }
+ bfqg_put(bfqq_group(bfqq));
+
+ /*
+@@ -583,14 +567,17 @@ static void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ entity->sched_data = &bfqg->sched_data;
+ bfqg_get(bfqg);
+
+- if (busy) {
++ BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_busy(bfqq));
++ if (bfq_bfqq_busy(bfqq)) {
+ bfq_pos_tree_add_move(bfqd, bfqq);
+- if (resume)
+- bfq_activate_bfqq(bfqd, bfqq);
++ bfq_activate_bfqq(bfqd, bfqq);
+ }
+
+ if (!bfqd->in_service_queue && !bfqd->rq_in_driver)
+ bfq_schedule_dispatch(bfqd);
++ BUG_ON(entity->on_st && !bfq_bfqq_busy(bfqq)
++ && &bfq_entity_service_tree(entity)->idle !=
++ entity->tree);
+ }
+
+ /**
+@@ -617,7 +604,11 @@ static struct bfq_group *__bfq_bic_change_cgroup(struct bfq_data *bfqd,
+
+ lockdep_assert_held(bfqd->queue->queue_lock);
+
+- bfqg = bfq_find_alloc_group(bfqd, blkcg);
++ bfqg = bfq_find_set_group(bfqd, blkcg);
++
++ if (unlikely(!bfqg))
++ bfqg = bfqd->root_group;
++
+ if (async_bfqq) {
+ entity = &async_bfqq->entity;
+
+@@ -625,7 +616,8 @@ static struct bfq_group *__bfq_bic_change_cgroup(struct bfq_data *bfqd,
+ bic_set_bfqq(bic, NULL, 0);
+ bfq_log_bfqq(bfqd, async_bfqq,
+ "bic_change_group: %p %d",
+- async_bfqq, atomic_read(&async_bfqq->ref));
++ async_bfqq,
++ async_bfqq->ref);
+ bfq_put_queue(async_bfqq);
+ }
+ }
+@@ -633,7 +625,7 @@ static struct bfq_group *__bfq_bic_change_cgroup(struct bfq_data *bfqd,
+ if (sync_bfqq) {
+ entity = &sync_bfqq->entity;
+ if (entity->sched_data != &bfqg->sched_data)
+- bfq_bfqq_move(bfqd, sync_bfqq, entity, bfqg);
++ bfq_bfqq_move(bfqd, sync_bfqq, bfqg);
+ }
+
+ return bfqg;
+@@ -642,25 +634,23 @@ static struct bfq_group *__bfq_bic_change_cgroup(struct bfq_data *bfqd,
+ static void bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio)
+ {
+ struct bfq_data *bfqd = bic_to_bfqd(bic);
+- struct blkcg *blkcg;
+ struct bfq_group *bfqg = NULL;
+- uint64_t id;
++ uint64_t serial_nr;
+
+ rcu_read_lock();
+- blkcg = bio_blkcg(bio);
+- id = blkcg->css.serial_nr;
+- rcu_read_unlock();
++ serial_nr = bio_blkcg(bio)->css.serial_nr;
+
+ /*
+ * Check whether blkcg has changed. The condition may trigger
+ * spuriously on a newly created cic but there's no harm.
+ */
+- if (unlikely(!bfqd) || likely(bic->blkcg_id == id))
+- return;
++ if (unlikely(!bfqd) || likely(bic->blkcg_serial_nr == serial_nr))
++ goto out;
+
+- bfqg = __bfq_bic_change_cgroup(bfqd, bic, blkcg);
+- BUG_ON(!bfqg);
+- bic->blkcg_id = id;
++ bfqg = __bfq_bic_change_cgroup(bfqd, bic, bio_blkcg(bio));
++ bic->blkcg_serial_nr = serial_nr;
++out:
++ rcu_read_unlock();
+ }
+
+ /**
+@@ -672,7 +662,7 @@ static void bfq_flush_idle_tree(struct bfq_service_tree *st)
+ struct bfq_entity *entity = st->first_idle;
+
+ for (; entity ; entity = st->first_idle)
+- __bfq_deactivate_entity(entity, 0);
++ __bfq_deactivate_entity(entity, false);
+ }
+
+ /**
+@@ -686,7 +676,7 @@ static void bfq_reparent_leaf_entity(struct bfq_data *bfqd,
+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
+
+ BUG_ON(!bfqq);
+- bfq_bfqq_move(bfqd, bfqq, entity, bfqd->root_group);
++ bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
+ }
+
+ /**
+@@ -717,11 +707,12 @@ static void bfq_reparent_active_entities(struct bfq_data *bfqd,
+ }
+
+ /**
+- * bfq_destroy_group - destroy @bfqg.
+- * @bfqg: the group being destroyed.
++ * bfq_pd_offline - deactivate the entity associated with @pd,
++ * and reparent its children entities.
++ * @pd: descriptor of the policy going offline.
+ *
+- * Destroy @bfqg, making sure that it is not referenced from its parent.
+- * blkio already grabs the queue_lock for us, so no need to use RCU-based magic
++ * blkio already grabs the queue_lock for us, so no need to use
++ * RCU-based magic
+ */
+ static void bfq_pd_offline(struct blkg_policy_data *pd)
+ {
+@@ -776,10 +767,15 @@ static void bfq_pd_offline(struct blkg_policy_data *pd)
+ BUG_ON(bfqg->sched_data.next_in_service);
+ BUG_ON(bfqg->sched_data.in_service_entity);
+
+- __bfq_deactivate_entity(entity, 0);
++ __bfq_deactivate_entity(entity, false);
+ bfq_put_async_queues(bfqd, bfqg);
+- BUG_ON(entity->tree);
+
++ /*
++ * @blkg is going offline and will be ignored by
++ * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
++ * that they don't get lost. If IOs complete after this point, the
++ * stats for them will be lost. Oh well...
++ */
+ bfqg_stats_xfer_dead(bfqg);
+ }
+
+@@ -789,46 +785,35 @@ static void bfq_end_wr_async(struct bfq_data *bfqd)
+
+ list_for_each_entry(blkg, &bfqd->queue->blkg_list, q_node) {
+ struct bfq_group *bfqg = blkg_to_bfqg(blkg);
++ BUG_ON(!bfqg);
+
+ bfq_end_wr_async_queues(bfqd, bfqg);
+ }
+ bfq_end_wr_async_queues(bfqd, bfqd->root_group);
+ }
+
+-static u64 bfqio_cgroup_weight_read(struct cgroup_subsys_state *css,
+- struct cftype *cftype)
+-{
+- struct blkcg *blkcg = css_to_blkcg(css);
+- struct bfq_group_data *bfqgd = blkcg_to_bfqgd(blkcg);
+- int ret = -EINVAL;
+-
+- spin_lock_irq(&blkcg->lock);
+- ret = bfqgd->weight;
+- spin_unlock_irq(&blkcg->lock);
+-
+- return ret;
+-}
+-
+-static int bfqio_cgroup_weight_read_dfl(struct seq_file *sf, void *v)
++static int bfq_io_show_weight(struct seq_file *sf, void *v)
+ {
+ struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
+ struct bfq_group_data *bfqgd = blkcg_to_bfqgd(blkcg);
++ unsigned int val = 0;
+
+- spin_lock_irq(&blkcg->lock);
+- seq_printf(sf, "%u\n", bfqgd->weight);
+- spin_unlock_irq(&blkcg->lock);
++ if (bfqgd)
++ val = bfqgd->weight;
++
++ seq_printf(sf, "%u\n", val);
+
+ return 0;
+ }
+
+-static int bfqio_cgroup_weight_write(struct cgroup_subsys_state *css,
+- struct cftype *cftype,
+- u64 val)
++static int bfq_io_set_weight_legacy(struct cgroup_subsys_state *css,
++ struct cftype *cftype,
++ u64 val)
+ {
+ struct blkcg *blkcg = css_to_blkcg(css);
+ struct bfq_group_data *bfqgd = blkcg_to_bfqgd(blkcg);
+ struct blkcg_gq *blkg;
+- int ret = -EINVAL;
++ int ret = -ERANGE;
+
+ if (val < BFQ_MIN_WEIGHT || val > BFQ_MAX_WEIGHT)
+ return ret;
+@@ -873,13 +858,18 @@ static int bfqio_cgroup_weight_write(struct cgroup_subsys_state *css,
+ return ret;
+ }
+
+-static ssize_t bfqio_cgroup_weight_write_dfl(struct kernfs_open_file *of,
+- char *buf, size_t nbytes,
+- loff_t off)
++static ssize_t bfq_io_set_weight(struct kernfs_open_file *of,
++ char *buf, size_t nbytes,
++ loff_t off)
+ {
++ u64 weight;
+ /* First unsigned long found in the file is used */
+- return bfqio_cgroup_weight_write(of_css(of), NULL,
+- simple_strtoull(strim(buf), NULL, 0));
++ int ret = kstrtoull(strim(buf), 0, &weight);
++
++ if (ret)
++ return ret;
++
++ return bfq_io_set_weight_legacy(of_css(of), NULL, weight);
+ }
+
+ static int bfqg_print_stat(struct seq_file *sf, void *v)
+@@ -899,16 +889,17 @@ static int bfqg_print_rwstat(struct seq_file *sf, void *v)
+ static u64 bfqg_prfill_stat_recursive(struct seq_file *sf,
+ struct blkg_policy_data *pd, int off)
+ {
+- u64 sum = bfqg_stat_pd_recursive_sum(pd, off);
+-
++ u64 sum = blkg_stat_recursive_sum(pd_to_blkg(pd),
++ &blkcg_policy_bfq, off);
+ return __blkg_prfill_u64(sf, pd, sum);
+ }
+
+ static u64 bfqg_prfill_rwstat_recursive(struct seq_file *sf,
+ struct blkg_policy_data *pd, int off)
+ {
+- struct blkg_rwstat sum = bfqg_rwstat_pd_recursive_sum(pd, off);
+-
++ struct blkg_rwstat sum = blkg_rwstat_recursive_sum(pd_to_blkg(pd),
++ &blkcg_policy_bfq,
++ off);
+ return __blkg_prfill_rwstat(sf, pd, &sum);
+ }
+
+@@ -928,6 +919,41 @@ static int bfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
+ return 0;
+ }
+
++static u64 bfqg_prfill_sectors(struct seq_file *sf, struct blkg_policy_data *pd,
++ int off)
++{
++ u64 sum = blkg_rwstat_total(&pd->blkg->stat_bytes);
++
++ return __blkg_prfill_u64(sf, pd, sum >> 9);
++}
++
++static int bfqg_print_stat_sectors(struct seq_file *sf, void *v)
++{
++ blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
++ bfqg_prfill_sectors, &blkcg_policy_bfq, 0, false);
++ return 0;
++}
++
++static u64 bfqg_prfill_sectors_recursive(struct seq_file *sf,
++ struct blkg_policy_data *pd, int off)
++{
++ struct blkg_rwstat tmp = blkg_rwstat_recursive_sum(pd->blkg, NULL,
++ offsetof(struct blkcg_gq, stat_bytes));
++ u64 sum = atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_READ]) +
++ atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_WRITE]);
++
++ return __blkg_prfill_u64(sf, pd, sum >> 9);
++}
++
++static int bfqg_print_stat_sectors_recursive(struct seq_file *sf, void *v)
++{
++ blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
++ bfqg_prfill_sectors_recursive, &blkcg_policy_bfq, 0,
++ false);
++ return 0;
++}
++
++
+ static u64 bfqg_prfill_avg_queue_size(struct seq_file *sf,
+ struct blkg_policy_data *pd, int off)
+ {
+@@ -964,38 +990,15 @@ bfq_create_group_hierarchy(struct bfq_data *bfqd, int node)
+ return blkg_to_bfqg(bfqd->queue->root_blkg);
+ }
+
+-static struct blkcg_policy_data *bfq_cpd_alloc(gfp_t gfp)
+-{
+- struct bfq_group_data *bgd;
+-
+- bgd = kzalloc(sizeof(*bgd), GFP_KERNEL);
+- if (!bgd)
+- return NULL;
+- return &bgd->pd;
+-}
+-
+-static void bfq_cpd_free(struct blkcg_policy_data *cpd)
+-{
+- kfree(cpd_to_bfqgd(cpd));
+-}
+-
+-static struct cftype bfqio_files_dfl[] = {
++static struct cftype bfq_blkcg_legacy_files[] = {
+ {
+- .name = "weight",
++ .name = "bfq.weight",
+ .flags = CFTYPE_NOT_ON_ROOT,
+- .seq_show = bfqio_cgroup_weight_read_dfl,
+- .write = bfqio_cgroup_weight_write_dfl,
++ .seq_show = bfq_io_show_weight,
++ .write_u64 = bfq_io_set_weight_legacy,
+ },
+- {} /* terminate */
+-};
+
+-static struct cftype bfqio_files[] = {
+- {
+- .name = "bfq.weight",
+- .read_u64 = bfqio_cgroup_weight_read,
+- .write_u64 = bfqio_cgroup_weight_write,
+- },
+- /* statistics, cover only the tasks in the bfqg */
++ /* statistics, covers only the tasks in the bfqg */
+ {
+ .name = "bfq.time",
+ .private = offsetof(struct bfq_group, stats.time),
+@@ -1003,18 +1006,17 @@ static struct cftype bfqio_files[] = {
+ },
+ {
+ .name = "bfq.sectors",
+- .private = offsetof(struct bfq_group, stats.sectors),
+- .seq_show = bfqg_print_stat,
++ .seq_show = bfqg_print_stat_sectors,
+ },
+ {
+ .name = "bfq.io_service_bytes",
+- .private = offsetof(struct bfq_group, stats.service_bytes),
+- .seq_show = bfqg_print_rwstat,
++ .private = (unsigned long)&blkcg_policy_bfq,
++ .seq_show = blkg_print_stat_bytes,
+ },
+ {
+ .name = "bfq.io_serviced",
+- .private = offsetof(struct bfq_group, stats.serviced),
+- .seq_show = bfqg_print_rwstat,
++ .private = (unsigned long)&blkcg_policy_bfq,
++ .seq_show = blkg_print_stat_ios,
+ },
+ {
+ .name = "bfq.io_service_time",
+@@ -1045,18 +1047,17 @@ static struct cftype bfqio_files[] = {
+ },
+ {
+ .name = "bfq.sectors_recursive",
+- .private = offsetof(struct bfq_group, stats.sectors),
+- .seq_show = bfqg_print_stat_recursive,
++ .seq_show = bfqg_print_stat_sectors_recursive,
+ },
+ {
+ .name = "bfq.io_service_bytes_recursive",
+- .private = offsetof(struct bfq_group, stats.service_bytes),
+- .seq_show = bfqg_print_rwstat_recursive,
++ .private = (unsigned long)&blkcg_policy_bfq,
++ .seq_show = blkg_print_stat_bytes_recursive,
+ },
+ {
+ .name = "bfq.io_serviced_recursive",
+- .private = offsetof(struct bfq_group, stats.serviced),
+- .seq_show = bfqg_print_rwstat_recursive,
++ .private = (unsigned long)&blkcg_policy_bfq,
++ .seq_show = blkg_print_stat_ios_recursive,
+ },
+ {
+ .name = "bfq.io_service_time_recursive",
+@@ -1102,31 +1103,42 @@ static struct cftype bfqio_files[] = {
+ .private = offsetof(struct bfq_group, stats.dequeue),
+ .seq_show = bfqg_print_stat,
+ },
+- {
+- .name = "bfq.unaccounted_time",
+- .private = offsetof(struct bfq_group, stats.unaccounted_time),
+- .seq_show = bfqg_print_stat,
+- },
+ { } /* terminate */
+ };
+
+-static struct blkcg_policy blkcg_policy_bfq = {
+- .dfl_cftypes = bfqio_files_dfl,
+- .legacy_cftypes = bfqio_files,
+-
+- .pd_alloc_fn = bfq_pd_alloc,
+- .pd_init_fn = bfq_pd_init,
+- .pd_offline_fn = bfq_pd_offline,
+- .pd_free_fn = bfq_pd_free,
+- .pd_reset_stats_fn = bfq_pd_reset_stats,
+-
+- .cpd_alloc_fn = bfq_cpd_alloc,
+- .cpd_init_fn = bfq_cpd_init,
+- .cpd_bind_fn = bfq_cpd_init,
+- .cpd_free_fn = bfq_cpd_free,
++static struct cftype bfq_blkg_files[] = {
++ {
++ .name = "bfq.weight",
++ .flags = CFTYPE_NOT_ON_ROOT,
++ .seq_show = bfq_io_show_weight,
++ .write = bfq_io_set_weight,
++ },
++ {} /* terminate */
+ };
+
+-#else
++#else /* CONFIG_BFQ_GROUP_IOSCHED */
++
++static inline void bfqg_stats_update_io_add(struct bfq_group *bfqg,
++ struct bfq_queue *bfqq, unsigned int op) { }
++static inline void
++bfqg_stats_update_io_remove(struct bfq_group *bfqg, unsigned int op) { }
++static inline void
++bfqg_stats_update_io_merged(struct bfq_group *bfqg, unsigned int op) { }
++static inline void bfqg_stats_update_completion(struct bfq_group *bfqg,
++ uint64_t start_time, uint64_t io_start_time,
++ unsigned int op) { }
++static inline void
++bfqg_stats_set_start_group_wait_time(struct bfq_group *bfqg,
++ struct bfq_group *curr_bfqg) { }
++static inline void bfqg_stats_end_empty_time(struct bfqg_stats *stats) { }
++static inline void bfqg_stats_update_dequeue(struct bfq_group *bfqg) { }
++static inline void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg) { }
++static inline void bfqg_stats_update_idle_time(struct bfq_group *bfqg) { }
++static inline void bfqg_stats_set_start_idle_time(struct bfq_group *bfqg) { }
++static inline void bfqg_stats_update_avg_queue_size(struct bfq_group *bfqg) { }
++
++static void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++ struct bfq_group *bfqg) {}
+
+ static void bfq_init_entity(struct bfq_entity *entity,
+ struct bfq_group *bfqg)
+@@ -1142,35 +1154,22 @@ static void bfq_init_entity(struct bfq_entity *entity,
+ entity->sched_data = &bfqg->sched_data;
+ }
+
+-static struct bfq_group *
+-bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio)
+-{
+- struct bfq_data *bfqd = bic_to_bfqd(bic);
+-
+- return bfqd->root_group;
+-}
+-
+-static void bfq_bfqq_move(struct bfq_data *bfqd,
+- struct bfq_queue *bfqq,
+- struct bfq_entity *entity,
+- struct bfq_group *bfqg)
+-{
+-}
++static void bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio) {}
+
+ static void bfq_end_wr_async(struct bfq_data *bfqd)
+ {
+ bfq_end_wr_async_queues(bfqd, bfqd->root_group);
+ }
+
+-static void bfq_disconnect_groups(struct bfq_data *bfqd)
++static struct bfq_group *bfq_find_set_group(struct bfq_data *bfqd,
++ struct blkcg *blkcg)
+ {
+- bfq_put_async_queues(bfqd, bfqd->root_group);
++ return bfqd->root_group;
+ }
+
+-static struct bfq_group *bfq_find_alloc_group(struct bfq_data *bfqd,
+- struct blkcg *blkcg)
++static struct bfq_group *bfqq_group(struct bfq_queue *bfqq)
+ {
+- return bfqd->root_group;
++ return bfqq->bfqd->root_group;
+ }
+
+ static struct bfq_group *
+diff --git a/block/bfq-iosched.c b/block/bfq-iosched.c
+index cf3e9b1..a56888e 100644
+--- a/block/bfq-iosched.c
++++ b/block/bfq-iosched.c
+@@ -1,5 +1,5 @@
+ /*
+- * Budget Fair Queueing (BFQ) disk scheduler.
++ * Budget Fair Queueing (BFQ) I/O scheduler.
+ *
+ * Based on ideas and code from CFQ:
+ * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
+@@ -7,25 +7,34 @@
+ * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
+ * Paolo Valente <paolo.valente@unimore.it>
+ *
+- * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
++ * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
++ *
++ * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
+ *
+ * Licensed under the GPL-2 as detailed in the accompanying COPYING.BFQ
+ * file.
+ *
+- * BFQ is a proportional-share storage-I/O scheduling algorithm based on
+- * the slice-by-slice service scheme of CFQ. But BFQ assigns budgets,
+- * measured in number of sectors, to processes instead of time slices. The
+- * device is not granted to the in-service process for a given time slice,
+- * but until it has exhausted its assigned budget. This change from the time
+- * to the service domain allows BFQ to distribute the device throughput
+- * among processes as desired, without any distortion due to ZBR, workload
+- * fluctuations or other factors. BFQ uses an ad hoc internal scheduler,
+- * called B-WF2Q+, to schedule processes according to their budgets. More
+- * precisely, BFQ schedules queues associated to processes. Thanks to the
+- * accurate policy of B-WF2Q+, BFQ can afford to assign high budgets to
+- * I/O-bound processes issuing sequential requests (to boost the
+- * throughput), and yet guarantee a low latency to interactive and soft
+- * real-time applications.
++ * BFQ is a proportional-share I/O scheduler, with some extra
++ * low-latency capabilities. BFQ also supports full hierarchical
++ * scheduling through cgroups. Next paragraphs provide an introduction
++ * on BFQ inner workings. Details on BFQ benefits and usage can be
++ * found in Documentation/block/bfq-iosched.txt.
++ *
++ * BFQ is a proportional-share storage-I/O scheduling algorithm based
++ * on the slice-by-slice service scheme of CFQ. But BFQ assigns
++ * budgets, measured in number of sectors, to processes instead of
++ * time slices. The device is not granted to the in-service process
++ * for a given time slice, but until it has exhausted its assigned
++ * budget. This change from the time to the service domain enables BFQ
++ * to distribute the device throughput among processes as desired,
++ * without any distortion due to throughput fluctuations, or to device
++ * internal queueing. BFQ uses an ad hoc internal scheduler, called
++ * B-WF2Q+, to schedule processes according to their budgets. More
++ * precisely, BFQ schedules queues associated with processes. Thanks to
++ * the accurate policy of B-WF2Q+, BFQ can afford to assign high
++ * budgets to I/O-bound processes issuing sequential requests (to
++ * boost the throughput), and yet guarantee a low latency to
++ * interactive and soft real-time applications.
+ *
+ * BFQ is described in [1], where also a reference to the initial, more
+ * theoretical paper on BFQ can be found. The interested reader can find
+@@ -40,10 +49,10 @@
+ * H-WF2Q+, while the augmented tree used to implement B-WF2Q+ with O(log N)
+ * complexity derives from the one introduced with EEVDF in [3].
+ *
+- * [1] P. Valente and M. Andreolini, ``Improving Application Responsiveness
+- * with the BFQ Disk I/O Scheduler'',
+- * Proceedings of the 5th Annual International Systems and Storage
+- * Conference (SYSTOR '12), June 2012.
++ * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
++ * Scheduler", Proceedings of the First Workshop on Mobile System
++ * Technologies (MST-2015), May 2015.
++ * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
+ *
+ * http://algogroup.unimo.it/people/paolo/disk_sched/bf1-v1-suite-results.pdf
+ *
+@@ -67,27 +76,26 @@
+ #include <linux/jiffies.h>
+ #include <linux/rbtree.h>
+ #include <linux/ioprio.h>
+-#include "bfq.h"
+ #include "blk.h"
++#include "bfq.h"
+
+-/* Expiration time of sync (0) and async (1) requests, in jiffies. */
+-static const int bfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
++/* Expiration time of sync (0) and async (1) requests, in ns. */
++static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
+
+ /* Maximum backwards seek, in KiB. */
+-static const int bfq_back_max = 16 * 1024;
++static const int bfq_back_max = (16 * 1024);
+
+ /* Penalty of a backwards seek, in number of sectors. */
+ static const int bfq_back_penalty = 2;
+
+-/* Idling period duration, in jiffies. */
+-static int bfq_slice_idle = HZ / 125;
++/* Idling period duration, in ns. */
++static u32 bfq_slice_idle = (NSEC_PER_SEC / 125);
+
+ /* Minimum number of assigned budgets for which stats are safe to compute. */
+ static const int bfq_stats_min_budgets = 194;
+
+ /* Default maximum budget values, in sectors and number of requests. */
+-static const int bfq_default_max_budget = 16 * 1024;
+-static const int bfq_max_budget_async_rq = 4;
++static const int bfq_default_max_budget = (16 * 1024);
+
+ /*
+ * Async to sync throughput distribution is controlled as follows:
+@@ -97,23 +105,28 @@ static const int bfq_max_budget_async_rq = 4;
+ static const int bfq_async_charge_factor = 10;
+
+ /* Default timeout values, in jiffies, approximating CFQ defaults. */
+-static const int bfq_timeout_sync = HZ / 8;
+-static int bfq_timeout_async = HZ / 25;
++static const int bfq_timeout = (HZ / 8);
+
+-struct kmem_cache *bfq_pool;
++static struct kmem_cache *bfq_pool;
+
+-/* Below this threshold (in ms), we consider thinktime immediate. */
+-#define BFQ_MIN_TT 2
++/* Below this threshold (in ns), we consider thinktime immediate. */
++#define BFQ_MIN_TT (2 * NSEC_PER_MSEC)
+
+ /* hw_tag detection: parallel requests threshold and min samples needed. */
+ #define BFQ_HW_QUEUE_THRESHOLD 4
+ #define BFQ_HW_QUEUE_SAMPLES 32
+
+-#define BFQQ_SEEK_THR (sector_t)(8 * 1024)
+-#define BFQQ_SEEKY(bfqq) ((bfqq)->seek_mean > BFQQ_SEEK_THR)
++#define BFQQ_SEEK_THR (sector_t)(8 * 100)
++#define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
++#define BFQQ_CLOSE_THR (sector_t)(8 * 1024)
++#define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 32/8)
+
+-/* Min samples used for peak rate estimation (for autotuning). */
+-#define BFQ_PEAK_RATE_SAMPLES 32
++/* Min number of samples required to perform peak-rate update */
++#define BFQ_RATE_MIN_SAMPLES 32
++/* Min observation time interval required to perform a peak-rate update (ns) */
++#define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC)
++/* Target observation time interval for a peak-rate update (ns) */
++#define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC
+
+ /* Shift used for peak rate fixed precision calculations. */
+ #define BFQ_RATE_SHIFT 16
+@@ -141,16 +154,24 @@ struct kmem_cache *bfq_pool;
+ * The device's speed class is dynamically (re)detected in
+ * bfq_update_peak_rate() every time the estimated peak rate is updated.
+ *
+- * In the following definitions, R_slow[0]/R_fast[0] and T_slow[0]/T_fast[0]
+- * are the reference values for a slow/fast rotational device, whereas
+- * R_slow[1]/R_fast[1] and T_slow[1]/T_fast[1] are the reference values for
+- * a slow/fast non-rotational device. Finally, device_speed_thresh are the
+- * thresholds used to switch between speed classes.
++ * In the following definitions, R_slow[0]/R_fast[0] and
++ * T_slow[0]/T_fast[0] are the reference values for a slow/fast
++ * rotational device, whereas R_slow[1]/R_fast[1] and
++ * T_slow[1]/T_fast[1] are the reference values for a slow/fast
++ * non-rotational device. Finally, device_speed_thresh are the
++ * thresholds used to switch between speed classes. The reference
++ * rates are not the actual peak rates of the devices used as a
++ * reference, but slightly lower values. The reason for using these
++ * slightly lower values is that the peak-rate estimator tends to
++ * yield slightly lower values than the actual peak rate (it can yield
++ * the actual peak rate only if there is only one process doing I/O,
++ * and the process does sequential I/O).
++ *
+ * Both the reference peak rates and the thresholds are measured in
+ * sectors/usec, left-shifted by BFQ_RATE_SHIFT.
+ */
+-static int R_slow[2] = {1536, 10752};
+-static int R_fast[2] = {17415, 34791};
++static int R_slow[2] = {1000, 10700};
++static int R_fast[2] = {14000, 33000};
+ /*
+ * To improve readability, a conversion function is used to initialize the
+ * following arrays, which entails that they can be initialized only in a
+@@ -178,18 +199,6 @@ static void bfq_schedule_dispatch(struct bfq_data *bfqd);
+ #define bfq_sample_valid(samples) ((samples) > 80)
+
+ /*
+- * We regard a request as SYNC, if either it's a read or has the SYNC bit
+- * set (in which case it could also be a direct WRITE).
+- */
+-static int bfq_bio_sync(struct bio *bio)
+-{
+- if (bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC))
+- return 1;
+-
+- return 0;
+-}
+-
+-/*
+ * Scheduler run of queue, if there are requests pending and no one in the
+ * driver that will restart queueing.
+ */
+@@ -409,11 +418,7 @@ static bool bfq_differentiated_weights(struct bfq_data *bfqd)
+ */
+ static bool bfq_symmetric_scenario(struct bfq_data *bfqd)
+ {
+- return
+-#ifdef CONFIG_BFQ_GROUP_IOSCHED
+- !bfqd->active_numerous_groups &&
+-#endif
+- !bfq_differentiated_weights(bfqd);
++ return !bfq_differentiated_weights(bfqd);
+ }
+
+ /*
+@@ -469,6 +474,22 @@ static void bfq_weights_tree_add(struct bfq_data *bfqd,
+
+ entity->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
+ GFP_ATOMIC);
++
++ /*
++ * In the unlucky event of an allocation failure, we just
++ * exit. This will cause the weight of entity to not be
++ * considered in bfq_differentiated_weights, which, in its
++ * turn, causes the scenario to be deemed wrongly symmetric in
++ * case entity's weight would have been the only weight making
++ * the scenario asymmetric. On the bright side, no unbalance
++ * will however occur when entity becomes inactive again (the
++ * invocation of this function is triggered by an activation
++ * of entity). In fact, bfq_weights_tree_remove does nothing
++ * if !entity->weight_counter.
++ */
++ if (unlikely(!entity->weight_counter))
++ return;
++
+ entity->weight_counter->weight = entity->weight;
+ rb_link_node(&entity->weight_counter->weights_node, parent, new);
+ rb_insert_color(&entity->weight_counter->weights_node, root);
+@@ -505,13 +526,45 @@ static void bfq_weights_tree_remove(struct bfq_data *bfqd,
+ entity->weight_counter = NULL;
+ }
+
++/*
++ * Return expired entry, or NULL to just start from scratch in rbtree.
++ */
++static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
++ struct request *last)
++{
++ struct request *rq;
++
++ if (bfq_bfqq_fifo_expire(bfqq))
++ return NULL;
++
++ bfq_mark_bfqq_fifo_expire(bfqq);
++
++ rq = rq_entry_fifo(bfqq->fifo.next);
++
++ if (rq == last || ktime_get_ns() < rq->fifo_time)
++ return NULL;
++
++ bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
++ BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
++ return rq;
++}
++
+ static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
+ struct bfq_queue *bfqq,
+ struct request *last)
+ {
+ struct rb_node *rbnext = rb_next(&last->rb_node);
+ struct rb_node *rbprev = rb_prev(&last->rb_node);
+- struct request *next = NULL, *prev = NULL;
++ struct request *next, *prev = NULL;
++
++ BUG_ON(list_empty(&bfqq->fifo));
++
++ /* Follow expired path, else get first next available. */
++ next = bfq_check_fifo(bfqq, last);
++ if (next) {
++ BUG_ON(next == last);
++ return next;
++ }
+
+ BUG_ON(RB_EMPTY_NODE(&last->rb_node));
+
+@@ -533,9 +586,19 @@ static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
+ static unsigned long bfq_serv_to_charge(struct request *rq,
+ struct bfq_queue *bfqq)
+ {
+- return blk_rq_sectors(rq) *
+- (1 + ((!bfq_bfqq_sync(bfqq)) * (bfqq->wr_coeff == 1) *
+- bfq_async_charge_factor));
++ if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1)
++ return blk_rq_sectors(rq);
++
++ /*
++ * If there are no weight-raised queues, then amplify service
++ * by just the async charge factor; otherwise amplify service
++ * by twice the async charge factor, to further reduce latency
++ * for weight-raised queues.
++ */
++ if (bfqq->bfqd->wr_busy_queues == 0)
++ return blk_rq_sectors(rq) * bfq_async_charge_factor;
++
++ return blk_rq_sectors(rq) * 2 * bfq_async_charge_factor;
+ }
+
+ /**
+@@ -576,7 +639,7 @@ static void bfq_updated_next_req(struct bfq_data *bfqd,
+ entity->budget = new_budget;
+ bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
+ new_budget);
+- bfq_activate_bfqq(bfqd, bfqq);
++ bfq_requeue_bfqq(bfqd, bfqq);
+ }
+ }
+
+@@ -590,12 +653,23 @@ static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
+ dur = bfqd->RT_prod;
+ do_div(dur, bfqd->peak_rate);
+
+- return dur;
+-}
++ /*
++ * Limit duration between 3 and 13 seconds. Tests show that
++ * higher values than 13 seconds often yield the opposite of
++ * the desired result, i.e., worsen responsiveness by letting
++ * non-interactive and non-soft-real-time applications
++ * preserve weight raising for a too long time interval.
++ *
++ * On the other end, lower values than 3 seconds make it
++ * difficult for most interactive tasks to complete their jobs
++ * before weight-raising finishes.
++ */
++ if (dur > msecs_to_jiffies(13000))
++ dur = msecs_to_jiffies(13000);
++ else if (dur < msecs_to_jiffies(3000))
++ dur = msecs_to_jiffies(3000);
+
+-static unsigned int bfq_bfqq_cooperations(struct bfq_queue *bfqq)
+-{
+- return bfqq->bic ? bfqq->bic->cooperations : 0;
++ return dur;
+ }
+
+ static void
+@@ -605,31 +679,31 @@ bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
+ bfq_mark_bfqq_idle_window(bfqq);
+ else
+ bfq_clear_bfqq_idle_window(bfqq);
++
+ if (bic->saved_IO_bound)
+ bfq_mark_bfqq_IO_bound(bfqq);
+ else
+ bfq_clear_bfqq_IO_bound(bfqq);
+- /* Assuming that the flag in_large_burst is already correctly set */
+- if (bic->wr_time_left && bfqq->bfqd->low_latency &&
+- !bfq_bfqq_in_large_burst(bfqq) &&
+- bic->cooperations < bfqq->bfqd->bfq_coop_thresh) {
+- /*
+- * Start a weight raising period with the duration given by
+- * the raising_time_left snapshot.
+- */
+- if (bfq_bfqq_busy(bfqq))
+- bfqq->bfqd->wr_busy_queues++;
+- bfqq->wr_coeff = bfqq->bfqd->bfq_wr_coeff;
+- bfqq->wr_cur_max_time = bic->wr_time_left;
+- bfqq->last_wr_start_finish = jiffies;
+- bfqq->entity.prio_changed = 1;
++
++ bfqq->wr_coeff = bic->saved_wr_coeff;
++ bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
++ BUG_ON(time_is_after_jiffies(bfqq->wr_start_at_switch_to_srt));
++ bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
++ bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
++ BUG_ON(time_is_after_jiffies(bfqq->last_wr_start_finish));
++
++ if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
++ time_is_before_jiffies(bfqq->last_wr_start_finish +
++ bfqq->wr_cur_max_time))) {
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "resume state: switching off wr (%lu + %lu < %lu)",
++ bfqq->last_wr_start_finish, bfqq->wr_cur_max_time,
++ jiffies);
++
++ bfqq->wr_coeff = 1;
+ }
+- /*
+- * Clear wr_time_left to prevent bfq_bfqq_save_state() from
+- * getting confused about the queue's need of a weight-raising
+- * period.
+- */
+- bic->wr_time_left = 0;
++ /* make sure weight will be updated, however we got here */
++ bfqq->entity.prio_changed = 1;
+ }
+
+ static int bfqq_process_refs(struct bfq_queue *bfqq)
+@@ -639,7 +713,7 @@ static int bfqq_process_refs(struct bfq_queue *bfqq)
+ lockdep_assert_held(bfqq->bfqd->queue->queue_lock);
+
+ io_refs = bfqq->allocated[READ] + bfqq->allocated[WRITE];
+- process_refs = atomic_read(&bfqq->ref) - io_refs - bfqq->entity.on_st;
++ process_refs = bfqq->ref - io_refs - bfqq->entity.on_st;
+ BUG_ON(process_refs < 0);
+ return process_refs;
+ }
+@@ -654,6 +728,7 @@ static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+ hlist_del_init(&item->burst_list_node);
+ hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
+ bfqd->burst_size = 1;
++ bfqd->burst_parent_entity = bfqq->entity.parent;
+ }
+
+ /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
+@@ -662,6 +737,10 @@ static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+ /* Increment burst size to take into account also bfqq */
+ bfqd->burst_size++;
+
++ bfq_log_bfqq(bfqd, bfqq, "add_to_burst %d", bfqd->burst_size);
++
++ BUG_ON(bfqd->burst_size > bfqd->bfq_large_burst_thresh);
++
+ if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
+ struct bfq_queue *pos, *bfqq_item;
+ struct hlist_node *n;
+@@ -671,15 +750,19 @@ static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+ * other to consider this burst as large.
+ */
+ bfqd->large_burst = true;
++ bfq_log_bfqq(bfqd, bfqq, "add_to_burst: large burst started");
+
+ /*
+ * We can now mark all queues in the burst list as
+ * belonging to a large burst.
+ */
+ hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
+- burst_list_node)
++ burst_list_node) {
+ bfq_mark_bfqq_in_large_burst(bfqq_item);
++ bfq_log_bfqq(bfqd, bfqq_item, "marked in large burst");
++ }
+ bfq_mark_bfqq_in_large_burst(bfqq);
++ bfq_log_bfqq(bfqd, bfqq, "marked in large burst");
+
+ /*
+ * From now on, and until the current burst finishes, any
+@@ -691,67 +774,79 @@ static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+ hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
+ burst_list_node)
+ hlist_del_init(&pos->burst_list_node);
+- } else /* burst not yet large: add bfqq to the burst list */
++ } else /*
++ * Burst not yet large: add bfqq to the burst list. Do
++ * not increment the ref counter for bfqq, because bfqq
++ * is removed from the burst list before freeing bfqq
++ * in put_queue.
++ */
+ hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
+ }
+
+ /*
+- * If many queues happen to become active shortly after each other, then,
+- * to help the processes associated to these queues get their job done as
+- * soon as possible, it is usually better to not grant either weight-raising
+- * or device idling to these queues. In this comment we describe, firstly,
+- * the reasons why this fact holds, and, secondly, the next function, which
+- * implements the main steps needed to properly mark these queues so that
+- * they can then be treated in a different way.
++ * If many queues belonging to the same group happen to be created
++ * shortly after each other, then the processes associated with these
++ * queues have typically a common goal. In particular, bursts of queue
++ * creations are usually caused by services or applications that spawn
++ * many parallel threads/processes. Examples are systemd during boot,
++ * or git grep. To help these processes get their job done as soon as
++ * possible, it is usually better to not grant either weight-raising
++ * or device idling to their queues.
+ *
+- * As for the terminology, we say that a queue becomes active, i.e.,
+- * switches from idle to backlogged, either when it is created (as a
+- * consequence of the arrival of an I/O request), or, if already existing,
+- * when a new request for the queue arrives while the queue is idle.
+- * Bursts of activations, i.e., activations of different queues occurring
+- * shortly after each other, are typically caused by services or applications
+- * that spawn or reactivate many parallel threads/processes. Examples are
+- * systemd during boot or git grep.
++ * In this comment we describe, firstly, the reasons why this fact
++ * holds, and, secondly, the next function, which implements the main
++ * steps needed to properly mark these queues so that they can then be
++ * treated in a different way.
+ *
+- * These services or applications benefit mostly from a high throughput:
+- * the quicker the requests of the activated queues are cumulatively served,
+- * the sooner the target job of these queues gets completed. As a consequence,
+- * weight-raising any of these queues, which also implies idling the device
+- * for it, is almost always counterproductive: in most cases it just lowers
+- * throughput.
++ * The above services or applications benefit mostly from a high
++ * throughput: the quicker the requests of the activated queues are
++ * cumulatively served, the sooner the target job of these queues gets
++ * completed. As a consequence, weight-raising any of these queues,
++ * which also implies idling the device for it, is almost always
++ * counterproductive. In most cases it just lowers throughput.
+ *
+- * On the other hand, a burst of activations may be also caused by the start
+- * of an application that does not consist in a lot of parallel I/O-bound
+- * threads. In fact, with a complex application, the burst may be just a
+- * consequence of the fact that several processes need to be executed to
+- * start-up the application. To start an application as quickly as possible,
+- * the best thing to do is to privilege the I/O related to the application
+- * with respect to all other I/O. Therefore, the best strategy to start as
+- * quickly as possible an application that causes a burst of activations is
+- * to weight-raise all the queues activated during the burst. This is the
++ * On the other hand, a burst of queue creations may be caused also by
++ * the start of an application that does not consist of a lot of
++ * parallel I/O-bound threads. In fact, with a complex application,
++ * several short processes may need to be executed to start-up the
++ * application. In this respect, to start an application as quickly as
++ * possible, the best thing to do is in any case to privilege the I/O
++ * related to the application with respect to all other
++ * I/O. Therefore, the best strategy to start as quickly as possible
++ * an application that causes a burst of queue creations is to
++ * weight-raise all the queues created during the burst. This is the
+ * exact opposite of the best strategy for the other type of bursts.
+ *
+- * In the end, to take the best action for each of the two cases, the two
+- * types of bursts need to be distinguished. Fortunately, this seems
+- * relatively easy to do, by looking at the sizes of the bursts. In
+- * particular, we found a threshold such that bursts with a larger size
+- * than that threshold are apparently caused only by services or commands
+- * such as systemd or git grep. For brevity, hereafter we call just 'large'
+- * these bursts. BFQ *does not* weight-raise queues whose activations occur
+- * in a large burst. In addition, for each of these queues BFQ performs or
+- * does not perform idling depending on which choice boosts the throughput
+- * most. The exact choice depends on the device and request pattern at
++ * In the end, to take the best action for each of the two cases, the
++ * two types of bursts need to be distinguished. Fortunately, this
++ * seems relatively easy, by looking at the sizes of the bursts. In
++ * particular, we found a threshold such that only bursts with a
++ * larger size than that threshold are apparently caused by
++ * services or commands such as systemd or git grep. For brevity,
++ * hereafter we call just 'large' these bursts. BFQ *does not*
++ * weight-raise queues whose creation occurs in a large burst. In
++ * addition, for each of these queues BFQ performs or does not perform
++ * idling depending on which choice boosts the throughput more. The
++ * exact choice depends on the device and request pattern at
+ * hand.
+ *
+- * Turning back to the next function, it implements all the steps needed
+- * to detect the occurrence of a large burst and to properly mark all the
+- * queues belonging to it (so that they can then be treated in a different
+- * way). This goal is achieved by maintaining a special "burst list" that
+- * holds, temporarily, the queues that belong to the burst in progress. The
+- * list is then used to mark these queues as belonging to a large burst if
+- * the burst does become large. The main steps are the following.
++ * Unfortunately, false positives may occur while an interactive task
++ * is starting (e.g., an application is being started). The
++ * consequence is that the queues associated with the task do not
++ * enjoy weight raising as expected. Fortunately these false positives
++ * are very rare. They typically occur if some service happens to
++ * start doing I/O exactly when the interactive task starts.
++ *
++ * Turning back to the next function, it implements all the steps
++ * needed to detect the occurrence of a large burst and to properly
++ * mark all the queues belonging to it (so that they can then be
++ * treated in a different way). This goal is achieved by maintaining a
++ * "burst list" that holds, temporarily, the queues that belong to the
++ * burst in progress. The list is then used to mark these queues as
++ * belonging to a large burst if the burst does become large. The main
++ * steps are the following.
+ *
+- * . when the very first queue is activated, the queue is inserted into the
++ * . when the very first queue is created, the queue is inserted into the
+ * list (as it could be the first queue in a possible burst)
+ *
+ * . if the current burst has not yet become large, and a queue Q that does
+@@ -772,13 +867,13 @@ static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+ *
+ * . the device enters a large-burst mode
+ *
+- * . if a queue Q that does not belong to the burst is activated while
++ * . if a queue Q that does not belong to the burst is created while
+ * the device is in large-burst mode and shortly after the last time
+ * at which a queue either entered the burst list or was marked as
+ * belonging to the current large burst, then Q is immediately marked
+ * as belonging to a large burst.
+ *
+- * . if a queue Q that does not belong to the burst is activated a while
++ * . if a queue Q that does not belong to the burst is created a while
+ * later, i.e., not shortly after, than the last time at which a queue
+ * either entered the burst list or was marked as belonging to the
+ * current large burst, then the current burst is deemed as finished and:
+@@ -791,52 +886,44 @@ static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+ * in a possible new burst (then the burst list contains just Q
+ * after this step).
+ */
+-static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+- bool idle_for_long_time)
++static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+ {
+ /*
+- * If bfqq happened to be activated in a burst, but has been idle
+- * for at least as long as an interactive queue, then we assume
+- * that, in the overall I/O initiated in the burst, the I/O
+- * associated to bfqq is finished. So bfqq does not need to be
+- * treated as a queue belonging to a burst anymore. Accordingly,
+- * we reset bfqq's in_large_burst flag if set, and remove bfqq
+- * from the burst list if it's there. We do not decrement instead
+- * burst_size, because the fact that bfqq does not need to belong
+- * to the burst list any more does not invalidate the fact that
+- * bfqq may have been activated during the current burst.
+- */
+- if (idle_for_long_time) {
+- hlist_del_init(&bfqq->burst_list_node);
+- bfq_clear_bfqq_in_large_burst(bfqq);
+- }
+-
+- /*
+ * If bfqq is already in the burst list or is part of a large
+- * burst, then there is nothing else to do.
++ * burst, or finally has just been split, then there is
++ * nothing else to do.
+ */
+ if (!hlist_unhashed(&bfqq->burst_list_node) ||
+- bfq_bfqq_in_large_burst(bfqq))
++ bfq_bfqq_in_large_burst(bfqq) ||
++ time_is_after_eq_jiffies(bfqq->split_time +
++ msecs_to_jiffies(10)))
+ return;
+
+ /*
+- * If bfqq's activation happens late enough, then the current
+- * burst is finished, and related data structures must be reset.
++ * If bfqq's creation happens late enough, or bfqq belongs to
++ * a different group than the burst group, then the current
++ * burst is finished, and related data structures must be
++ * reset.
+ *
+- * In this respect, consider the special case where bfqq is the very
+- * first queue being activated. In this case, last_ins_in_burst is
+- * not yet significant when we get here. But it is easy to verify
+- * that, whether or not the following condition is true, bfqq will
+- * end up being inserted into the burst list. In particular the
+- * list will happen to contain only bfqq. And this is exactly what
+- * has to happen, as bfqq may be the first queue in a possible
++ * In this respect, consider the special case where bfqq is
++ * the very first queue created after BFQ is selected for this
++ * device. In this case, last_ins_in_burst and
++ * burst_parent_entity are not yet significant when we get
++ * here. But it is easy to verify that, whether or not the
++ * following condition is true, bfqq will end up being
++ * inserted into the burst list. In particular the list will
++ * happen to contain only bfqq. And this is exactly what has
++ * to happen, as bfqq may be the first queue of the first
+ * burst.
+ */
+ if (time_is_before_jiffies(bfqd->last_ins_in_burst +
+- bfqd->bfq_burst_interval)) {
++ bfqd->bfq_burst_interval) ||
++ bfqq->entity.parent != bfqd->burst_parent_entity) {
+ bfqd->large_burst = false;
+ bfq_reset_burst_list(bfqd, bfqq);
+- return;
++ bfq_log_bfqq(bfqd, bfqq,
++ "handle_burst: late activation or different group");
++ goto end;
+ }
+
+ /*
+@@ -845,8 +932,9 @@ static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ * bfqq as belonging to this large burst immediately.
+ */
+ if (bfqd->large_burst) {
++ bfq_log_bfqq(bfqd, bfqq, "handle_burst: marked in burst");
+ bfq_mark_bfqq_in_large_burst(bfqq);
+- return;
++ goto end;
+ }
+
+ /*
+@@ -855,25 +943,489 @@ static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ * queue. Then we add bfqq to the burst.
+ */
+ bfq_add_to_burst(bfqd, bfqq);
++end:
++ /*
++ * At this point, bfqq either has been added to the current
++ * burst or has caused the current burst to terminate and a
++ * possible new burst to start. In particular, in the second
++ * case, bfqq has become the first queue in the possible new
++ * burst. In both cases last_ins_in_burst needs to be moved
++ * forward.
++ */
++ bfqd->last_ins_in_burst = jiffies;
++
++}
++
++static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
++{
++ struct bfq_entity *entity = &bfqq->entity;
++
++ return entity->budget - entity->service;
++}
++
++/*
++ * If enough samples have been computed, return the current max budget
++ * stored in bfqd, which is dynamically updated according to the
++ * estimated disk peak rate; otherwise return the default max budget
++ */
++static int bfq_max_budget(struct bfq_data *bfqd)
++{
++ if (bfqd->budgets_assigned < bfq_stats_min_budgets)
++ return bfq_default_max_budget;
++ else
++ return bfqd->bfq_max_budget;
++}
++
++/*
++ * Return min budget, which is a fraction of the current or default
++ * max budget (trying with 1/32)
++ */
++static int bfq_min_budget(struct bfq_data *bfqd)
++{
++ if (bfqd->budgets_assigned < bfq_stats_min_budgets)
++ return bfq_default_max_budget / 32;
++ else
++ return bfqd->bfq_max_budget / 32;
++}
++
++static void bfq_bfqq_expire(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq,
++ bool compensate,
++ enum bfqq_expiration reason);
++
++/*
++ * The next function, invoked after the input queue bfqq switches from
++ * idle to busy, updates the budget of bfqq. The function also tells
++ * whether the in-service queue should be expired, by returning
++ * true. The purpose of expiring the in-service queue is to give bfqq
++ * the chance to possibly preempt the in-service queue, and the reason
++ * for preempting the in-service queue is to achieve one of the two
++ * goals below.
++ *
++ * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
++ * expired because it has remained idle. In particular, bfqq may have
++ * expired for one of the following two reasons:
++ *
++ * - BFQ_BFQQ_NO_MORE_REQUEST bfqq did not enjoy any device idling and
++ * did not make it to issue a new request before its last request
++ * was served;
++ *
++ * - BFQ_BFQQ_TOO_IDLE bfqq did enjoy device idling, but did not issue
++ * a new request before the expiration of the idling-time.
++ *
++ * Even if bfqq has expired for one of the above reasons, the process
++ * associated with the queue may be however issuing requests greedily,
++ * and thus be sensitive to the bandwidth it receives (bfqq may have
++ * remained idle for other reasons: CPU high load, bfqq not enjoying
++ * idling, I/O throttling somewhere in the path from the process to
++ * the I/O scheduler, ...). But if, after every expiration for one of
++ * the above two reasons, bfqq has to wait for the service of at least
++ * one full budget of another queue before being served again, then
++ * bfqq is likely to get a much lower bandwidth or resource time than
++ * its reserved ones. To address this issue, two countermeasures need
++ * to be taken.
++ *
++ * First, the budget and the timestamps of bfqq need to be updated in
++ * a special way on bfqq reactivation: they need to be updated as if
++ * bfqq did not remain idle and did not expire. In fact, if they are
++ * computed as if bfqq expired and remained idle until reactivation,
++ * then the process associated with bfqq is treated as if, instead of
++ * being greedy, it stopped issuing requests when bfqq remained idle,
++ * and restarts issuing requests only on this reactivation. In other
++ * words, the scheduler does not help the process recover the "service
++ * hole" between bfqq expiration and reactivation. As a consequence,
++ * the process receives a lower bandwidth than its reserved one. In
++ * contrast, to recover this hole, the budget must be updated as if
++ * bfqq was not expired at all before this reactivation, i.e., it must
++ * be set to the value of the remaining budget when bfqq was
++ * expired. Along the same line, timestamps need to be assigned the
++ * value they had the last time bfqq was selected for service, i.e.,
++ * before last expiration. Thus timestamps need to be back-shifted
++ * with respect to their normal computation (see [1] for more details
++ * on this tricky aspect).
++ *
++ * Secondly, to allow the process to recover the hole, the in-service
++ * queue must be expired too, to give bfqq the chance to preempt it
++ * immediately. In fact, if bfqq has to wait for a full budget of the
++ * in-service queue to be completed, then it may become impossible to
++ * let the process recover the hole, even if the back-shifted
++ * timestamps of bfqq are lower than those of the in-service queue. If
++ * this happens for most or all of the holes, then the process may not
++ * receive its reserved bandwidth. In this respect, it is worth noting
++ * that, being the service of outstanding requests unpreemptible, a
++ * little fraction of the holes may however be unrecoverable, thereby
++ * causing a little loss of bandwidth.
++ *
++ * The last important point is detecting whether bfqq does need this
++ * bandwidth recovery. In this respect, the next function deems the
++ * process associated with bfqq greedy, and thus allows it to recover
++ * the hole, if: 1) the process is waiting for the arrival of a new
++ * request (which implies that bfqq expired for one of the above two
++ * reasons), and 2) such a request has arrived soon. The first
++ * condition is controlled through the flag non_blocking_wait_rq,
++ * while the second through the flag arrived_in_time. If both
++ * conditions hold, then the function computes the budget in the
++ * above-described special way, and signals that the in-service queue
++ * should be expired. Timestamp back-shifting is done later in
++ * __bfq_activate_entity.
++ *
++ * 2. Reduce latency. Even if timestamps are not backshifted to let
++ * the process associated with bfqq recover a service hole, bfqq may
++ * however happen to have, after being (re)activated, a lower finish
++ * timestamp than the in-service queue. That is, the next budget of
++ * bfqq may have to be completed before the one of the in-service
++ * queue. If this is the case, then preempting the in-service queue
++ * allows this goal to be achieved, apart from the unpreemptible,
++ * outstanding requests mentioned above.
++ *
++ * Unfortunately, regardless of which of the above two goals one wants
++ * to achieve, service trees need first to be updated to know whether
++ * the in-service queue must be preempted. To have service trees
++ * correctly updated, the in-service queue must be expired and
++ * rescheduled, and bfqq must be scheduled too. This is one of the
++ * most costly operations (in future versions, the scheduling
++ * mechanism may be re-designed in such a way to make it possible to
++ * know whether preemption is needed without needing to update service
++ * trees). In addition, queue preemptions almost always cause random
++ * I/O, and thus loss of throughput. Because of these facts, the next
++ * function adopts the following simple scheme to avoid both costly
++ * operations and too frequent preemptions: it requests the expiration
++ * of the in-service queue (unconditionally) only for queues that need
++ * to recover a hole, or that either are weight-raised or deserve to
++ * be weight-raised.
++ */
++static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq,
++ bool arrived_in_time,
++ bool wr_or_deserves_wr)
++{
++ struct bfq_entity *entity = &bfqq->entity;
++
++ if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) {
++ /*
++ * We do not clear the flag non_blocking_wait_rq here, as
++ * the latter is used in bfq_activate_bfqq to signal
++ * that timestamps need to be back-shifted (and is
++ * cleared right after).
++ */
++
++ /*
++ * In next assignment we rely on that either
++ * entity->service or entity->budget are not updated
++ * on expiration if bfqq is empty (see
++ * __bfq_bfqq_recalc_budget). Thus both quantities
++ * remain unchanged after such an expiration, and the
++ * following statement therefore assigns to
++ * entity->budget the remaining budget on such an
++ * expiration. For clarity, entity->service is not
++ * updated on expiration in any case, and, in normal
++ * operation, is reset only when bfqq is selected for
++ * service (see bfq_get_next_queue).
++ */
++ BUG_ON(bfqq->max_budget < 0);
++ entity->budget = min_t(unsigned long,
++ bfq_bfqq_budget_left(bfqq),
++ bfqq->max_budget);
++
++ BUG_ON(entity->budget < 0);
++ return true;
++ }
++
++ BUG_ON(bfqq->max_budget < 0);
++ entity->budget = max_t(unsigned long, bfqq->max_budget,
++ bfq_serv_to_charge(bfqq->next_rq, bfqq));
++ BUG_ON(entity->budget < 0);
++
++ bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
++ return wr_or_deserves_wr;
++}
++
++static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq,
++ unsigned int old_wr_coeff,
++ bool wr_or_deserves_wr,
++ bool interactive,
++ bool in_burst,
++ bool soft_rt)
++{
++ if (old_wr_coeff == 1 && wr_or_deserves_wr) {
++ /* start a weight-raising period */
++ if (interactive) {
++ bfqq->wr_coeff = bfqd->bfq_wr_coeff;
++ bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
++ } else {
++ bfqq->wr_start_at_switch_to_srt = jiffies;
++ bfqq->wr_coeff = bfqd->bfq_wr_coeff *
++ BFQ_SOFTRT_WEIGHT_FACTOR;
++ bfqq->wr_cur_max_time =
++ bfqd->bfq_wr_rt_max_time;
++ }
++ /*
++ * If needed, further reduce budget to make sure it is
++ * close to bfqq's backlog, so as to reduce the
++ * scheduling-error component due to a too large
++ * budget. Do not care about throughput consequences,
++ * but only about latency. Finally, do not assign a
++ * too small budget either, to avoid increasing
++ * latency by causing too frequent expirations.
++ */
++ bfqq->entity.budget = min_t(unsigned long,
++ bfqq->entity.budget,
++ 2 * bfq_min_budget(bfqd));
++
++ bfq_log_bfqq(bfqd, bfqq,
++ "wrais starting at %lu, rais_max_time %u",
++ jiffies,
++ jiffies_to_msecs(bfqq->wr_cur_max_time));
++ } else if (old_wr_coeff > 1) {
++ if (interactive) { /* update wr coeff and duration */
++ bfqq->wr_coeff = bfqd->bfq_wr_coeff;
++ bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
++ } else if (in_burst) {
++ bfqq->wr_coeff = 1;
++ bfq_log_bfqq(bfqd, bfqq,
++ "wrais ending at %lu, rais_max_time %u",
++ jiffies,
++ jiffies_to_msecs(bfqq->
++ wr_cur_max_time));
++ } else if (soft_rt) {
++ /*
++ * The application is now or still meeting the
++ * requirements for being deemed soft rt. We
++ * can then correctly and safely (re)charge
++ * the weight-raising duration for the
++ * application with the weight-raising
++ * duration for soft rt applications.
++ *
++ * In particular, doing this recharge now, i.e.,
++ * before the weight-raising period for the
++ * application finishes, reduces the probability
++ * of the following negative scenario:
++ * 1) the weight of a soft rt application is
++ * raised at startup (as for any newly
++ * created application),
++ * 2) since the application is not interactive,
++ * at a certain time weight-raising is
++ * stopped for the application,
++ * 3) at that time the application happens to
++ * still have pending requests, and hence
++ * is destined to not have a chance to be
++ * deemed soft rt before these requests are
++ * completed (see the comments to the
++ * function bfq_bfqq_softrt_next_start()
++ * for details on soft rt detection),
++ * 4) these pending requests experience a high
++ * latency because the application is not
++ * weight-raised while they are pending.
++ */
++ if (bfqq->wr_cur_max_time !=
++ bfqd->bfq_wr_rt_max_time) {
++ bfqq->wr_start_at_switch_to_srt =
++ bfqq->last_wr_start_finish;
++ BUG_ON(time_is_after_jiffies(bfqq->last_wr_start_finish));
++
++ bfqq->wr_cur_max_time =
++ bfqd->bfq_wr_rt_max_time;
++ bfqq->wr_coeff = bfqd->bfq_wr_coeff *
++ BFQ_SOFTRT_WEIGHT_FACTOR;
++ bfq_log_bfqq(bfqd, bfqq,
++ "switching to soft_rt wr");
++ } else
++ bfq_log_bfqq(bfqd, bfqq,
++ "moving forward soft_rt wr duration");
++ bfqq->last_wr_start_finish = jiffies;
++ }
++ }
++}
++
++static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq)
++{
++ return bfqq->dispatched == 0 &&
++ time_is_before_jiffies(
++ bfqq->budget_timeout +
++ bfqd->bfq_wr_min_idle_time);
++}
++
++static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq,
++ int old_wr_coeff,
++ struct request *rq,
++ bool *interactive)
++{
++ bool soft_rt, in_burst, wr_or_deserves_wr,
++ bfqq_wants_to_preempt,
++ idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
++ /*
++ * See the comments on
++ * bfq_bfqq_update_budg_for_activation for
++ * details on the usage of the next variable.
++ */
++ arrived_in_time = ktime_get_ns() <=
++ RQ_BIC(rq)->ttime.last_end_request +
++ bfqd->bfq_slice_idle * 3;
++
++ bfq_log_bfqq(bfqd, bfqq,
++ "bfq_add_request non-busy: "
++ "jiffies %lu, in_time %d, idle_long %d busyw %d "
++ "wr_coeff %u",
++ jiffies, arrived_in_time,
++ idle_for_long_time,
++ bfq_bfqq_non_blocking_wait_rq(bfqq),
++ old_wr_coeff);
++
++ BUG_ON(bfqq->entity.budget < bfqq->entity.service);
++
++ BUG_ON(bfqq == bfqd->in_service_queue);
++ bfqg_stats_update_io_add(bfqq_group(RQ_BFQQ(rq)), bfqq, rq->cmd_flags);
++
++ /*
++ * bfqq deserves to be weight-raised if:
++ * - it is sync,
++ * - it does not belong to a large burst,
++ * - it has been idle for enough time or is soft real-time,
++ * - is linked to a bfq_io_cq (it is not shared in any sense)
++ */
++ in_burst = bfq_bfqq_in_large_burst(bfqq);
++ soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
++ !in_burst &&
++ time_is_before_jiffies(bfqq->soft_rt_next_start);
++ *interactive =
++ !in_burst &&
++ idle_for_long_time;
++ wr_or_deserves_wr = bfqd->low_latency &&
++ (bfqq->wr_coeff > 1 ||
++ (bfq_bfqq_sync(bfqq) &&
++ bfqq->bic && (*interactive || soft_rt)));
++
++ bfq_log_bfqq(bfqd, bfqq,
++ "bfq_add_request: "
++ "in_burst %d, "
++ "soft_rt %d (next %lu), inter %d, bic %p",
++ bfq_bfqq_in_large_burst(bfqq), soft_rt,
++ bfqq->soft_rt_next_start,
++ *interactive,
++ bfqq->bic);
++
++ /*
++ * Using the last flag, update budget and check whether bfqq
++ * may want to preempt the in-service queue.
++ */
++ bfqq_wants_to_preempt =
++ bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
++ arrived_in_time,
++ wr_or_deserves_wr);
++
++ /*
++ * If bfqq happened to be activated in a burst, but has been
++ * idle for much more than an interactive queue, then we
++ * assume that, in the overall I/O initiated in the burst, the
++ * I/O associated with bfqq is finished. So bfqq does not need
++ * to be treated as a queue belonging to a burst
++ * anymore. Accordingly, we reset bfqq's in_large_burst flag
++ * if set, and remove bfqq from the burst list if it's
++ * there. We do not decrement burst_size, because the fact
++ * that bfqq does not need to belong to the burst list any
++ * more does not invalidate the fact that bfqq was created in
++ * a burst.
++ */
++ if (likely(!bfq_bfqq_just_created(bfqq)) &&
++ idle_for_long_time &&
++ time_is_before_jiffies(
++ bfqq->budget_timeout +
++ msecs_to_jiffies(10000))) {
++ hlist_del_init(&bfqq->burst_list_node);
++ bfq_clear_bfqq_in_large_burst(bfqq);
++ }
++
++ bfq_clear_bfqq_just_created(bfqq);
++
++ if (!bfq_bfqq_IO_bound(bfqq)) {
++ if (arrived_in_time) {
++ bfqq->requests_within_timer++;
++ if (bfqq->requests_within_timer >=
++ bfqd->bfq_requests_within_timer)
++ bfq_mark_bfqq_IO_bound(bfqq);
++ } else
++ bfqq->requests_within_timer = 0;
++ bfq_log_bfqq(bfqd, bfqq, "requests in time %d",
++ bfqq->requests_within_timer);
++ }
++
++ if (bfqd->low_latency) {
++ if (unlikely(time_is_after_jiffies(bfqq->split_time)))
++ /* wraparound */
++ bfqq->split_time =
++ jiffies - bfqd->bfq_wr_min_idle_time - 1;
++
++ if (time_is_before_jiffies(bfqq->split_time +
++ bfqd->bfq_wr_min_idle_time)) {
++ bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
++ old_wr_coeff,
++ wr_or_deserves_wr,
++ *interactive,
++ in_burst,
++ soft_rt);
++
++ if (old_wr_coeff != bfqq->wr_coeff)
++ bfqq->entity.prio_changed = 1;
++ }
++ }
++
++ bfqq->last_idle_bklogged = jiffies;
++ bfqq->service_from_backlogged = 0;
++ bfq_clear_bfqq_softrt_update(bfqq);
++
++ bfq_add_bfqq_busy(bfqd, bfqq);
++
++ /*
++ * Expire in-service queue only if preemption may be needed
++ * for guarantees. In this respect, the function
++ * next_queue_may_preempt just checks a simple, necessary
++ * condition, and not a sufficient condition based on
++ * timestamps. In fact, for the latter condition to be
++ * evaluated, timestamps would need first to be updated, and
++ * this operation is quite costly (see the comments on the
++ * function bfq_bfqq_update_budg_for_activation).
++ */
++ if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
++ bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
++ next_queue_may_preempt(bfqd)) {
++ struct bfq_queue *in_serv =
++ bfqd->in_service_queue;
++ BUG_ON(in_serv == bfqq);
++
++ bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
++ false, BFQ_BFQQ_PREEMPTED);
++ }
+ }
+
+ static void bfq_add_request(struct request *rq)
+ {
+ struct bfq_queue *bfqq = RQ_BFQQ(rq);
+- struct bfq_entity *entity = &bfqq->entity;
+ struct bfq_data *bfqd = bfqq->bfqd;
+ struct request *next_rq, *prev;
+- unsigned long old_wr_coeff = bfqq->wr_coeff;
++ unsigned int old_wr_coeff = bfqq->wr_coeff;
+ bool interactive = false;
+
+- bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
++ bfq_log_bfqq(bfqd, bfqq, "add_request: size %u %s",
++ blk_rq_sectors(rq), rq_is_sync(rq) ? "S" : "A");
++
++ if (bfqq->wr_coeff > 1) /* queue is being weight-raised */
++ bfq_log_bfqq(bfqd, bfqq,
++ "raising period dur %u/%u msec, old coeff %u, w %d(%d)",
++ jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
++ jiffies_to_msecs(bfqq->wr_cur_max_time),
++ bfqq->wr_coeff,
++ bfqq->entity.weight, bfqq->entity.orig_weight);
++
+ bfqq->queued[rq_is_sync(rq)]++;
+ bfqd->queued++;
+
+ elv_rb_add(&bfqq->sort_list, rq);
+
+ /*
+- * Check if this request is a better next-serve candidate.
++ * Check if this request is a better next-to-serve candidate.
+ */
+ prev = bfqq->next_rq;
+ next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
+@@ -886,160 +1438,10 @@ static void bfq_add_request(struct request *rq)
+ if (prev != bfqq->next_rq)
+ bfq_pos_tree_add_move(bfqd, bfqq);
+
+- if (!bfq_bfqq_busy(bfqq)) {
+- bool soft_rt, coop_or_in_burst,
+- idle_for_long_time = time_is_before_jiffies(
+- bfqq->budget_timeout +
+- bfqd->bfq_wr_min_idle_time);
+-
+-#ifdef CONFIG_BFQ_GROUP_IOSCHED
+- bfqg_stats_update_io_add(bfqq_group(RQ_BFQQ(rq)), bfqq,
+- rq->cmd_flags);
+-#endif
+- if (bfq_bfqq_sync(bfqq)) {
+- bool already_in_burst =
+- !hlist_unhashed(&bfqq->burst_list_node) ||
+- bfq_bfqq_in_large_burst(bfqq);
+- bfq_handle_burst(bfqd, bfqq, idle_for_long_time);
+- /*
+- * If bfqq was not already in the current burst,
+- * then, at this point, bfqq either has been
+- * added to the current burst or has caused the
+- * current burst to terminate. In particular, in
+- * the second case, bfqq has become the first
+- * queue in a possible new burst.
+- * In both cases last_ins_in_burst needs to be
+- * moved forward.
+- */
+- if (!already_in_burst)
+- bfqd->last_ins_in_burst = jiffies;
+- }
+-
+- coop_or_in_burst = bfq_bfqq_in_large_burst(bfqq) ||
+- bfq_bfqq_cooperations(bfqq) >= bfqd->bfq_coop_thresh;
+- soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
+- !coop_or_in_burst &&
+- time_is_before_jiffies(bfqq->soft_rt_next_start);
+- interactive = !coop_or_in_burst && idle_for_long_time;
+- entity->budget = max_t(unsigned long, bfqq->max_budget,
+- bfq_serv_to_charge(next_rq, bfqq));
+-
+- if (!bfq_bfqq_IO_bound(bfqq)) {
+- if (time_before(jiffies,
+- RQ_BIC(rq)->ttime.last_end_request +
+- bfqd->bfq_slice_idle)) {
+- bfqq->requests_within_timer++;
+- if (bfqq->requests_within_timer >=
+- bfqd->bfq_requests_within_timer)
+- bfq_mark_bfqq_IO_bound(bfqq);
+- } else
+- bfqq->requests_within_timer = 0;
+- }
+-
+- if (!bfqd->low_latency)
+- goto add_bfqq_busy;
+-
+- if (bfq_bfqq_just_split(bfqq))
+- goto set_prio_changed;
+-
+- /*
+- * If the queue:
+- * - is not being boosted,
+- * - has been idle for enough time,
+- * - is not a sync queue or is linked to a bfq_io_cq (it is
+- * shared "for its nature" or it is not shared and its
+- * requests have not been redirected to a shared queue)
+- * start a weight-raising period.
+- */
+- if (old_wr_coeff == 1 && (interactive || soft_rt) &&
+- (!bfq_bfqq_sync(bfqq) || bfqq->bic)) {
+- bfqq->wr_coeff = bfqd->bfq_wr_coeff;
+- if (interactive)
+- bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
+- else
+- bfqq->wr_cur_max_time =
+- bfqd->bfq_wr_rt_max_time;
+- bfq_log_bfqq(bfqd, bfqq,
+- "wrais starting at %lu, rais_max_time %u",
+- jiffies,
+- jiffies_to_msecs(bfqq->wr_cur_max_time));
+- } else if (old_wr_coeff > 1) {
+- if (interactive)
+- bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
+- else if (coop_or_in_burst ||
+- (bfqq->wr_cur_max_time ==
+- bfqd->bfq_wr_rt_max_time &&
+- !soft_rt)) {
+- bfqq->wr_coeff = 1;
+- bfq_log_bfqq(bfqd, bfqq,
+- "wrais ending at %lu, rais_max_time %u",
+- jiffies,
+- jiffies_to_msecs(bfqq->
+- wr_cur_max_time));
+- } else if (time_before(
+- bfqq->last_wr_start_finish +
+- bfqq->wr_cur_max_time,
+- jiffies +
+- bfqd->bfq_wr_rt_max_time) &&
+- soft_rt) {
+- /*
+- *
+- * The remaining weight-raising time is lower
+- * than bfqd->bfq_wr_rt_max_time, which means
+- * that the application is enjoying weight
+- * raising either because deemed soft-rt in
+- * the near past, or because deemed interactive
+- * a long ago.
+- * In both cases, resetting now the current
+- * remaining weight-raising time for the
+- * application to the weight-raising duration
+- * for soft rt applications would not cause any
+- * latency increase for the application (as the
+- * new duration would be higher than the
+- * remaining time).
+- *
+- * In addition, the application is now meeting
+- * the requirements for being deemed soft rt.
+- * In the end we can correctly and safely
+- * (re)charge the weight-raising duration for
+- * the application with the weight-raising
+- * duration for soft rt applications.
+- *
+- * In particular, doing this recharge now, i.e.,
+- * before the weight-raising period for the
+- * application finishes, reduces the probability
+- * of the following negative scenario:
+- * 1) the weight of a soft rt application is
+- * raised at startup (as for any newly
+- * created application),
+- * 2) since the application is not interactive,
+- * at a certain time weight-raising is
+- * stopped for the application,
+- * 3) at that time the application happens to
+- * still have pending requests, and hence
+- * is destined to not have a chance to be
+- * deemed soft rt before these requests are
+- * completed (see the comments to the
+- * function bfq_bfqq_softrt_next_start()
+- * for details on soft rt detection),
+- * 4) these pending requests experience a high
+- * latency because the application is not
+- * weight-raised while they are pending.
+- */
+- bfqq->last_wr_start_finish = jiffies;
+- bfqq->wr_cur_max_time =
+- bfqd->bfq_wr_rt_max_time;
+- }
+- }
+-set_prio_changed:
+- if (old_wr_coeff != bfqq->wr_coeff)
+- entity->prio_changed = 1;
+-add_bfqq_busy:
+- bfqq->last_idle_bklogged = jiffies;
+- bfqq->service_from_backlogged = 0;
+- bfq_clear_bfqq_softrt_update(bfqq);
+- bfq_add_bfqq_busy(bfqd, bfqq);
+- } else {
++ if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
++ bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
++ rq, &interactive);
++ else {
+ if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
+ time_is_before_jiffies(
+ bfqq->last_wr_start_finish +
+@@ -1048,21 +1450,48 @@ static void bfq_add_request(struct request *rq)
+ bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
+
+ bfqd->wr_busy_queues++;
+- entity->prio_changed = 1;
++ bfqq->entity.prio_changed = 1;
+ bfq_log_bfqq(bfqd, bfqq,
+- "non-idle wrais starting at %lu, rais_max_time %u",
+- jiffies,
+- jiffies_to_msecs(bfqq->wr_cur_max_time));
++ "non-idle wrais starting, "
++ "wr_max_time %u wr_busy %d",
++ jiffies_to_msecs(bfqq->wr_cur_max_time),
++ bfqd->wr_busy_queues);
+ }
+ if (prev != bfqq->next_rq)
+ bfq_updated_next_req(bfqd, bfqq);
+ }
+
+- if (bfqd->low_latency &&
+- (old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
+- bfqq->last_wr_start_finish = jiffies;
+-}
+-
++ /*
++ * Assign jiffies to last_wr_start_finish in the following
++ * cases:
++ *
++ * . if bfqq is not going to be weight-raised, because, for
++ * non weight-raised queues, last_wr_start_finish stores the
++ * arrival time of the last request; as of now, this piece
++ * of information is used only for deciding whether to
++ * weight-raise async queues
++ *
++ * . if bfqq is not weight-raised, because, if bfqq is now
++ * switching to weight-raised, then last_wr_start_finish
++ * stores the time when weight-raising starts
++ *
++ * . if bfqq is interactive, because, regardless of whether
++ * bfqq is currently weight-raised, the weight-raising
++ * period must start or restart (this case is considered
++ * separately because it is not detected by the above
++ * conditions, if bfqq is already weight-raised)
++ *
++ * last_wr_start_finish has to be updated also if bfqq is soft
++ * real-time, because the weight-raising period is constantly
++ * restarted on idle-to-busy transitions for these queues, but
++ * this is already done in bfq_bfqq_handle_idle_busy_switch if
++ * needed.
++ */
++ if (bfqd->low_latency &&
++ (old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
++ bfqq->last_wr_start_finish = jiffies;
++}
++
+ static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
+ struct bio *bio)
+ {
+@@ -1074,21 +1503,31 @@ static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
+ if (!bic)
+ return NULL;
+
+- bfqq = bic_to_bfqq(bic, bfq_bio_sync(bio));
++ bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
+ if (bfqq)
+ return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
+
+ return NULL;
+ }
+
++static sector_t get_sdist(sector_t last_pos, struct request *rq)
++{
++ sector_t sdist = 0;
++
++ if (last_pos) {
++ if (last_pos < blk_rq_pos(rq))
++ sdist = blk_rq_pos(rq) - last_pos;
++ else
++ sdist = last_pos - blk_rq_pos(rq);
++ }
++
++ return sdist;
++}
++
+ static void bfq_activate_request(struct request_queue *q, struct request *rq)
+ {
+ struct bfq_data *bfqd = q->elevator->elevator_data;
+-
+ bfqd->rq_in_driver++;
+- bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
+- bfq_log(bfqd, "activate_request: new bfqd->last_position %llu",
+- (unsigned long long) bfqd->last_position);
+ }
+
+ static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
+@@ -1105,6 +1544,9 @@ static void bfq_remove_request(struct request *rq)
+ struct bfq_data *bfqd = bfqq->bfqd;
+ const int sync = rq_is_sync(rq);
+
++ BUG_ON(bfqq->entity.service > bfqq->entity.budget &&
++ bfqq == bfqd->in_service_queue);
++
+ if (bfqq->next_rq == rq) {
+ bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
+ bfq_updated_next_req(bfqd, bfqq);
+@@ -1118,8 +1560,29 @@ static void bfq_remove_request(struct request *rq)
+ elv_rb_del(&bfqq->sort_list, rq);
+
+ if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
+- if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue)
+- bfq_del_bfqq_busy(bfqd, bfqq, 1);
++ bfqq->next_rq = NULL;
++
++ BUG_ON(bfqq->entity.budget < 0);
++
++ if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
++ BUG_ON(bfqq->ref < 2); /* referred by rq and on tree */
++ bfq_del_bfqq_busy(bfqd, bfqq, false);
++ /*
++ * bfqq emptied. In normal operation, when
++ * bfqq is empty, bfqq->entity.service and
++ * bfqq->entity.budget must contain,
++ * respectively, the service received and the
++ * budget used last time bfqq emptied. These
++ * facts do not hold in this case, as at least
++ * this last removal occurred while bfqq is
++ * not in service. To avoid inconsistencies,
++ * reset both bfqq->entity.service and
++ * bfqq->entity.budget, if bfqq has still a
++ * process that may issue I/O requests to it.
++ */
++ bfqq->entity.budget = bfqq->entity.service = 0;
++ }
++
+ /*
+ * Remove queue from request-position tree as it is empty.
+ */
+@@ -1133,19 +1596,17 @@ static void bfq_remove_request(struct request *rq)
+ BUG_ON(bfqq->meta_pending == 0);
+ bfqq->meta_pending--;
+ }
+-#ifdef CONFIG_BFQ_GROUP_IOSCHED
+ bfqg_stats_update_io_remove(bfqq_group(bfqq), rq->cmd_flags);
+-#endif
+ }
+
+-static int bfq_merge(struct request_queue *q, struct request **req,
+- struct bio *bio)
++static enum elv_merge bfq_merge(struct request_queue *q, struct request **req,
++ struct bio *bio)
+ {
+ struct bfq_data *bfqd = q->elevator->elevator_data;
+ struct request *__rq;
+
+ __rq = bfq_find_rq_fmerge(bfqd, bio);
+- if (__rq && elv_rq_merge_ok(__rq, bio)) {
++ if (__rq && elv_bio_merge_ok(__rq, bio)) {
+ *req = __rq;
+ return ELEVATOR_FRONT_MERGE;
+ }
+@@ -1154,7 +1615,7 @@ static int bfq_merge(struct request_queue *q, struct request **req,
+ }
+
+ static void bfq_merged_request(struct request_queue *q, struct request *req,
+- int type)
++ enum elv_merge type)
+ {
+ if (type == ELEVATOR_FRONT_MERGE &&
+ rb_prev(&req->rb_node) &&
+@@ -1190,7 +1651,7 @@ static void bfq_merged_request(struct request_queue *q, struct request *req,
+ static void bfq_bio_merged(struct request_queue *q, struct request *req,
+ struct bio *bio)
+ {
+- bfqg_stats_update_io_merged(bfqq_group(RQ_BFQQ(req)), bio->bi_rw);
++ bfqg_stats_update_io_merged(bfqq_group(RQ_BFQQ(req)), bio->bi_opf);
+ }
+ #endif
+
+@@ -1210,7 +1671,7 @@ static void bfq_merged_requests(struct request_queue *q, struct request *rq,
+ */
+ if (bfqq == next_bfqq &&
+ !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
+- time_before(next->fifo_time, rq->fifo_time)) {
++ next->fifo_time < rq->fifo_time) {
+ list_del_init(&rq->queuelist);
+ list_replace_init(&next->queuelist, &rq->queuelist);
+ rq->fifo_time = next->fifo_time;
+@@ -1220,21 +1681,30 @@ static void bfq_merged_requests(struct request_queue *q, struct request *rq,
+ bfqq->next_rq = rq;
+
+ bfq_remove_request(next);
+-#ifdef CONFIG_BFQ_GROUP_IOSCHED
+ bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
+-#endif
+ }
+
+ /* Must be called with bfqq != NULL */
+ static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
+ {
+ BUG_ON(!bfqq);
++
+ if (bfq_bfqq_busy(bfqq))
+ bfqq->bfqd->wr_busy_queues--;
+ bfqq->wr_coeff = 1;
+ bfqq->wr_cur_max_time = 0;
+- /* Trigger a weight change on the next activation of the queue */
++ bfqq->last_wr_start_finish = jiffies;
++ /*
++ * Trigger a weight change on the next invocation of
++ * __bfq_entity_update_weight_prio.
++ */
+ bfqq->entity.prio_changed = 1;
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "end_wr: wrais ending at %lu, rais_max_time %u",
++ bfqq->last_wr_start_finish,
++ jiffies_to_msecs(bfqq->wr_cur_max_time));
++ bfq_log_bfqq(bfqq->bfqd, bfqq, "end_wr: wr_busy %d",
++ bfqq->bfqd->wr_busy_queues);
+ }
+
+ static void bfq_end_wr_async_queues(struct bfq_data *bfqd,
+@@ -1277,7 +1747,7 @@ static int bfq_rq_close_to_sector(void *io_struct, bool request,
+ sector_t sector)
+ {
+ return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
+- BFQQ_SEEK_THR;
++ BFQQ_CLOSE_THR;
+ }
+
+ static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
+@@ -1399,7 +1869,7 @@ bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
+ * throughput.
+ */
+ bfqq->new_bfqq = new_bfqq;
+- atomic_add(process_refs, &new_bfqq->ref);
++ new_bfqq->ref += process_refs;
+ return new_bfqq;
+ }
+
+@@ -1430,9 +1900,23 @@ static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
+ }
+
+ /*
+- * Attempt to schedule a merge of bfqq with the currently in-service queue
+- * or with a close queue among the scheduled queues.
+- * Return NULL if no merge was scheduled, a pointer to the shared bfq_queue
++ * If this function returns true, then bfqq cannot be merged. The idea
++ * is that true cooperation happens very early after processes start
++ * to do I/O. Usually, late cooperations are just accidental false
++ * positives. In case bfqq is weight-raised, such false positives
++ * would evidently degrade latency guarantees for bfqq.
++ */
++static bool wr_from_too_long(struct bfq_queue *bfqq)
++{
++ return bfqq->wr_coeff > 1 &&
++ time_is_before_jiffies(bfqq->last_wr_start_finish +
++ msecs_to_jiffies(100));
++}
++
++/*
++ * Attempt to schedule a merge of bfqq with the currently in-service
++ * queue or with a close queue among the scheduled queues. Return
++ * NULL if no merge was scheduled, a pointer to the shared bfq_queue
+ * structure otherwise.
+ *
+ * The OOM queue is not allowed to participate to cooperation: in fact, since
+@@ -1441,6 +1925,18 @@ static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
+ * handle merging with the OOM queue would be quite complex and expensive
+ * to maintain. Besides, in such a critical condition as an out of memory,
+ * the benefits of queue merging may be little relevant, or even negligible.
++ *
++ * Weight-raised queues can be merged only if their weight-raising
++ * period has just started. In fact cooperating processes are usually
++ * started together. Thus, with this filter we avoid false positives
++ * that would jeopardize low-latency guarantees.
++ *
++ * WARNING: queue merging may impair fairness among non-weight raised
++ * queues, for at least two reasons: 1) the original weight of a
++ * merged queue may change during the merged state, 2) even being the
++ * weight the same, a merged queue may be bloated with many more
++ * requests than the ones produced by its originally-associated
++ * process.
+ */
+ static struct bfq_queue *
+ bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+@@ -1450,16 +1946,32 @@ bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+
+ if (bfqq->new_bfqq)
+ return bfqq->new_bfqq;
+- if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
++
++ if (io_struct && wr_from_too_long(bfqq) &&
++ likely(bfqq != &bfqd->oom_bfqq))
++ bfq_log_bfqq(bfqd, bfqq,
++ "would have looked for coop, but bfq%d wr",
++ bfqq->pid);
++
++ if (!io_struct ||
++ wr_from_too_long(bfqq) ||
++ unlikely(bfqq == &bfqd->oom_bfqq))
+ return NULL;
+- /* If device has only one backlogged bfq_queue, don't search. */
++
++ /* If there is only one backlogged queue, don't search. */
+ if (bfqd->busy_queues == 1)
+ return NULL;
+
+ in_service_bfqq = bfqd->in_service_queue;
+
++ if (in_service_bfqq && in_service_bfqq != bfqq &&
++ bfqd->in_service_bic && wr_from_too_long(in_service_bfqq)
++ && likely(in_service_bfqq == &bfqd->oom_bfqq))
++ bfq_log_bfqq(bfqd, bfqq,
++ "would have tried merge with in-service-queue, but wr");
++
+ if (!in_service_bfqq || in_service_bfqq == bfqq ||
+- !bfqd->in_service_bic ||
++ !bfqd->in_service_bic || wr_from_too_long(in_service_bfqq) ||
+ unlikely(in_service_bfqq == &bfqd->oom_bfqq))
+ goto check_scheduled;
+
+@@ -1481,7 +1993,15 @@ bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+
+ BUG_ON(new_bfqq && bfqq->entity.parent != new_bfqq->entity.parent);
+
+- if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
++ if (new_bfqq && wr_from_too_long(new_bfqq) &&
++ likely(new_bfqq != &bfqd->oom_bfqq) &&
++ bfq_may_be_close_cooperator(bfqq, new_bfqq))
++ bfq_log_bfqq(bfqd, bfqq,
++ "would have merged with bfq%d, but wr",
++ new_bfqq->pid);
++
++ if (new_bfqq && !wr_from_too_long(new_bfqq) &&
++ likely(new_bfqq != &bfqd->oom_bfqq) &&
+ bfq_may_be_close_cooperator(bfqq, new_bfqq))
+ return bfq_setup_merge(bfqq, new_bfqq);
+
+@@ -1490,53 +2010,25 @@ bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+
+ static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
+ {
++ struct bfq_io_cq *bic = bfqq->bic;
++
+ /*
+ * If !bfqq->bic, the queue is already shared or its requests
+ * have already been redirected to a shared queue; both idle window
+ * and weight raising state have already been saved. Do nothing.
+ */
+- if (!bfqq->bic)
++ if (!bic)
+ return;
+- if (bfqq->bic->wr_time_left)
+- /*
+- * This is the queue of a just-started process, and would
+- * deserve weight raising: we set wr_time_left to the full
+- * weight-raising duration to trigger weight-raising when
+- * and if the queue is split and the first request of the
+- * queue is enqueued.
+- */
+- bfqq->bic->wr_time_left = bfq_wr_duration(bfqq->bfqd);
+- else if (bfqq->wr_coeff > 1) {
+- unsigned long wr_duration =
+- jiffies - bfqq->last_wr_start_finish;
+- /*
+- * It may happen that a queue's weight raising period lasts
+- * longer than its wr_cur_max_time, as weight raising is
+- * handled only when a request is enqueued or dispatched (it
+- * does not use any timer). If the weight raising period is
+- * about to end, don't save it.
+- */
+- if (bfqq->wr_cur_max_time <= wr_duration)
+- bfqq->bic->wr_time_left = 0;
+- else
+- bfqq->bic->wr_time_left =
+- bfqq->wr_cur_max_time - wr_duration;
+- /*
+- * The bfq_queue is becoming shared or the requests of the
+- * process owning the queue are being redirected to a shared
+- * queue. Stop the weight raising period of the queue, as in
+- * both cases it should not be owned by an interactive or
+- * soft real-time application.
+- */
+- bfq_bfqq_end_wr(bfqq);
+- } else
+- bfqq->bic->wr_time_left = 0;
+- bfqq->bic->saved_idle_window = bfq_bfqq_idle_window(bfqq);
+- bfqq->bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
+- bfqq->bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
+- bfqq->bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
+- bfqq->bic->cooperations++;
+- bfqq->bic->failed_cooperations = 0;
++
++ bic->saved_idle_window = bfq_bfqq_idle_window(bfqq);
++ bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
++ bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
++ bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
++ bic->saved_wr_coeff = bfqq->wr_coeff;
++ bic->saved_wr_start_at_switch_to_srt = bfqq->wr_start_at_switch_to_srt;
++ bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
++ bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
++ BUG_ON(time_is_after_jiffies(bfqq->last_wr_start_finish));
+ }
+
+ static void bfq_get_bic_reference(struct bfq_queue *bfqq)
+@@ -1561,6 +2053,41 @@ bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
+ if (bfq_bfqq_IO_bound(bfqq))
+ bfq_mark_bfqq_IO_bound(new_bfqq);
+ bfq_clear_bfqq_IO_bound(bfqq);
++
++ /*
++ * If bfqq is weight-raised, then let new_bfqq inherit
++ * weight-raising. To reduce false positives, neglect the case
++ * where bfqq has just been created, but has not yet made it
++ * to be weight-raised (which may happen because EQM may merge
++ * bfqq even before bfq_add_request is executed for the first
++ * time for bfqq). Handling this case would however be very
++ * easy, thanks to the flag just_created.
++ */
++ if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
++ new_bfqq->wr_coeff = bfqq->wr_coeff;
++ new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
++ new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
++ new_bfqq->wr_start_at_switch_to_srt =
++ bfqq->wr_start_at_switch_to_srt;
++ if (bfq_bfqq_busy(new_bfqq))
++ bfqd->wr_busy_queues++;
++ new_bfqq->entity.prio_changed = 1;
++ bfq_log_bfqq(bfqd, new_bfqq,
++ "wr start after merge with %d, rais_max_time %u",
++ bfqq->pid,
++ jiffies_to_msecs(bfqq->wr_cur_max_time));
++ }
++
++ if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
++ bfqq->wr_coeff = 1;
++ bfqq->entity.prio_changed = 1;
++ if (bfq_bfqq_busy(bfqq))
++ bfqd->wr_busy_queues--;
++ }
++
++ bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
++ bfqd->wr_busy_queues);
++
+ /*
+ * Grab a reference to the bic, to prevent it from being destroyed
+ * before being possibly touched by a bfq_split_bfqq().
+@@ -1584,33 +2111,23 @@ bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
+ */
+ new_bfqq->bic = NULL;
+ bfqq->bic = NULL;
++ /* release process reference to bfqq */
+ bfq_put_queue(bfqq);
+ }
+
+-static void bfq_bfqq_increase_failed_cooperations(struct bfq_queue *bfqq)
+-{
+- struct bfq_io_cq *bic = bfqq->bic;
+- struct bfq_data *bfqd = bfqq->bfqd;
+-
+- if (bic && bfq_bfqq_cooperations(bfqq) >= bfqd->bfq_coop_thresh) {
+- bic->failed_cooperations++;
+- if (bic->failed_cooperations >= bfqd->bfq_failed_cooperations)
+- bic->cooperations = 0;
+- }
+-}
+-
+-static int bfq_allow_merge(struct request_queue *q, struct request *rq,
+- struct bio *bio)
++static int bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
++ struct bio *bio)
+ {
+ struct bfq_data *bfqd = q->elevator->elevator_data;
++ bool is_sync = op_is_sync(bio->bi_opf);
+ struct bfq_io_cq *bic;
+ struct bfq_queue *bfqq, *new_bfqq;
+
+ /*
+ * Disallow merge of a sync bio into an async request.
+ */
+- if (bfq_bio_sync(bio) && !rq_is_sync(rq))
+- return 0;
++ if (is_sync && !rq_is_sync(rq))
++ return false;
+
+ /*
+ * Lookup the bfqq that this bio will be queued with. Allow
+@@ -1619,9 +2136,9 @@ static int bfq_allow_merge(struct request_queue *q, struct request *rq,
+ */
+ bic = bfq_bic_lookup(bfqd, current->io_context);
+ if (!bic)
+- return 0;
++ return false;
+
+- bfqq = bic_to_bfqq(bic, bfq_bio_sync(bio));
++ bfqq = bic_to_bfqq(bic, is_sync);
+ /*
+ * We take advantage of this function to perform an early merge
+ * of the queues of possible cooperating processes.
+@@ -1636,30 +2153,111 @@ static int bfq_allow_merge(struct request_queue *q, struct request *rq,
+ * to decide whether bio and rq can be merged.
+ */
+ bfqq = new_bfqq;
+- } else
+- bfq_bfqq_increase_failed_cooperations(bfqq);
++ }
+ }
+
+ return bfqq == RQ_BFQQ(rq);
+ }
+
++static int bfq_allow_rq_merge(struct request_queue *q, struct request *rq,
++ struct request *next)
++{
++ return RQ_BFQQ(rq) == RQ_BFQQ(next);
++}
++
++/*
++ * Set the maximum time for the in-service queue to consume its
++ * budget. This prevents seeky processes from lowering the throughput.
++ * In practice, a time-slice service scheme is used with seeky
++ * processes.
++ */
++static void bfq_set_budget_timeout(struct bfq_data *bfqd,
++ struct bfq_queue *bfqq)
++{
++ unsigned int timeout_coeff;
++
++ if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
++ timeout_coeff = 1;
++ else
++ timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
++
++ bfqd->last_budget_start = ktime_get();
++
++ bfqq->budget_timeout = jiffies +
++ bfqd->bfq_timeout * timeout_coeff;
++
++ bfq_log_bfqq(bfqd, bfqq, "set budget_timeout %u",
++ jiffies_to_msecs(bfqd->bfq_timeout * timeout_coeff));
++}
++
+ static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
+ struct bfq_queue *bfqq)
+ {
+ if (bfqq) {
+-#ifdef CONFIG_BFQ_GROUP_IOSCHED
+ bfqg_stats_update_avg_queue_size(bfqq_group(bfqq));
+-#endif
+ bfq_mark_bfqq_must_alloc(bfqq);
+- bfq_mark_bfqq_budget_new(bfqq);
+ bfq_clear_bfqq_fifo_expire(bfqq);
+
+ bfqd->budgets_assigned = (bfqd->budgets_assigned*7 + 256) / 8;
+
++ BUG_ON(bfqq == bfqd->in_service_queue);
++ BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list));
++
++ if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
++ bfqq->wr_coeff > 1 &&
++ bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
++ time_is_before_jiffies(bfqq->budget_timeout)) {
++ /*
++ * For soft real-time queues, move the start
++ * of the weight-raising period forward by the
++ * time the queue has not received any
++ * service. Otherwise, a relatively long
++ * service delay is likely to cause the
++ * weight-raising period of the queue to end,
++ * because of the short duration of the
++ * weight-raising period of a soft real-time
++ * queue. It is worth noting that this move
++ * is not so dangerous for the other queues,
++ * because soft real-time queues are not
++ * greedy.
++ *
++ * To not add a further variable, we use the
++ * overloaded field budget_timeout to
++ * determine for how long the queue has not
++ * received service, i.e., how much time has
++ * elapsed since the queue expired. However,
++ * this is a little imprecise, because
++ * budget_timeout is set to jiffies if bfqq
++ * not only expires, but also remains with no
++ * request.
++ */
++ if (time_after(bfqq->budget_timeout,
++ bfqq->last_wr_start_finish))
++ bfqq->last_wr_start_finish +=
++ jiffies - bfqq->budget_timeout;
++ else
++ bfqq->last_wr_start_finish = jiffies;
++
++ if (time_is_after_jiffies(bfqq->last_wr_start_finish)) {
++ pr_crit(
++ "BFQ WARNING:last %lu budget %lu jiffies %lu",
++ bfqq->last_wr_start_finish,
++ bfqq->budget_timeout,
++ jiffies);
++ pr_crit("diff %lu", jiffies -
++ max_t(unsigned long,
++ bfqq->last_wr_start_finish,
++ bfqq->budget_timeout));
++ bfqq->last_wr_start_finish = jiffies;
++ }
++ }
++
++ bfq_set_budget_timeout(bfqd, bfqq);
+ bfq_log_bfqq(bfqd, bfqq,
+ "set_in_service_queue, cur-budget = %d",
+ bfqq->entity.budget);
+- }
++ } else
++ bfq_log(bfqd, "set_in_service_queue: NULL");
+
+ bfqd->in_service_queue = bfqq;
+ }
+@@ -1675,36 +2273,11 @@ static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
+ return bfqq;
+ }
+
+-/*
+- * If enough samples have been computed, return the current max budget
+- * stored in bfqd, which is dynamically updated according to the
+- * estimated disk peak rate; otherwise return the default max budget
+- */
+-static int bfq_max_budget(struct bfq_data *bfqd)
+-{
+- if (bfqd->budgets_assigned < bfq_stats_min_budgets)
+- return bfq_default_max_budget;
+- else
+- return bfqd->bfq_max_budget;
+-}
+-
+-/*
+- * Return min budget, which is a fraction of the current or default
+- * max budget (trying with 1/32)
+- */
+-static int bfq_min_budget(struct bfq_data *bfqd)
+-{
+- if (bfqd->budgets_assigned < bfq_stats_min_budgets)
+- return bfq_default_max_budget / 32;
+- else
+- return bfqd->bfq_max_budget / 32;
+-}
+-
+ static void bfq_arm_slice_timer(struct bfq_data *bfqd)
+ {
+ struct bfq_queue *bfqq = bfqd->in_service_queue;
+ struct bfq_io_cq *bic;
+- unsigned long sl;
++ u32 sl;
+
+ BUG_ON(!RB_EMPTY_ROOT(&bfqq->sort_list));
+
+@@ -1728,119 +2301,366 @@ static void bfq_arm_slice_timer(struct bfq_data *bfqd)
+ sl = bfqd->bfq_slice_idle;
+ /*
+ * Unless the queue is being weight-raised or the scenario is
+- * asymmetric, grant only minimum idle time if the queue either
+- * has been seeky for long enough or has already proved to be
+- * constantly seeky.
++ * asymmetric, grant only minimum idle time if the queue
++ * is seeky. A long idling is preserved for a weight-raised
++ * queue, or, more in general, in an asymemtric scenario,
++ * because a long idling is needed for guaranteeing to a queue
++ * its reserved share of the throughput (in particular, it is
++ * needed if the queue has a higher weight than some other
++ * queue).
+ */
+- if (bfq_sample_valid(bfqq->seek_samples) &&
+- ((BFQQ_SEEKY(bfqq) && bfqq->entity.service >
+- bfq_max_budget(bfqq->bfqd) / 8) ||
+- bfq_bfqq_constantly_seeky(bfqq)) && bfqq->wr_coeff == 1 &&
++ if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
+ bfq_symmetric_scenario(bfqd))
+- sl = min(sl, msecs_to_jiffies(BFQ_MIN_TT));
+- else if (bfqq->wr_coeff > 1)
+- sl = sl * 3;
++ sl = min_t(u32, sl, BFQ_MIN_TT);
++
+ bfqd->last_idling_start = ktime_get();
+- mod_timer(&bfqd->idle_slice_timer, jiffies + sl);
+-#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
++ HRTIMER_MODE_REL);
+ bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
+-#endif
+- bfq_log(bfqd, "arm idle: %u/%u ms",
+- jiffies_to_msecs(sl), jiffies_to_msecs(bfqd->bfq_slice_idle));
++ bfq_log(bfqd, "arm idle: %ld/%ld ms",
++ sl / NSEC_PER_MSEC, bfqd->bfq_slice_idle / NSEC_PER_MSEC);
+ }
+
+ /*
+- * Set the maximum time for the in-service queue to consume its
+- * budget. This prevents seeky processes from lowering the disk
+- * throughput (always guaranteed with a time slice scheme as in CFQ).
++ * In autotuning mode, max_budget is dynamically recomputed as the
++ * amount of sectors transferred in timeout at the estimated peak
++ * rate. This enables BFQ to utilize a full timeslice with a full
++ * budget, even if the in-service queue is served at peak rate. And
++ * this maximises throughput with sequential workloads.
+ */
+-static void bfq_set_budget_timeout(struct bfq_data *bfqd)
++static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
+ {
+- struct bfq_queue *bfqq = bfqd->in_service_queue;
+- unsigned int timeout_coeff;
++ return (u64)bfqd->peak_rate * USEC_PER_MSEC *
++ jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
++}
+
+- if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
+- timeout_coeff = 1;
+- else
+- timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
++/*
++ * Update parameters related to throughput and responsiveness, as a
++ * function of the estimated peak rate. See comments on
++ * bfq_calc_max_budget(), and on T_slow and T_fast arrays.
++ */
++static void update_thr_responsiveness_params(struct bfq_data *bfqd)
++{
++ int dev_type = blk_queue_nonrot(bfqd->queue);
++
++ if (bfqd->bfq_user_max_budget == 0) {
++ bfqd->bfq_max_budget =
++ bfq_calc_max_budget(bfqd);
++ BUG_ON(bfqd->bfq_max_budget < 0);
++ bfq_log(bfqd, "new max_budget = %d",
++ bfqd->bfq_max_budget);
++ }
+
+- bfqd->last_budget_start = ktime_get();
++ if (bfqd->device_speed == BFQ_BFQD_FAST &&
++ bfqd->peak_rate < device_speed_thresh[dev_type]) {
++ bfqd->device_speed = BFQ_BFQD_SLOW;
++ bfqd->RT_prod = R_slow[dev_type] *
++ T_slow[dev_type];
++ } else if (bfqd->device_speed == BFQ_BFQD_SLOW &&
++ bfqd->peak_rate > device_speed_thresh[dev_type]) {
++ bfqd->device_speed = BFQ_BFQD_FAST;
++ bfqd->RT_prod = R_fast[dev_type] *
++ T_fast[dev_type];
++ }
+
+- bfq_clear_bfqq_budget_new(bfqq);
+- bfqq->budget_timeout = jiffies +
+- bfqd->bfq_timeout[bfq_bfqq_sync(bfqq)] * timeout_coeff;
++ bfq_log(bfqd,
++"dev_type %s dev_speed_class = %s (%llu sects/sec), thresh %llu setcs/sec",
++ dev_type == 0 ? "ROT" : "NONROT",
++ bfqd->device_speed == BFQ_BFQD_FAST ? "FAST" : "SLOW",
++ bfqd->device_speed == BFQ_BFQD_FAST ?
++ (USEC_PER_SEC*(u64)R_fast[dev_type])>>BFQ_RATE_SHIFT :
++ (USEC_PER_SEC*(u64)R_slow[dev_type])>>BFQ_RATE_SHIFT,
++ (USEC_PER_SEC*(u64)device_speed_thresh[dev_type])>>
++ BFQ_RATE_SHIFT);
++}
+
+- bfq_log_bfqq(bfqd, bfqq, "set budget_timeout %u",
+- jiffies_to_msecs(bfqd->bfq_timeout[bfq_bfqq_sync(bfqq)] *
+- timeout_coeff));
++static void bfq_reset_rate_computation(struct bfq_data *bfqd, struct request *rq)
++{
++ if (rq != NULL) { /* new rq dispatch now, reset accordingly */
++ bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns() ;
++ bfqd->peak_rate_samples = 1;
++ bfqd->sequential_samples = 0;
++ bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
++ blk_rq_sectors(rq);
++ } else /* no new rq dispatched, just reset the number of samples */
++ bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
++
++ bfq_log(bfqd,
++ "reset_rate_computation at end, sample %u/%u tot_sects %llu",
++ bfqd->peak_rate_samples, bfqd->sequential_samples,
++ bfqd->tot_sectors_dispatched);
+ }
+
+-/*
+- * Move request from internal lists to the request queue dispatch list.
+- */
+-static void bfq_dispatch_insert(struct request_queue *q, struct request *rq)
++static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
+ {
+- struct bfq_data *bfqd = q->elevator->elevator_data;
+- struct bfq_queue *bfqq = RQ_BFQQ(rq);
++ u32 rate, weight, divisor;
+
+ /*
+- * For consistency, the next instruction should have been executed
+- * after removing the request from the queue and dispatching it.
+- * We execute instead this instruction before bfq_remove_request()
+- * (and hence introduce a temporary inconsistency), for efficiency.
+- * In fact, in a forced_dispatch, this prevents two counters related
+- * to bfqq->dispatched to risk to be uselessly decremented if bfqq
+- * is not in service, and then to be incremented again after
+- * incrementing bfqq->dispatched.
++ * For the convergence property to hold (see comments on
++ * bfq_update_peak_rate()) and for the assessment to be
++ * reliable, a minimum number of samples must be present, and
++ * a minimum amount of time must have elapsed. If not so, do
++ * not compute new rate. Just reset parameters, to get ready
++ * for a new evaluation attempt.
+ */
+- bfqq->dispatched++;
+- bfq_remove_request(rq);
+- elv_dispatch_sort(q, rq);
++ if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
++ bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL) {
++ bfq_log(bfqd,
++ "update_rate_reset: only resetting, delta_first %lluus samples %d",
++ bfqd->delta_from_first>>10, bfqd->peak_rate_samples);
++ goto reset_computation;
++ }
+
+- if (bfq_bfqq_sync(bfqq))
+- bfqd->sync_flight++;
+-#ifdef CONFIG_BFQ_GROUP_IOSCHED
+- bfqg_stats_update_dispatch(bfqq_group(bfqq), blk_rq_bytes(rq),
+- rq->cmd_flags);
+-#endif
++ /*
++ * If a new request completion has occurred after last
++ * dispatch, then, to approximate the rate at which requests
++ * have been served by the device, it is more precise to
++ * extend the observation interval to the last completion.
++ */
++ bfqd->delta_from_first =
++ max_t(u64, bfqd->delta_from_first,
++ bfqd->last_completion - bfqd->first_dispatch);
++
++ BUG_ON(bfqd->delta_from_first == 0);
++ /*
++ * Rate computed in sects/usec, and not sects/nsec, for
++ * precision issues.
++ */
++ rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
++ div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
++
++ bfq_log(bfqd,
++"update_rate_reset: tot_sects %llu delta_first %lluus rate %llu sects/s (%d)",
++ bfqd->tot_sectors_dispatched, bfqd->delta_from_first>>10,
++ ((USEC_PER_SEC*(u64)rate)>>BFQ_RATE_SHIFT),
++ rate > 20<<BFQ_RATE_SHIFT);
++
++ /*
++ * Peak rate not updated if:
++ * - the percentage of sequential dispatches is below 3/4 of the
++ * total, and rate is below the current estimated peak rate
++ * - rate is unreasonably high (> 20M sectors/sec)
++ */
++ if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
++ rate <= bfqd->peak_rate) ||
++ rate > 20<<BFQ_RATE_SHIFT) {
++ bfq_log(bfqd,
++ "update_rate_reset: goto reset, samples %u/%u rate/peak %llu/%llu",
++ bfqd->peak_rate_samples, bfqd->sequential_samples,
++ ((USEC_PER_SEC*(u64)rate)>>BFQ_RATE_SHIFT),
++ ((USEC_PER_SEC*(u64)bfqd->peak_rate)>>BFQ_RATE_SHIFT));
++ goto reset_computation;
++ } else {
++ bfq_log(bfqd,
++ "update_rate_reset: do update, samples %u/%u rate/peak %llu/%llu",
++ bfqd->peak_rate_samples, bfqd->sequential_samples,
++ ((USEC_PER_SEC*(u64)rate)>>BFQ_RATE_SHIFT),
++ ((USEC_PER_SEC*(u64)bfqd->peak_rate)>>BFQ_RATE_SHIFT));
++ }
++
++ /*
++ * We have to update the peak rate, at last! To this purpose,
++ * we use a low-pass filter. We compute the smoothing constant
++ * of the filter as a function of the 'weight' of the new
++ * measured rate.
++ *
++ * As can be seen in next formulas, we define this weight as a
++ * quantity proportional to how sequential the workload is,
++ * and to how long the observation time interval is.
++ *
++ * The weight runs from 0 to 8. The maximum value of the
++ * weight, 8, yields the minimum value for the smoothing
++ * constant. At this minimum value for the smoothing constant,
++ * the measured rate contributes for half of the next value of
++ * the estimated peak rate.
++ *
++ * So, the first step is to compute the weight as a function
++ * of how sequential the workload is. Note that the weight
++ * cannot reach 9, because bfqd->sequential_samples cannot
++ * become equal to bfqd->peak_rate_samples, which, in its
++ * turn, holds true because bfqd->sequential_samples is not
++ * incremented for the first sample.
++ */
++ weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
++
++ /*
++ * Second step: further refine the weight as a function of the
++ * duration of the observation interval.
++ */
++ weight = min_t(u32, 8,
++ div_u64(weight * bfqd->delta_from_first,
++ BFQ_RATE_REF_INTERVAL));
++
++ /*
++ * Divisor ranging from 10, for minimum weight, to 2, for
++ * maximum weight.
++ */
++ divisor = 10 - weight;
++ BUG_ON(divisor == 0);
++
++ /*
++ * Finally, update peak rate:
++ *
++ * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor
++ */
++ bfqd->peak_rate *= divisor-1;
++ bfqd->peak_rate /= divisor;
++ rate /= divisor; /* smoothing constant alpha = 1/divisor */
++
++ bfq_log(bfqd,
++ "update_rate_reset: divisor %d tmp_peak_rate %llu tmp_rate %u",
++ divisor,
++ ((USEC_PER_SEC*(u64)bfqd->peak_rate)>>BFQ_RATE_SHIFT),
++ (u32)((USEC_PER_SEC*(u64)rate)>>BFQ_RATE_SHIFT));
++
++ BUG_ON(bfqd->peak_rate == 0);
++ BUG_ON(bfqd->peak_rate > 20<<BFQ_RATE_SHIFT);
++
++ bfqd->peak_rate += rate;
++ update_thr_responsiveness_params(bfqd);
++ BUG_ON(bfqd->peak_rate > 20<<BFQ_RATE_SHIFT);
++
++reset_computation:
++ bfq_reset_rate_computation(bfqd, rq);
+ }
+
+ /*
+- * Return expired entry, or NULL to just start from scratch in rbtree.
++ * Update the read/write peak rate (the main quantity used for
++ * auto-tuning, see update_thr_responsiveness_params()).
++ *
++ * It is not trivial to estimate the peak rate (correctly): because of
++ * the presence of sw and hw queues between the scheduler and the
++ * device components that finally serve I/O requests, it is hard to
++ * say exactly when a given dispatched request is served inside the
++ * device, and for how long. As a consequence, it is hard to know
++ * precisely at what rate a given set of requests is actually served
++ * by the device.
++ *
++ * On the opposite end, the dispatch time of any request is trivially
++ * available, and, from this piece of information, the "dispatch rate"
++ * of requests can be immediately computed. So, the idea in the next
++ * function is to use what is known, namely request dispatch times
++ * (plus, when useful, request completion times), to estimate what is
++ * unknown, namely in-device request service rate.
++ *
++ * The main issue is that, because of the above facts, the rate at
++ * which a certain set of requests is dispatched over a certain time
++ * interval can vary greatly with respect to the rate at which the
++ * same requests are then served. But, since the size of any
++ * intermediate queue is limited, and the service scheme is lossless
++ * (no request is silently dropped), the following obvious convergence
++ * property holds: the number of requests dispatched MUST become
++ * closer and closer to the number of requests completed as the
++ * observation interval grows. This is the key property used in
++ * the next function to estimate the peak service rate as a function
++ * of the observed dispatch rate. The function assumes to be invoked
++ * on every request dispatch.
+ */
+-static struct request *bfq_check_fifo(struct bfq_queue *bfqq)
++static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
+ {
+- struct request *rq = NULL;
++ u64 now_ns = ktime_get_ns();
++
++ if (bfqd->peak_rate_samples == 0) { /* first dispatch */
++ bfq_log(bfqd,
++ "update_peak_rate: goto reset, samples %d",
++ bfqd->peak_rate_samples) ;
++ bfq_reset_rate_computation(bfqd, rq);
++ goto update_last_values; /* will add one sample */
++ }
+
+- if (bfq_bfqq_fifo_expire(bfqq))
+- return NULL;
++ /*
++ * Device idle for very long: the observation interval lasting
++ * up to this dispatch cannot be a valid observation interval
++ * for computing a new peak rate (similarly to the late-
++ * completion event in bfq_completed_request()). Go to
++ * update_rate_and_reset to have the following three steps
++ * taken:
++ * - close the observation interval at the last (previous)
++ * request dispatch or completion
++ * - compute rate, if possible, for that observation interval
++ * - start a new observation interval with this dispatch
++ */
++ if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
++ bfqd->rq_in_driver == 0) {
++ bfq_log(bfqd,
++"update_peak_rate: jumping to updating&resetting delta_last %lluus samples %d",
++ (now_ns - bfqd->last_dispatch)>>10,
++ bfqd->peak_rate_samples) ;
++ goto update_rate_and_reset;
++ }
+
+- bfq_mark_bfqq_fifo_expire(bfqq);
++ /* Update sampling information */
++ bfqd->peak_rate_samples++;
+
+- if (list_empty(&bfqq->fifo))
+- return NULL;
++ if ((bfqd->rq_in_driver > 0 ||
++ now_ns - bfqd->last_completion < BFQ_MIN_TT)
++ && get_sdist(bfqd->last_position, rq) < BFQQ_SEEK_THR)
++ bfqd->sequential_samples++;
+
+- rq = rq_entry_fifo(bfqq->fifo.next);
++ bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
+
+- if (time_before(jiffies, rq->fifo_time))
+- return NULL;
++ /* Reset max observed rq size every 32 dispatches */
++ if (likely(bfqd->peak_rate_samples % 32))
++ bfqd->last_rq_max_size =
++ max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
++ else
++ bfqd->last_rq_max_size = blk_rq_sectors(rq);
+
+- return rq;
++ bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
++
++ bfq_log(bfqd,
++ "update_peak_rate: added samples %u/%u tot_sects %llu delta_first %lluus",
++ bfqd->peak_rate_samples, bfqd->sequential_samples,
++ bfqd->tot_sectors_dispatched,
++ bfqd->delta_from_first>>10);
++
++ /* Target observation interval not yet reached, go on sampling */
++ if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
++ goto update_last_values;
++
++update_rate_and_reset:
++ bfq_update_rate_reset(bfqd, rq);
++update_last_values:
++ bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
++ bfqd->last_dispatch = now_ns;
++
++ bfq_log(bfqd,
++ "update_peak_rate: delta_first %lluus last_pos %llu peak_rate %llu",
++ (now_ns - bfqd->first_dispatch)>>10,
++ (unsigned long long) bfqd->last_position,
++ ((USEC_PER_SEC*(u64)bfqd->peak_rate)>>BFQ_RATE_SHIFT));
++ bfq_log(bfqd,
++ "update_peak_rate: samples at end %d", bfqd->peak_rate_samples);
+ }
+
+-static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
++/*
++ * Move request from internal lists to the dispatch list of the request queue
++ */
++static void bfq_dispatch_insert(struct request_queue *q, struct request *rq)
+ {
+- struct bfq_entity *entity = &bfqq->entity;
++ struct bfq_queue *bfqq = RQ_BFQQ(rq);
+
+- return entity->budget - entity->service;
++ /*
++ * For consistency, the next instruction should have been executed
++ * after removing the request from the queue and dispatching it.
++ * We execute instead this instruction before bfq_remove_request()
++ * (and hence introduce a temporary inconsistency), for efficiency.
++ * In fact, in a forced_dispatch, this prevents two counters related
++ * to bfqq->dispatched to risk to be uselessly decremented if bfqq
++ * is not in service, and then to be incremented again after
++ * incrementing bfqq->dispatched.
++ */
++ bfqq->dispatched++;
++ bfq_update_peak_rate(q->elevator->elevator_data, rq);
++
++ bfq_remove_request(rq);
++ elv_dispatch_sort(q, rq);
+ }
+
+ static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+ {
+ BUG_ON(bfqq != bfqd->in_service_queue);
+
+- __bfq_bfqd_reset_in_service(bfqd);
+-
+ /*
+ * If this bfqq is shared between multiple processes, check
+ * to make sure that those processes are still issuing I/Os
+@@ -1851,20 +2671,30 @@ static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+ bfq_mark_bfqq_split_coop(bfqq);
+
+ if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
+- /*
+- * Overloading budget_timeout field to store the time
+- * at which the queue remains with no backlog; used by
+- * the weight-raising mechanism.
+- */
+- bfqq->budget_timeout = jiffies;
+- bfq_del_bfqq_busy(bfqd, bfqq, 1);
++ if (bfqq->dispatched == 0)
++ /*
++ * Overloading budget_timeout field to store
++ * the time at which the queue remains with no
++ * backlog and no outstanding request; used by
++ * the weight-raising mechanism.
++ */
++ bfqq->budget_timeout = jiffies;
++
++ bfq_del_bfqq_busy(bfqd, bfqq, true);
+ } else {
+- bfq_activate_bfqq(bfqd, bfqq);
++ bfq_requeue_bfqq(bfqd, bfqq);
+ /*
+ * Resort priority tree of potential close cooperators.
+ */
+ bfq_pos_tree_add_move(bfqd, bfqq);
+ }
++
++ /*
++ * All in-service entities must have been properly deactivated
++ * or requeued before executing the next function, which
++ * resets all in-service entites as no more in service.
++ */
++ __bfq_bfqd_reset_in_service(bfqd);
+ }
+
+ /**
+@@ -1883,10 +2713,19 @@ static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
+ struct request *next_rq;
+ int budget, min_budget;
+
+- budget = bfqq->max_budget;
++ BUG_ON(bfqq != bfqd->in_service_queue);
++
+ min_budget = bfq_min_budget(bfqd);
+
+- BUG_ON(bfqq != bfqd->in_service_queue);
++ if (bfqq->wr_coeff == 1)
++ budget = bfqq->max_budget;
++ else /*
++ * Use a constant, low budget for weight-raised queues,
++ * to help achieve a low latency. Keep it slightly higher
++ * than the minimum possible budget, to cause a little
++ * bit fewer expirations.
++ */
++ budget = 2 * min_budget;
+
+ bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
+ bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
+@@ -1895,7 +2734,7 @@ static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
+ bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
+ bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
+
+- if (bfq_bfqq_sync(bfqq)) {
++ if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
+ switch (reason) {
+ /*
+ * Caveat: in all the following cases we trade latency
+@@ -1937,14 +2776,10 @@ static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
+ break;
+ case BFQ_BFQQ_BUDGET_TIMEOUT:
+ /*
+- * We double the budget here because: 1) it
+- * gives the chance to boost the throughput if
+- * this is not a seeky process (which may have
+- * bumped into this timeout because of, e.g.,
+- * ZBR), 2) together with charge_full_budget
+- * it helps give seeky processes higher
+- * timestamps, and hence be served less
+- * frequently.
++ * We double the budget here because it gives
++ * the chance to boost the throughput if this
++ * is not a seeky process (and has bumped into
++ * this timeout because of, e.g., ZBR).
+ */
+ budget = min(budget * 2, bfqd->bfq_max_budget);
+ break;
+@@ -1961,17 +2796,49 @@ static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
+ budget = min(budget * 4, bfqd->bfq_max_budget);
+ break;
+ case BFQ_BFQQ_NO_MORE_REQUESTS:
+- /*
+- * Leave the budget unchanged.
+- */
++ /*
++ * For queues that expire for this reason, it
++ * is particularly important to keep the
++ * budget close to the actual service they
++ * need. Doing so reduces the timestamp
++ * misalignment problem described in the
++ * comments in the body of
++ * __bfq_activate_entity. In fact, suppose
++ * that a queue systematically expires for
++ * BFQ_BFQQ_NO_MORE_REQUESTS and presents a
++ * new request in time to enjoy timestamp
++ * back-shifting. The larger the budget of the
++ * queue is with respect to the service the
++ * queue actually requests in each service
++ * slot, the more times the queue can be
++ * reactivated with the same virtual finish
++ * time. It follows that, even if this finish
++ * time is pushed to the system virtual time
++ * to reduce the consequent timestamp
++ * misalignment, the queue unjustly enjoys for
++ * many re-activations a lower finish time
++ * than all newly activated queues.
++ *
++ * The service needed by bfqq is measured
++ * quite precisely by bfqq->entity.service.
++ * Since bfqq does not enjoy device idling,
++ * bfqq->entity.service is equal to the number
++ * of sectors that the process associated with
++ * bfqq requested to read/write before waiting
++ * for request completions, or blocking for
++ * other reasons.
++ */
++ budget = max_t(int, bfqq->entity.service, min_budget);
++ break;
+ default:
+ return;
+ }
+- } else
++ } else if (!bfq_bfqq_sync(bfqq))
+ /*
+- * Async queues get always the maximum possible budget
+- * (their ability to dispatch is limited by
+- * @bfqd->bfq_max_budget_async_rq).
++ * Async queues get always the maximum possible
++ * budget, as for them we do not care about latency
++ * (in addition, their ability to dispatch is limited
++ * by the charging factor).
+ */
+ budget = bfqd->bfq_max_budget;
+
+@@ -1982,160 +2849,120 @@ static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
+ bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
+
+ /*
+- * Make sure that we have enough budget for the next request.
+- * Since the finish time of the bfqq must be kept in sync with
+- * the budget, be sure to call __bfq_bfqq_expire() after the
++ * If there is still backlog, then assign a new budget, making
++ * sure that it is large enough for the next request. Since
++ * the finish time of bfqq must be kept in sync with the
++ * budget, be sure to call __bfq_bfqq_expire() *after* this
+ * update.
++ *
++ * If there is no backlog, then no need to update the budget;
++ * it will be updated on the arrival of a new request.
+ */
+ next_rq = bfqq->next_rq;
+- if (next_rq)
++ if (next_rq) {
++ BUG_ON(reason == BFQ_BFQQ_TOO_IDLE ||
++ reason == BFQ_BFQQ_NO_MORE_REQUESTS);
+ bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
+ bfq_serv_to_charge(next_rq, bfqq));
+- else
+- bfqq->entity.budget = bfqq->max_budget;
++ BUG_ON(!bfq_bfqq_busy(bfqq));
++ BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list));
++ }
+
+ bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
+ next_rq ? blk_rq_sectors(next_rq) : 0,
+ bfqq->entity.budget);
+ }
+
+-static unsigned long bfq_calc_max_budget(u64 peak_rate, u64 timeout)
+-{
+- unsigned long max_budget;
+-
+- /*
+- * The max_budget calculated when autotuning is equal to the
+- * amount of sectors transfered in timeout_sync at the
+- * estimated peak rate.
+- */
+- max_budget = (unsigned long)(peak_rate * 1000 *
+- timeout >> BFQ_RATE_SHIFT);
+-
+- return max_budget;
+-}
+-
+ /*
+- * In addition to updating the peak rate, checks whether the process
+- * is "slow", and returns 1 if so. This slow flag is used, in addition
+- * to the budget timeout, to reduce the amount of service provided to
+- * seeky processes, and hence reduce their chances to lower the
+- * throughput. See the code for more details.
++ * Return true if the process associated with bfqq is "slow". The slow
++ * flag is used, in addition to the budget timeout, to reduce the
++ * amount of service provided to seeky processes, and thus reduce
++ * their chances to lower the throughput. More details in the comments
++ * on the function bfq_bfqq_expire().
++ *
++ * An important observation is in order: as discussed in the comments
++ * on the function bfq_update_peak_rate(), with devices with internal
++ * queues, it is hard if ever possible to know when and for how long
++ * an I/O request is processed by the device (apart from the trivial
++ * I/O pattern where a new request is dispatched only after the
++ * previous one has been completed). This makes it hard to evaluate
++ * the real rate at which the I/O requests of each bfq_queue are
++ * served. In fact, for an I/O scheduler like BFQ, serving a
++ * bfq_queue means just dispatching its requests during its service
++ * slot (i.e., until the budget of the queue is exhausted, or the
++ * queue remains idle, or, finally, a timeout fires). But, during the
++ * service slot of a bfq_queue, around 100 ms at most, the device may
++ * be even still processing requests of bfq_queues served in previous
++ * service slots. On the opposite end, the requests of the in-service
++ * bfq_queue may be completed after the service slot of the queue
++ * finishes.
++ *
++ * Anyway, unless more sophisticated solutions are used
++ * (where possible), the sum of the sizes of the requests dispatched
++ * during the service slot of a bfq_queue is probably the only
++ * approximation available for the service received by the bfq_queue
++ * during its service slot. And this sum is the quantity used in this
++ * function to evaluate the I/O speed of a process.
+ */
+-static bool bfq_update_peak_rate(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+- bool compensate, enum bfqq_expiration reason)
++static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++ bool compensate, enum bfqq_expiration reason,
++ unsigned long *delta_ms)
+ {
+- u64 bw, usecs, expected, timeout;
+- ktime_t delta;
+- int update = 0;
++ ktime_t delta_ktime;
++ u32 delta_usecs;
++ bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
+
+- if (!bfq_bfqq_sync(bfqq) || bfq_bfqq_budget_new(bfqq))
++ if (!bfq_bfqq_sync(bfqq))
+ return false;
+
+ if (compensate)
+- delta = bfqd->last_idling_start;
++ delta_ktime = bfqd->last_idling_start;
+ else
+- delta = ktime_get();
+- delta = ktime_sub(delta, bfqd->last_budget_start);
+- usecs = ktime_to_us(delta);
+-
+- /* Don't trust short/unrealistic values. */
+- if (usecs < 100 || usecs >= LONG_MAX)
+- return false;
+-
+- /*
+- * Calculate the bandwidth for the last slice. We use a 64 bit
+- * value to store the peak rate, in sectors per usec in fixed
+- * point math. We do so to have enough precision in the estimate
+- * and to avoid overflows.
+- */
+- bw = (u64)bfqq->entity.service << BFQ_RATE_SHIFT;
+- do_div(bw, (unsigned long)usecs);
++ delta_ktime = ktime_get();
++ delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
++ delta_usecs = ktime_to_us(delta_ktime);
++
++ /* don't use too short time intervals */
++ if (delta_usecs < 1000) {
++ if (blk_queue_nonrot(bfqd->queue))
++ /*
++ * give same worst-case guarantees as idling
++ * for seeky
++ */
++ *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
++ else /* charge at least one seek */
++ *delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
++
++ bfq_log(bfqd, "bfq_bfqq_is_slow: too short %u", delta_usecs);
++
++ return slow;
++ }
+
+- timeout = jiffies_to_msecs(bfqd->bfq_timeout[BLK_RW_SYNC]);
++ *delta_ms = delta_usecs / USEC_PER_MSEC;
+
+ /*
+- * Use only long (> 20ms) intervals to filter out spikes for
+- * the peak rate estimation.
++ * Use only long (> 20ms) intervals to filter out excessive
++ * spikes in service rate estimation.
+ */
+- if (usecs > 20000) {
+- if (bw > bfqd->peak_rate ||
+- (!BFQQ_SEEKY(bfqq) &&
+- reason == BFQ_BFQQ_BUDGET_TIMEOUT)) {
+- bfq_log(bfqd, "measured bw =%llu", bw);
+- /*
+- * To smooth oscillations use a low-pass filter with
+- * alpha=7/8, i.e.,
+- * new_rate = (7/8) * old_rate + (1/8) * bw
+- */
+- do_div(bw, 8);
+- if (bw == 0)
+- return 0;
+- bfqd->peak_rate *= 7;
+- do_div(bfqd->peak_rate, 8);
+- bfqd->peak_rate += bw;
+- update = 1;
+- bfq_log(bfqd, "new peak_rate=%llu", bfqd->peak_rate);
+- }
+-
+- update |= bfqd->peak_rate_samples == BFQ_PEAK_RATE_SAMPLES - 1;
+-
+- if (bfqd->peak_rate_samples < BFQ_PEAK_RATE_SAMPLES)
+- bfqd->peak_rate_samples++;
+-
+- if (bfqd->peak_rate_samples == BFQ_PEAK_RATE_SAMPLES &&
+- update) {
+- int dev_type = blk_queue_nonrot(bfqd->queue);
+-
+- if (bfqd->bfq_user_max_budget == 0) {
+- bfqd->bfq_max_budget =
+- bfq_calc_max_budget(bfqd->peak_rate,
+- timeout);
+- bfq_log(bfqd, "new max_budget=%d",
+- bfqd->bfq_max_budget);
+- }
+- if (bfqd->device_speed == BFQ_BFQD_FAST &&
+- bfqd->peak_rate < device_speed_thresh[dev_type]) {
+- bfqd->device_speed = BFQ_BFQD_SLOW;
+- bfqd->RT_prod = R_slow[dev_type] *
+- T_slow[dev_type];
+- } else if (bfqd->device_speed == BFQ_BFQD_SLOW &&
+- bfqd->peak_rate > device_speed_thresh[dev_type]) {
+- bfqd->device_speed = BFQ_BFQD_FAST;
+- bfqd->RT_prod = R_fast[dev_type] *
+- T_fast[dev_type];
+- }
+- }
++ if (delta_usecs > 20000) {
++ /*
++ * Caveat for rotational devices: processes doing I/O
++ * in the slower disk zones tend to be slow(er) even
++ * if not seeky. In this respect, the estimated peak
++ * rate is likely to be an average over the disk
++ * surface. Accordingly, to not be too harsh with
++ * unlucky processes, a process is deemed slow only if
++ * its rate has been lower than half of the estimated
++ * peak rate.
++ */
++ slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
++ bfq_log(bfqd, "bfq_bfqq_is_slow: relative rate %d/%d",
++ bfqq->entity.service, bfqd->bfq_max_budget);
+ }
+
+- /*
+- * If the process has been served for a too short time
+- * interval to let its possible sequential accesses prevail on
+- * the initial seek time needed to move the disk head on the
+- * first sector it requested, then give the process a chance
+- * and for the moment return false.
+- */
+- if (bfqq->entity.budget <= bfq_max_budget(bfqd) / 8)
+- return false;
+-
+- /*
+- * A process is considered ``slow'' (i.e., seeky, so that we
+- * cannot treat it fairly in the service domain, as it would
+- * slow down too much the other processes) if, when a slice
+- * ends for whatever reason, it has received service at a
+- * rate that would not be high enough to complete the budget
+- * before the budget timeout expiration.
+- */
+- expected = bw * 1000 * timeout >> BFQ_RATE_SHIFT;
++ bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
+
+- /*
+- * Caveat: processes doing IO in the slower disk zones will
+- * tend to be slow(er) even if not seeky. And the estimated
+- * peak rate will actually be an average over the disk
+- * surface. Hence, to not be too harsh with unlucky processes,
+- * we keep a budget/3 margin of safety before declaring a
+- * process slow.
+- */
+- return expected > (4 * bfqq->entity.budget) / 3;
++ return slow;
+ }
+
+ /*
+@@ -2193,20 +3020,35 @@ static bool bfq_update_peak_rate(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
+ struct bfq_queue *bfqq)
+ {
++ bfq_log_bfqq(bfqd, bfqq,
++"softrt_next_start: service_blkg %lu soft_rate %u sects/sec interval %u",
++ bfqq->service_from_backlogged,
++ bfqd->bfq_wr_max_softrt_rate,
++ jiffies_to_msecs(HZ * bfqq->service_from_backlogged /
++ bfqd->bfq_wr_max_softrt_rate));
++
+ return max(bfqq->last_idle_bklogged +
+ HZ * bfqq->service_from_backlogged /
+ bfqd->bfq_wr_max_softrt_rate,
+- jiffies + bfqq->bfqd->bfq_slice_idle + 4);
++ jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
+ }
+
+ /*
+- * Return the largest-possible time instant such that, for as long as possible,
+- * the current time will be lower than this time instant according to the macro
+- * time_is_before_jiffies().
++ * Return the farthest future time instant according to jiffies
++ * macros.
+ */
+-static unsigned long bfq_infinity_from_now(unsigned long now)
++static unsigned long bfq_greatest_from_now(void)
+ {
+- return now + ULONG_MAX / 2;
++ return jiffies + MAX_JIFFY_OFFSET;
++}
++
++/*
++ * Return the farthest past time instant according to jiffies
++ * macros.
++ */
++static unsigned long bfq_smallest_from_now(void)
++{
++ return jiffies - MAX_JIFFY_OFFSET;
+ }
+
+ /**
+@@ -2216,28 +3058,24 @@ static unsigned long bfq_infinity_from_now(unsigned long now)
+ * @compensate: if true, compensate for the time spent idling.
+ * @reason: the reason causing the expiration.
+ *
++ * If the process associated with bfqq does slow I/O (e.g., because it
++ * issues random requests), we charge bfqq with the time it has been
++ * in service instead of the service it has received (see
++ * bfq_bfqq_charge_time for details on how this goal is achieved). As
++ * a consequence, bfqq will typically get higher timestamps upon
++ * reactivation, and hence it will be rescheduled as if it had
++ * received more service than what it has actually received. In the
++ * end, bfqq receives less service in proportion to how slowly its
++ * associated process consumes its budgets (and hence how seriously it
++ * tends to lower the throughput). In addition, this time-charging
++ * strategy guarantees time fairness among slow processes. In
++ * contrast, if the process associated with bfqq is not slow, we
++ * charge bfqq exactly with the service it has received.
+ *
+- * If the process associated to the queue is slow (i.e., seeky), or in
+- * case of budget timeout, or, finally, if it is async, we
+- * artificially charge it an entire budget (independently of the
+- * actual service it received). As a consequence, the queue will get
+- * higher timestamps than the correct ones upon reactivation, and
+- * hence it will be rescheduled as if it had received more service
+- * than what it actually received. In the end, this class of processes
+- * will receive less service in proportion to how slowly they consume
+- * their budgets (and hence how seriously they tend to lower the
+- * throughput).
+- *
+- * In contrast, when a queue expires because it has been idling for
+- * too much or because it exhausted its budget, we do not touch the
+- * amount of service it has received. Hence when the queue will be
+- * reactivated and its timestamps updated, the latter will be in sync
+- * with the actual service received by the queue until expiration.
+- *
+- * Charging a full budget to the first type of queues and the exact
+- * service to the others has the effect of using the WF2Q+ policy to
+- * schedule the former on a timeslice basis, without violating the
+- * service domain guarantees of the latter.
++ * Charging time to the first type of queues and the exact service to
++ * the other has the effect of using the WF2Q+ policy to schedule the
++ * former on a timeslice basis, without violating service domain
++ * guarantees among the latter.
+ */
+ static void bfq_bfqq_expire(struct bfq_data *bfqd,
+ struct bfq_queue *bfqq,
+@@ -2245,41 +3083,53 @@ static void bfq_bfqq_expire(struct bfq_data *bfqd,
+ enum bfqq_expiration reason)
+ {
+ bool slow;
++ unsigned long delta = 0;
++ struct bfq_entity *entity = &bfqq->entity;
++ int ref;
+
+ BUG_ON(bfqq != bfqd->in_service_queue);
+
+ /*
+- * Update disk peak rate for autotuning and check whether the
+- * process is slow (see bfq_update_peak_rate).
++ * Check whether the process is slow (see bfq_bfqq_is_slow).
+ */
+- slow = bfq_update_peak_rate(bfqd, bfqq, compensate, reason);
++ slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
+
+ /*
+- * As above explained, 'punish' slow (i.e., seeky), timed-out
+- * and async queues, to favor sequential sync workloads.
+- *
+- * Processes doing I/O in the slower disk zones will tend to be
+- * slow(er) even if not seeky. Hence, since the estimated peak
+- * rate is actually an average over the disk surface, these
+- * processes may timeout just for bad luck. To avoid punishing
+- * them we do not charge a full budget to a process that
+- * succeeded in consuming at least 2/3 of its budget.
++ * Increase service_from_backlogged before next statement,
++ * because the possible next invocation of
++ * bfq_bfqq_charge_time would likely inflate
++ * entity->service. In contrast, service_from_backlogged must
++ * contain real service, to enable the soft real-time
++ * heuristic to correctly compute the bandwidth consumed by
++ * bfqq.
+ */
+- if (slow || (reason == BFQ_BFQQ_BUDGET_TIMEOUT &&
+- bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3))
+- bfq_bfqq_charge_full_budget(bfqq);
++ bfqq->service_from_backlogged += entity->service;
+
+- bfqq->service_from_backlogged += bfqq->entity.service;
++ /*
++ * As above explained, charge slow (typically seeky) and
++ * timed-out queues with the time and not the service
++ * received, to favor sequential workloads.
++ *
++ * Processes doing I/O in the slower disk zones will tend to
++ * be slow(er) even if not seeky. Therefore, since the
++ * estimated peak rate is actually an average over the disk
++ * surface, these processes may timeout just for bad luck. To
++ * avoid punishing them, do not charge time to processes that
++ * succeeded in consuming at least 2/3 of their budget. This
++ * allows BFQ to preserve enough elasticity to still perform
++ * bandwidth, and not time, distribution with little unlucky
++ * or quasi-sequential processes.
++ */
++ if (bfqq->wr_coeff == 1 &&
++ (slow ||
++ (reason == BFQ_BFQQ_BUDGET_TIMEOUT &&
++ bfq_bfqq_budget_left(bfqq) >= entity->budget / 3)))
++ bfq_bfqq_charge_time(bfqd, bfqq, delta);
+
+- if (BFQQ_SEEKY(bfqq) && reason == BFQ_BFQQ_BUDGET_TIMEOUT &&
+- !bfq_bfqq_constantly_seeky(bfqq)) {
+- bfq_mark_bfqq_constantly_seeky(bfqq);
+- if (!blk_queue_nonrot(bfqd->queue))
+- bfqd->const_seeky_busy_in_flight_queues++;
+- }
++ BUG_ON(bfqq->entity.budget < bfqq->entity.service);
+
+ if (reason == BFQ_BFQQ_TOO_IDLE &&
+- bfqq->entity.service <= 2 * bfqq->entity.budget / 10)
++ entity->service <= 2 * entity->budget / 10)
+ bfq_clear_bfqq_IO_bound(bfqq);
+
+ if (bfqd->low_latency && bfqq->wr_coeff == 1)
+@@ -2288,19 +3138,23 @@ static void bfq_bfqq_expire(struct bfq_data *bfqd,
+ if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
+ RB_EMPTY_ROOT(&bfqq->sort_list)) {
+ /*
+- * If we get here, and there are no outstanding requests,
+- * then the request pattern is isochronous (see the comments
+- * to the function bfq_bfqq_softrt_next_start()). Hence we
+- * can compute soft_rt_next_start. If, instead, the queue
+- * still has outstanding requests, then we have to wait
+- * for the completion of all the outstanding requests to
++ * If we get here, and there are no outstanding
++ * requests, then the request pattern is isochronous
++ * (see the comments on the function
++ * bfq_bfqq_softrt_next_start()). Thus we can compute
++ * soft_rt_next_start. If, instead, the queue still
++ * has outstanding requests, then we have to wait for
++ * the completion of all the outstanding requests to
+ * discover whether the request pattern is actually
+ * isochronous.
+ */
+- if (bfqq->dispatched == 0)
++ BUG_ON(bfqd->busy_queues < 1);
++ if (bfqq->dispatched == 0) {
+ bfqq->soft_rt_next_start =
+ bfq_bfqq_softrt_next_start(bfqd, bfqq);
+- else {
++ bfq_log_bfqq(bfqd, bfqq, "new soft_rt_next %lu",
++ bfqq->soft_rt_next_start);
++ } else {
+ /*
+ * The application is still waiting for the
+ * completion of one or more requests:
+@@ -2317,7 +3171,7 @@ static void bfq_bfqq_expire(struct bfq_data *bfqd,
+ * happened to be in the past.
+ */
+ bfqq->soft_rt_next_start =
+- bfq_infinity_from_now(jiffies);
++ bfq_greatest_from_now();
+ /*
+ * Schedule an update of soft_rt_next_start to when
+ * the task may be discovered to be isochronous.
+@@ -2327,15 +3181,30 @@ static void bfq_bfqq_expire(struct bfq_data *bfqd,
+ }
+
+ bfq_log_bfqq(bfqd, bfqq,
+- "expire (%d, slow %d, num_disp %d, idle_win %d)", reason,
+- slow, bfqq->dispatched, bfq_bfqq_idle_window(bfqq));
++ "expire (%d, slow %d, num_disp %d, idle_win %d, weight %d)",
++ reason, slow, bfqq->dispatched,
++ bfq_bfqq_idle_window(bfqq), entity->weight);
+
+ /*
+ * Increase, decrease or leave budget unchanged according to
+ * reason.
+ */
++ BUG_ON(bfqq->entity.budget < bfqq->entity.service);
+ __bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
++ BUG_ON(bfqq->next_rq == NULL &&
++ bfqq->entity.budget < bfqq->entity.service);
++ ref = bfqq->ref;
+ __bfq_bfqq_expire(bfqd, bfqq);
++
++ BUG_ON(ref > 1 &&
++ !bfq_bfqq_busy(bfqq) && reason == BFQ_BFQQ_BUDGET_EXHAUSTED &&
++ !bfq_class_idle(bfqq));
++
++ /* mark bfqq as waiting a request only if a bic still points to it */
++ if (ref > 1 && !bfq_bfqq_busy(bfqq) &&
++ reason != BFQ_BFQQ_BUDGET_TIMEOUT &&
++ reason != BFQ_BFQQ_BUDGET_EXHAUSTED)
++ bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
+ }
+
+ /*
+@@ -2345,20 +3214,17 @@ static void bfq_bfqq_expire(struct bfq_data *bfqd,
+ */
+ static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
+ {
+- if (bfq_bfqq_budget_new(bfqq) ||
+- time_before(jiffies, bfqq->budget_timeout))
+- return false;
+- return true;
++ return time_is_before_eq_jiffies(bfqq->budget_timeout);
+ }
+
+ /*
+- * If we expire a queue that is waiting for the arrival of a new
+- * request, we may prevent the fictitious timestamp back-shifting that
+- * allows the guarantees of the queue to be preserved (see [1] for
+- * this tricky aspect). Hence we return true only if this condition
+- * does not hold, or if the queue is slow enough to deserve only to be
+- * kicked off for preserving a high throughput.
+-*/
++ * If we expire a queue that is actively waiting (i.e., with the
++ * device idled) for the arrival of a new request, then we may incur
++ * the timestamp misalignment problem described in the body of the
++ * function __bfq_activate_entity. Hence we return true only if this
++ * condition does not hold, or if the queue is slow enough to deserve
++ * only to be kicked off for preserving a high throughput.
++ */
+ static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
+ {
+ bfq_log_bfqq(bfqq->bfqd, bfqq,
+@@ -2400,10 +3266,12 @@ static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
+ {
+ struct bfq_data *bfqd = bfqq->bfqd;
+ bool idling_boosts_thr, idling_boosts_thr_without_issues,
+- all_queues_seeky, on_hdd_and_not_all_queues_seeky,
+ idling_needed_for_service_guarantees,
+ asymmetric_scenario;
+
++ if (bfqd->strict_guarantees)
++ return true;
++
+ /*
+ * The next variable takes into account the cases where idling
+ * boosts the throughput.
+@@ -2466,74 +3334,27 @@ static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
+ bfqd->wr_busy_queues == 0;
+
+ /*
+- * There are then two cases where idling must be performed not
++ * There is then a case where idling must be performed not
+ * for throughput concerns, but to preserve service
+- * guarantees. In the description of these cases, we say, for
+- * short, that a queue is sequential/random if the process
+- * associated to the queue issues sequential/random requests
+- * (in the second case the queue may be tagged as seeky or
+- * even constantly_seeky).
++ * guarantees.
+ *
+- * To introduce the first case, we note that, since
+- * bfq_bfqq_idle_window(bfqq) is false if the device is
+- * NCQ-capable and bfqq is random (see
+- * bfq_update_idle_window()), then, from the above two
+- * assignments it follows that
+- * idling_boosts_thr_without_issues is false if the device is
+- * NCQ-capable and bfqq is random. Therefore, for this case,
+- * device idling would never be allowed if we used just
+- * idling_boosts_thr_without_issues to decide whether to allow
+- * it. And, beneficially, this would imply that throughput
+- * would always be boosted also with random I/O on NCQ-capable
+- * HDDs.
+- *
+- * But we must be careful on this point, to avoid an unfair
+- * treatment for bfqq. In fact, because of the same above
+- * assignments, idling_boosts_thr_without_issues is, on the
+- * other hand, true if 1) the device is an HDD and bfqq is
+- * sequential, and 2) there are no busy weight-raised
+- * queues. As a consequence, if we used just
+- * idling_boosts_thr_without_issues to decide whether to idle
+- * the device, then with an HDD we might easily bump into a
+- * scenario where queues that are sequential and I/O-bound
+- * would enjoy idling, whereas random queues would not. The
+- * latter might then get a low share of the device throughput,
+- * simply because the former would get many requests served
+- * after being set as in service, while the latter would not.
+- *
+- * To address this issue, we start by setting to true a
+- * sentinel variable, on_hdd_and_not_all_queues_seeky, if the
+- * device is rotational and not all queues with pending or
+- * in-flight requests are constantly seeky (i.e., there are
+- * active sequential queues, and bfqq might then be mistreated
+- * if it does not enjoy idling because it is random).
+- */
+- all_queues_seeky = bfq_bfqq_constantly_seeky(bfqq) &&
+- bfqd->busy_in_flight_queues ==
+- bfqd->const_seeky_busy_in_flight_queues;
+-
+- on_hdd_and_not_all_queues_seeky =
+- !blk_queue_nonrot(bfqd->queue) && !all_queues_seeky;
+-
+- /*
+- * To introduce the second case where idling needs to be
+- * performed to preserve service guarantees, we can note that
+- * allowing the drive to enqueue more than one request at a
+- * time, and hence delegating de facto final scheduling
+- * decisions to the drive's internal scheduler, causes loss of
+- * control on the actual request service order. In particular,
+- * the critical situation is when requests from different
+- * processes happens to be present, at the same time, in the
+- * internal queue(s) of the drive. In such a situation, the
+- * drive, by deciding the service order of the
+- * internally-queued requests, does determine also the actual
+- * throughput distribution among these processes. But the
+- * drive typically has no notion or concern about per-process
+- * throughput distribution, and makes its decisions only on a
+- * per-request basis. Therefore, the service distribution
+- * enforced by the drive's internal scheduler is likely to
+- * coincide with the desired device-throughput distribution
+- * only in a completely symmetric scenario where:
++ * To introduce this case, we can note that allowing the drive
++ * to enqueue more than one request at a time, and hence
++ * delegating de facto final scheduling decisions to the
++ * drive's internal scheduler, entails loss of control on the
++ * actual request service order. In particular, the critical
++ * situation is when requests from different processes happen
++ * to be present, at the same time, in the internal queue(s)
++ * of the drive. In such a situation, the drive, by deciding
++ * the service order of the internally-queued requests, does
++ * determine also the actual throughput distribution among
++ * these processes. But the drive typically has no notion or
++ * concern about per-process throughput distribution, and
++ * makes its decisions only on a per-request basis. Therefore,
++ * the service distribution enforced by the drive's internal
++ * scheduler is likely to coincide with the desired
++ * device-throughput distribution only in a completely
++ * symmetric scenario where:
+ * (i) each of these processes must get the same throughput as
+ * the others;
+ * (ii) all these processes have the same I/O pattern
+@@ -2555,26 +3376,53 @@ static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
+ * words, only if sub-condition (i) holds, then idling is
+ * allowed, and the device tends to be prevented from queueing
+ * many requests, possibly of several processes. The reason
+- * for not controlling also sub-condition (ii) is that, first,
+- * in the case of an HDD, the asymmetry in terms of types of
+- * I/O patterns is already taken in to account in the above
+- * sentinel variable
+- * on_hdd_and_not_all_queues_seeky. Secondly, in the case of a
+- * flash-based device, we prefer however to privilege
+- * throughput (and idling lowers throughput for this type of
+- * devices), for the following reasons:
+- * 1) differently from HDDs, the service time of random
+- * requests is not orders of magnitudes lower than the service
+- * time of sequential requests; thus, even if processes doing
+- * sequential I/O get a preferential treatment with respect to
+- * others doing random I/O, the consequences are not as
+- * dramatic as with HDDs;
+- * 2) if a process doing random I/O does need strong
+- * throughput guarantees, it is hopefully already being
+- * weight-raised, or the user is likely to have assigned it a
+- * higher weight than the other processes (and thus
+- * sub-condition (i) is likely to be false, which triggers
+- * idling).
++ * for not controlling also sub-condition (ii) is that we
++ * exploit preemption to preserve guarantees in case of
++ * symmetric scenarios, even if (ii) does not hold, as
++ * explained in the next two paragraphs.
++ *
++ * Even if a queue, say Q, is expired when it remains idle, Q
++ * can still preempt the new in-service queue if the next
++ * request of Q arrives soon (see the comments on
++ * bfq_bfqq_update_budg_for_activation). If all queues and
++ * groups have the same weight, this form of preemption,
++ * combined with the hole-recovery heuristic described in the
++ * comments on function bfq_bfqq_update_budg_for_activation,
++ * are enough to preserve a correct bandwidth distribution in
++ * the mid term, even without idling. In fact, even if not
++ * idling allows the internal queues of the device to contain
++ * many requests, and thus to reorder requests, we can rather
++ * safely assume that the internal scheduler still preserves a
++ * minimum of mid-term fairness. The motivation for using
++ * preemption instead of idling is that, by not idling,
++ * service guarantees are preserved without minimally
++ * sacrificing throughput. In other words, both a high
++ * throughput and its desired distribution are obtained.
++ *
++ * More precisely, this preemption-based, idleless approach
++ * provides fairness in terms of IOPS, and not sectors per
++ * second. This can be seen with a simple example. Suppose
++ * that there are two queues with the same weight, but that
++ * the first queue receives requests of 8 sectors, while the
++ * second queue receives requests of 1024 sectors. In
++ * addition, suppose that each of the two queues contains at
++ * most one request at a time, which implies that each queue
++ * always remains idle after it is served. Finally, after
++ * remaining idle, each queue receives very quickly a new
++ * request. It follows that the two queues are served
++ * alternatively, preempting each other if needed. This
++ * implies that, although both queues have the same weight,
++ * the queue with large requests receives a service that is
++ * 1024/8 times as high as the service received by the other
++ * queue.
++ *
++ * On the other hand, device idling is performed, and thus
++ * pure sector-domain guarantees are provided, for the
++ * following queues, which are likely to need stronger
++ * throughput guarantees: weight-raised queues, and queues
++ * with a higher weight than other queues. When such queues
++ * are active, sub-condition (i) is false, which triggers
++ * device idling.
+ *
+ * According to the above considerations, the next variable is
+ * true (only) if sub-condition (i) holds. To compute the
+@@ -2582,7 +3430,7 @@ static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
+ * the function bfq_symmetric_scenario(), but also check
+ * whether bfqq is being weight-raised, because
+ * bfq_symmetric_scenario() does not take into account also
+- * weight-raised queues (see comments to
++ * weight-raised queues (see comments on
+ * bfq_weights_tree_add()).
+ *
+ * As a side note, it is worth considering that the above
+@@ -2604,17 +3452,16 @@ static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
+ * bfqq. Such a case is when bfqq became active in a burst of
+ * queue activations. Queues that became active during a large
+ * burst benefit only from throughput, as discussed in the
+- * comments to bfq_handle_burst. Thus, if bfqq became active
++ * comments on bfq_handle_burst. Thus, if bfqq became active
+ * in a burst and not idling the device maximizes throughput,
+ * then the device must no be idled, because not idling the
+ * device provides bfqq and all other queues in the burst with
+- * maximum benefit. Combining this and the two cases above, we
+- * can now establish when idling is actually needed to
+- * preserve service guarantees.
++ * maximum benefit. Combining this and the above case, we can
++ * now establish when idling is actually needed to preserve
++ * service guarantees.
+ */
+ idling_needed_for_service_guarantees =
+- (on_hdd_and_not_all_queues_seeky || asymmetric_scenario) &&
+- !bfq_bfqq_in_large_burst(bfqq);
++ asymmetric_scenario && !bfq_bfqq_in_large_burst(bfqq);
+
+ /*
+ * We have now all the components we need to compute the return
+@@ -2624,6 +3471,16 @@ static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
+ * 2) idling either boosts the throughput (without issues), or
+ * is necessary to preserve service guarantees.
+ */
++ bfq_log_bfqq(bfqd, bfqq, "may_idle: sync %d idling_boosts_thr %d",
++ bfq_bfqq_sync(bfqq), idling_boosts_thr);
++
++ bfq_log_bfqq(bfqd, bfqq,
++ "may_idle: wr_busy %d boosts %d IO-bound %d guar %d",
++ bfqd->wr_busy_queues,
++ idling_boosts_thr_without_issues,
++ bfq_bfqq_IO_bound(bfqq),
++ idling_needed_for_service_guarantees);
++
+ return bfq_bfqq_sync(bfqq) &&
+ (idling_boosts_thr_without_issues ||
+ idling_needed_for_service_guarantees);
+@@ -2635,7 +3492,7 @@ static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
+ * 1) the queue must remain in service and cannot be expired, and
+ * 2) the device must be idled to wait for the possible arrival of a new
+ * request for the queue.
+- * See the comments to the function bfq_bfqq_may_idle for the reasons
++ * See the comments on the function bfq_bfqq_may_idle for the reasons
+ * why performing device idling is the best choice to boost the throughput
+ * and preserve service guarantees when bfq_bfqq_may_idle itself
+ * returns true.
+@@ -2665,18 +3522,33 @@ static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
+ bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
+
+ if (bfq_may_expire_for_budg_timeout(bfqq) &&
+- !timer_pending(&bfqd->idle_slice_timer) &&
++ !hrtimer_active(&bfqd->idle_slice_timer) &&
+ !bfq_bfqq_must_idle(bfqq))
+ goto expire;
+
++check_queue:
++ /*
++ * This loop is rarely executed more than once. Even when it
++ * happens, it is much more convenient to re-execute this loop
++ * than to return NULL and trigger a new dispatch to get a
++ * request served.
++ */
+ next_rq = bfqq->next_rq;
+ /*
+ * If bfqq has requests queued and it has enough budget left to
+ * serve them, keep the queue, otherwise expire it.
+ */
+ if (next_rq) {
++ BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list));
++
+ if (bfq_serv_to_charge(next_rq, bfqq) >
+ bfq_bfqq_budget_left(bfqq)) {
++ /*
++ * Expire the queue for budget exhaustion,
++ * which makes sure that the next budget is
++ * enough to serve the next request, even if
++ * it comes from the fifo expired path.
++ */
+ reason = BFQ_BFQQ_BUDGET_EXHAUSTED;
+ goto expire;
+ } else {
+@@ -2685,7 +3557,8 @@ static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
+ * not disable disk idling even when a new request
+ * arrives.
+ */
+- if (timer_pending(&bfqd->idle_slice_timer)) {
++ if (bfq_bfqq_wait_request(bfqq)) {
++ BUG_ON(!hrtimer_active(&bfqd->idle_slice_timer));
+ /*
+ * If we get here: 1) at least a new request
+ * has arrived but we have not disabled the
+@@ -2700,10 +3573,8 @@ static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
+ * So we disable idling.
+ */
+ bfq_clear_bfqq_wait_request(bfqq);
+- del_timer(&bfqd->idle_slice_timer);
+-#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
+ bfqg_stats_update_idle_time(bfqq_group(bfqq));
+-#endif
+ }
+ goto keep_queue;
+ }
+@@ -2714,7 +3585,7 @@ static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
+ * for a new request, or has requests waiting for a completion and
+ * may idle after their completion, then keep it anyway.
+ */
+- if (timer_pending(&bfqd->idle_slice_timer) ||
++ if (hrtimer_active(&bfqd->idle_slice_timer) ||
+ (bfqq->dispatched != 0 && bfq_bfqq_may_idle(bfqq))) {
+ bfqq = NULL;
+ goto keep_queue;
+@@ -2725,9 +3596,16 @@ static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
+ bfq_bfqq_expire(bfqd, bfqq, false, reason);
+ new_queue:
+ bfqq = bfq_set_in_service_queue(bfqd);
+- bfq_log(bfqd, "select_queue: new queue %d returned",
+- bfqq ? bfqq->pid : 0);
++ if (bfqq) {
++ bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
++ goto check_queue;
++ }
+ keep_queue:
++ if (bfqq)
++ bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
++ else
++ bfq_log(bfqd, "select_queue: no queue returned");
++
+ return bfqq;
+ }
+
+@@ -2736,6 +3614,9 @@ static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+ struct bfq_entity *entity = &bfqq->entity;
+
+ if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
++ BUG_ON(bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
++ time_is_after_jiffies(bfqq->last_wr_start_finish));
++
+ bfq_log_bfqq(bfqd, bfqq,
+ "raising period dur %u/%u msec, old coeff %u, w %d(%d)",
+ jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
+@@ -2749,22 +3630,30 @@ static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+ bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
+
+ /*
+- * If the queue was activated in a burst, or
+- * too much time has elapsed from the beginning
+- * of this weight-raising period, or the queue has
+- * exceeded the acceptable number of cooperations,
+- * then end weight raising.
++ * If the queue was activated in a burst, or too much
++ * time has elapsed from the beginning of this
++ * weight-raising period, then end weight raising.
+ */
+- if (bfq_bfqq_in_large_burst(bfqq) ||
+- bfq_bfqq_cooperations(bfqq) >= bfqd->bfq_coop_thresh ||
+- time_is_before_jiffies(bfqq->last_wr_start_finish +
+- bfqq->wr_cur_max_time)) {
+- bfqq->last_wr_start_finish = jiffies;
+- bfq_log_bfqq(bfqd, bfqq,
+- "wrais ending at %lu, rais_max_time %u",
+- bfqq->last_wr_start_finish,
+- jiffies_to_msecs(bfqq->wr_cur_max_time));
++ if (bfq_bfqq_in_large_burst(bfqq))
+ bfq_bfqq_end_wr(bfqq);
++ else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
++ bfqq->wr_cur_max_time)) {
++ if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
++ time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
++ bfq_wr_duration(bfqd)))
++ bfq_bfqq_end_wr(bfqq);
++ else {
++ /* switch back to interactive wr */
++ bfqq->wr_coeff = bfqd->bfq_wr_coeff;
++ bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
++ bfqq->last_wr_start_finish =
++ bfqq->wr_start_at_switch_to_srt;
++ BUG_ON(time_is_after_jiffies(
++ bfqq->last_wr_start_finish));
++ bfqq->entity.prio_changed = 1;
++ bfq_log_bfqq(bfqd, bfqq,
++ "back to interactive wr");
++ }
+ }
+ }
+ /* Update weight both if it must be raised and if it must be lowered */
+@@ -2782,46 +3671,34 @@ static int bfq_dispatch_request(struct bfq_data *bfqd,
+ struct bfq_queue *bfqq)
+ {
+ int dispatched = 0;
+- struct request *rq;
++ struct request *rq = bfqq->next_rq;
+ unsigned long service_to_charge;
+
+ BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list));
+-
+- /* Follow expired path, else get first next available. */
+- rq = bfq_check_fifo(bfqq);
+- if (!rq)
+- rq = bfqq->next_rq;
++ BUG_ON(!rq);
+ service_to_charge = bfq_serv_to_charge(rq, bfqq);
+
+- if (service_to_charge > bfq_bfqq_budget_left(bfqq)) {
+- /*
+- * This may happen if the next rq is chosen in fifo order
+- * instead of sector order. The budget is properly
+- * dimensioned to be always sufficient to serve the next
+- * request only if it is chosen in sector order. The reason
+- * is that it would be quite inefficient and little useful
+- * to always make sure that the budget is large enough to
+- * serve even the possible next rq in fifo order.
+- * In fact, requests are seldom served in fifo order.
+- *
+- * Expire the queue for budget exhaustion, and make sure
+- * that the next act_budget is enough to serve the next
+- * request, even if it comes from the fifo expired path.
+- */
+- bfqq->next_rq = rq;
+- /*
+- * Since this dispatch is failed, make sure that
+- * a new one will be performed
+- */
+- if (!bfqd->rq_in_driver)
+- bfq_schedule_dispatch(bfqd);
+- goto expire;
+- }
++ BUG_ON(service_to_charge > bfq_bfqq_budget_left(bfqq));
++
++ BUG_ON(bfqq->entity.budget < bfqq->entity.service);
+
+- /* Finally, insert request into driver dispatch list. */
+ bfq_bfqq_served(bfqq, service_to_charge);
++
++ BUG_ON(bfqq->entity.budget < bfqq->entity.service);
++
+ bfq_dispatch_insert(bfqd->queue, rq);
+
++ /*
++ * If weight raising has to terminate for bfqq, then next
++ * function causes an immediate update of bfqq's weight,
++ * without waiting for next activation. As a consequence, on
++ * expiration, bfqq will be timestamped as if has never been
++ * weight-raised during this service slot, even if it has
++ * received part or even most of the service as a
++ * weight-raised queue. This inflates bfqq's timestamps, which
++ * is beneficial, as bfqq is then more willing to leave the
++ * device immediately to possible other weight-raised queues.
++ */
+ bfq_update_wr_data(bfqd, bfqq);
+
+ bfq_log_bfqq(bfqd, bfqq,
+@@ -2837,9 +3714,7 @@ static int bfq_dispatch_request(struct bfq_data *bfqd,
+ bfqd->in_service_bic = RQ_BIC(rq);
+ }
+
+- if (bfqd->busy_queues > 1 && ((!bfq_bfqq_sync(bfqq) &&
+- dispatched >= bfqd->bfq_max_budget_async_rq) ||
+- bfq_class_idle(bfqq)))
++ if (bfqd->busy_queues > 1 && bfq_class_idle(bfqq))
+ goto expire;
+
+ return dispatched;
+@@ -2885,8 +3760,8 @@ static int bfq_forced_dispatch(struct bfq_data *bfqd)
+ st = bfq_entity_service_tree(&bfqq->entity);
+
+ dispatched += __bfq_forced_dispatch_bfqq(bfqq);
+- bfqq->max_budget = bfq_max_budget(bfqd);
+
++ bfqq->max_budget = bfq_max_budget(bfqd);
+ bfq_forget_idle(st);
+ }
+
+@@ -2899,37 +3774,37 @@ static int bfq_dispatch_requests(struct request_queue *q, int force)
+ {
+ struct bfq_data *bfqd = q->elevator->elevator_data;
+ struct bfq_queue *bfqq;
+- int max_dispatch;
+
+ bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
++
+ if (bfqd->busy_queues == 0)
+ return 0;
+
+ if (unlikely(force))
+ return bfq_forced_dispatch(bfqd);
+
++ /*
++ * Force device to serve one request at a time if
++ * strict_guarantees is true. Forcing this service scheme is
++ * currently the ONLY way to guarantee that the request
++ * service order enforced by the scheduler is respected by a
++ * queueing device. Otherwise the device is free even to make
++ * some unlucky request wait for as long as the device
++ * wishes.
++ *
++ * Of course, serving one request at at time may cause loss of
++ * throughput.
++ */
++ if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
++ return 0;
++
+ bfqq = bfq_select_queue(bfqd);
+ if (!bfqq)
+ return 0;
+
+- if (bfq_class_idle(bfqq))
+- max_dispatch = 1;
+-
+- if (!bfq_bfqq_sync(bfqq))
+- max_dispatch = bfqd->bfq_max_budget_async_rq;
+-
+- if (!bfq_bfqq_sync(bfqq) && bfqq->dispatched >= max_dispatch) {
+- if (bfqd->busy_queues > 1)
+- return 0;
+- if (bfqq->dispatched >= 4 * max_dispatch)
+- return 0;
+- }
+-
+- if (bfqd->sync_flight != 0 && !bfq_bfqq_sync(bfqq))
+- return 0;
++ BUG_ON(bfqq->entity.budget < bfqq->entity.service);
+
+- bfq_clear_bfqq_wait_request(bfqq);
+- BUG_ON(timer_pending(&bfqd->idle_slice_timer));
++ BUG_ON(bfq_bfqq_wait_request(bfqq));
+
+ if (!bfq_dispatch_request(bfqd, bfqq))
+ return 0;
+@@ -2937,6 +3812,8 @@ static int bfq_dispatch_requests(struct request_queue *q, int force)
+ bfq_log_bfqq(bfqd, bfqq, "dispatched %s request",
+ bfq_bfqq_sync(bfqq) ? "sync" : "async");
+
++ BUG_ON(bfqq->next_rq == NULL &&
++ bfqq->entity.budget < bfqq->entity.service);
+ return 1;
+ }
+
+@@ -2944,27 +3821,26 @@ static int bfq_dispatch_requests(struct request_queue *q, int force)
+ * Task holds one reference to the queue, dropped when task exits. Each rq
+ * in-flight on this queue also holds a reference, dropped when rq is freed.
+ *
+- * Queue lock must be held here.
++ * Queue lock must be held here. Recall not to use bfqq after calling
++ * this function on it.
+ */
+ static void bfq_put_queue(struct bfq_queue *bfqq)
+ {
+- struct bfq_data *bfqd = bfqq->bfqd;
+ #ifdef CONFIG_BFQ_GROUP_IOSCHED
+ struct bfq_group *bfqg = bfqq_group(bfqq);
+ #endif
+
+- BUG_ON(atomic_read(&bfqq->ref) <= 0);
++ BUG_ON(bfqq->ref <= 0);
+
+- bfq_log_bfqq(bfqd, bfqq, "put_queue: %p %d", bfqq,
+- atomic_read(&bfqq->ref));
+- if (!atomic_dec_and_test(&bfqq->ref))
++ bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d", bfqq, bfqq->ref);
++ bfqq->ref--;
++ if (bfqq->ref)
+ return;
+
+ BUG_ON(rb_first(&bfqq->sort_list));
+ BUG_ON(bfqq->allocated[READ] + bfqq->allocated[WRITE] != 0);
+ BUG_ON(bfqq->entity.tree);
+ BUG_ON(bfq_bfqq_busy(bfqq));
+- BUG_ON(bfqd->in_service_queue == bfqq);
+
+ if (bfq_bfqq_sync(bfqq))
+ /*
+@@ -2977,7 +3853,7 @@ static void bfq_put_queue(struct bfq_queue *bfqq)
+ */
+ hlist_del_init(&bfqq->burst_list_node);
+
+- bfq_log_bfqq(bfqd, bfqq, "put_queue: %p freed", bfqq);
++ bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p freed", bfqq);
+
+ kmem_cache_free(bfq_pool, bfqq);
+ #ifdef CONFIG_BFQ_GROUP_IOSCHED
+@@ -3011,38 +3887,16 @@ static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+ bfq_schedule_dispatch(bfqd);
+ }
+
+- bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq,
+- atomic_read(&bfqq->ref));
++ bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
+
+ bfq_put_cooperator(bfqq);
+
+- bfq_put_queue(bfqq);
++ bfq_put_queue(bfqq); /* release process reference */
+ }
+
+ static void bfq_init_icq(struct io_cq *icq)
+ {
+- struct bfq_io_cq *bic = icq_to_bic(icq);
+-
+- bic->ttime.last_end_request = jiffies;
+- /*
+- * A newly created bic indicates that the process has just
+- * started doing I/O, and is probably mapping into memory its
+- * executable and libraries: it definitely needs weight raising.
+- * There is however the possibility that the process performs,
+- * for a while, I/O close to some other process. EQM intercepts
+- * this behavior and may merge the queue corresponding to the
+- * process with some other queue, BEFORE the weight of the queue
+- * is raised. Merged queues are not weight-raised (they are assumed
+- * to belong to processes that benefit only from high throughput).
+- * If the merge is basically the consequence of an accident, then
+- * the queue will be split soon and will get back its old weight.
+- * It is then important to write down somewhere that this queue
+- * does need weight raising, even if it did not make it to get its
+- * weight raised before being merged. To this purpose, we overload
+- * the field raising_time_left and assign 1 to it, to mark the queue
+- * as needing weight raising.
+- */
+- bic->wr_time_left = 1;
++ icq_to_bic(icq)->ttime.last_end_request = ktime_get_ns() - (1ULL<<32);
+ }
+
+ static void bfq_exit_icq(struct io_cq *icq)
+@@ -3050,21 +3904,21 @@ static void bfq_exit_icq(struct io_cq *icq)
+ struct bfq_io_cq *bic = icq_to_bic(icq);
+ struct bfq_data *bfqd = bic_to_bfqd(bic);
+
+- if (bic->bfqq[BLK_RW_ASYNC]) {
+- bfq_exit_bfqq(bfqd, bic->bfqq[BLK_RW_ASYNC]);
+- bic->bfqq[BLK_RW_ASYNC] = NULL;
++ if (bic_to_bfqq(bic, false)) {
++ bfq_exit_bfqq(bfqd, bic_to_bfqq(bic, false));
++ bic_set_bfqq(bic, NULL, false);
+ }
+
+- if (bic->bfqq[BLK_RW_SYNC]) {
++ if (bic_to_bfqq(bic, true)) {
+ /*
+ * If the bic is using a shared queue, put the reference
+ * taken on the io_context when the bic started using a
+ * shared bfq_queue.
+ */
+- if (bfq_bfqq_coop(bic->bfqq[BLK_RW_SYNC]))
++ if (bfq_bfqq_coop(bic_to_bfqq(bic, true)))
+ put_io_context(icq->ioc);
+- bfq_exit_bfqq(bfqd, bic->bfqq[BLK_RW_SYNC]);
+- bic->bfqq[BLK_RW_SYNC] = NULL;
++ bfq_exit_bfqq(bfqd, bic_to_bfqq(bic, true));
++ bic_set_bfqq(bic, NULL, true);
+ }
+ }
+
+@@ -3072,8 +3926,8 @@ static void bfq_exit_icq(struct io_cq *icq)
+ * Update the entity prio values; note that the new values will not
+ * be used until the next (re)activation.
+ */
+-static void
+-bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
++static void bfq_set_next_ioprio_data(struct bfq_queue *bfqq,
++ struct bfq_io_cq *bic)
+ {
+ struct task_struct *tsk = current;
+ int ioprio_class;
+@@ -3081,7 +3935,7 @@ bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
+ ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
+ switch (ioprio_class) {
+ default:
+- dev_err(bfqq->bfqd->queue->backing_dev_info.dev,
++ dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
+ "bfq: bad prio class %d\n", ioprio_class);
+ case IOPRIO_CLASS_NONE:
+ /*
+@@ -3105,7 +3959,7 @@ bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
+ break;
+ }
+
+- if (bfqq->new_ioprio < 0 || bfqq->new_ioprio >= IOPRIO_BE_NR) {
++ if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
+ pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
+ bfqq->new_ioprio);
+ BUG();
+@@ -3113,45 +3967,41 @@ bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
+
+ bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
+ bfqq->entity.prio_changed = 1;
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "set_next_ioprio_data: bic_class %d prio %d class %d",
++ ioprio_class, bfqq->new_ioprio, bfqq->new_ioprio_class);
+ }
+
+ static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
+ {
+- struct bfq_data *bfqd;
+- struct bfq_queue *bfqq, *new_bfqq;
++ struct bfq_data *bfqd = bic_to_bfqd(bic);
++ struct bfq_queue *bfqq;
+ unsigned long uninitialized_var(flags);
+ int ioprio = bic->icq.ioc->ioprio;
+
+- bfqd = bfq_get_bfqd_locked(&(bic->icq.q->elevator->elevator_data),
+- &flags);
+ /*
+ * This condition may trigger on a newly created bic, be sure to
+ * drop the lock before returning.
+ */
+ if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
+- goto out;
++ return;
+
+ bic->ioprio = ioprio;
+
+- bfqq = bic->bfqq[BLK_RW_ASYNC];
++ bfqq = bic_to_bfqq(bic, false);
+ if (bfqq) {
+- new_bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic,
+- GFP_ATOMIC);
+- if (new_bfqq) {
+- bic->bfqq[BLK_RW_ASYNC] = new_bfqq;
+- bfq_log_bfqq(bfqd, bfqq,
+- "check_ioprio_change: bfqq %p %d",
+- bfqq, atomic_read(&bfqq->ref));
+- bfq_put_queue(bfqq);
+- }
++ /* release process reference on this queue */
++ bfq_put_queue(bfqq);
++ bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
++ bic_set_bfqq(bic, bfqq, false);
++ bfq_log_bfqq(bfqd, bfqq,
++ "check_ioprio_change: bfqq %p %d",
++ bfqq, bfqq->ref);
+ }
+
+- bfqq = bic->bfqq[BLK_RW_SYNC];
++ bfqq = bic_to_bfqq(bic, true);
+ if (bfqq)
+ bfq_set_next_ioprio_data(bfqq, bic);
+-
+-out:
+- bfq_put_bfqd_unlock(bfqd, &flags);
+ }
+
+ static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+@@ -3160,8 +4010,9 @@ static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ RB_CLEAR_NODE(&bfqq->entity.rb_node);
+ INIT_LIST_HEAD(&bfqq->fifo);
+ INIT_HLIST_NODE(&bfqq->burst_list_node);
++ BUG_ON(!hlist_unhashed(&bfqq->burst_list_node));
+
+- atomic_set(&bfqq->ref, 0);
++ bfqq->ref = 0;
+ bfqq->bfqd = bfqd;
+
+ if (bic)
+@@ -3171,6 +4022,7 @@ static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ if (!bfq_class_idle(bfqq))
+ bfq_mark_bfqq_idle_window(bfqq);
+ bfq_mark_bfqq_sync(bfqq);
++ bfq_mark_bfqq_just_created(bfqq);
+ } else
+ bfq_clear_bfqq_sync(bfqq);
+ bfq_mark_bfqq_IO_bound(bfqq);
+@@ -3180,72 +4032,19 @@ static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ bfqq->pid = pid;
+
+ bfqq->wr_coeff = 1;
+- bfqq->last_wr_start_finish = 0;
++ bfqq->last_wr_start_finish = jiffies;
++ bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
++ bfqq->budget_timeout = bfq_smallest_from_now();
++ bfqq->split_time = bfq_smallest_from_now();
++
+ /*
+ * Set to the value for which bfqq will not be deemed as
+ * soft rt when it becomes backlogged.
+ */
+- bfqq->soft_rt_next_start = bfq_infinity_from_now(jiffies);
+-}
+-
+-static struct bfq_queue *bfq_find_alloc_queue(struct bfq_data *bfqd,
+- struct bio *bio, int is_sync,
+- struct bfq_io_cq *bic,
+- gfp_t gfp_mask)
+-{
+- struct bfq_group *bfqg;
+- struct bfq_queue *bfqq, *new_bfqq = NULL;
+- struct blkcg *blkcg;
+-
+-retry:
+- rcu_read_lock();
+-
+- blkcg = bio_blkcg(bio);
+- bfqg = bfq_find_alloc_group(bfqd, blkcg);
+- /* bic always exists here */
+- bfqq = bic_to_bfqq(bic, is_sync);
+-
+- /*
+- * Always try a new alloc if we fall back to the OOM bfqq
+- * originally, since it should just be a temporary situation.
+- */
+- if (!bfqq || bfqq == &bfqd->oom_bfqq) {
+- bfqq = NULL;
+- if (new_bfqq) {
+- bfqq = new_bfqq;
+- new_bfqq = NULL;
+- } else if (gfpflags_allow_blocking(gfp_mask)) {
+- rcu_read_unlock();
+- spin_unlock_irq(bfqd->queue->queue_lock);
+- new_bfqq = kmem_cache_alloc_node(bfq_pool,
+- gfp_mask | __GFP_ZERO,
+- bfqd->queue->node);
+- spin_lock_irq(bfqd->queue->queue_lock);
+- if (new_bfqq)
+- goto retry;
+- } else {
+- bfqq = kmem_cache_alloc_node(bfq_pool,
+- gfp_mask | __GFP_ZERO,
+- bfqd->queue->node);
+- }
++ bfqq->soft_rt_next_start = bfq_greatest_from_now();
+
+- if (bfqq) {
+- bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
+- is_sync);
+- bfq_init_entity(&bfqq->entity, bfqg);
+- bfq_log_bfqq(bfqd, bfqq, "allocated");
+- } else {
+- bfqq = &bfqd->oom_bfqq;
+- bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
+- }
+- }
+-
+- if (new_bfqq)
+- kmem_cache_free(bfq_pool, new_bfqq);
+-
+- rcu_read_unlock();
+-
+- return bfqq;
++ /* first request is almost certainly seeky */
++ bfqq->seek_history = 1;
+ }
+
+ static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
+@@ -3268,90 +4067,93 @@ static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
+ }
+
+ static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
+- struct bio *bio, int is_sync,
+- struct bfq_io_cq *bic, gfp_t gfp_mask)
++ struct bio *bio, bool is_sync,
++ struct bfq_io_cq *bic)
+ {
+ const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
+ const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
+ struct bfq_queue **async_bfqq = NULL;
+- struct bfq_queue *bfqq = NULL;
++ struct bfq_queue *bfqq;
++ struct bfq_group *bfqg;
+
+- if (!is_sync) {
+- struct blkcg *blkcg;
+- struct bfq_group *bfqg;
++ rcu_read_lock();
++
++ bfqg = bfq_find_set_group(bfqd, bio_blkcg(bio));
++ if (!bfqg) {
++ bfqq = &bfqd->oom_bfqq;
++ goto out;
++ }
+
+- rcu_read_lock();
+- blkcg = bio_blkcg(bio);
+- rcu_read_unlock();
+- bfqg = bfq_find_alloc_group(bfqd, blkcg);
++ if (!is_sync) {
+ async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
+ ioprio);
+ bfqq = *async_bfqq;
++ if (bfqq)
++ goto out;
+ }
+
+- if (!bfqq)
+- bfqq = bfq_find_alloc_queue(bfqd, bio, is_sync, bic, gfp_mask);
++ bfqq = kmem_cache_alloc_node(bfq_pool,
++ GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
++ bfqd->queue->node);
++
++ if (bfqq) {
++ bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
++ is_sync);
++ bfq_init_entity(&bfqq->entity, bfqg);
++ bfq_log_bfqq(bfqd, bfqq, "allocated");
++ } else {
++ bfqq = &bfqd->oom_bfqq;
++ bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
++ goto out;
++ }
+
+ /*
+ * Pin the queue now that it's allocated, scheduler exit will
+ * prune it.
+ */
+- if (!is_sync && !(*async_bfqq)) {
+- atomic_inc(&bfqq->ref);
++ if (async_bfqq) {
++ bfqq->ref++; /*
++ * Extra group reference, w.r.t. sync
++ * queue. This extra reference is removed
++ * only if bfqq->bfqg disappears, to
++ * guarantee that this queue is not freed
++ * until its group goes away.
++ */
+ bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
+- bfqq, atomic_read(&bfqq->ref));
++ bfqq, bfqq->ref);
+ *async_bfqq = bfqq;
+ }
+
+- atomic_inc(&bfqq->ref);
+- bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq,
+- atomic_read(&bfqq->ref));
++out:
++ bfqq->ref++; /* get a process reference to this queue */
++ bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
++ rcu_read_unlock();
+ return bfqq;
+ }
+
+ static void bfq_update_io_thinktime(struct bfq_data *bfqd,
+ struct bfq_io_cq *bic)
+ {
+- unsigned long elapsed = jiffies - bic->ttime.last_end_request;
+- unsigned long ttime = min(elapsed, 2UL * bfqd->bfq_slice_idle);
++ struct bfq_ttime *ttime = &bic->ttime;
++ u64 elapsed = ktime_get_ns() - bic->ttime.last_end_request;
+
+- bic->ttime.ttime_samples = (7*bic->ttime.ttime_samples + 256) / 8;
+- bic->ttime.ttime_total = (7*bic->ttime.ttime_total + 256*ttime) / 8;
+- bic->ttime.ttime_mean = (bic->ttime.ttime_total + 128) /
+- bic->ttime.ttime_samples;
++ elapsed = min_t(u64, elapsed, 2 * bfqd->bfq_slice_idle);
++
++ ttime->ttime_samples = (7*bic->ttime.ttime_samples + 256) / 8;
++ ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
++ ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
++ ttime->ttime_samples);
+ }
+
+-static void bfq_update_io_seektime(struct bfq_data *bfqd,
+- struct bfq_queue *bfqq,
+- struct request *rq)
++static void
++bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++ struct request *rq)
+ {
+- sector_t sdist;
+- u64 total;
+-
+- if (bfqq->last_request_pos < blk_rq_pos(rq))
+- sdist = blk_rq_pos(rq) - bfqq->last_request_pos;
+- else
+- sdist = bfqq->last_request_pos - blk_rq_pos(rq);
+-
+- /*
+- * Don't allow the seek distance to get too large from the
+- * odd fragment, pagein, etc.
+- */
+- if (bfqq->seek_samples == 0) /* first request, not really a seek */
+- sdist = 0;
+- else if (bfqq->seek_samples <= 60) /* second & third seek */
+- sdist = min(sdist, (bfqq->seek_mean * 4) + 2*1024*1024);
+- else
+- sdist = min(sdist, (bfqq->seek_mean * 4) + 2*1024*64);
+-
+- bfqq->seek_samples = (7*bfqq->seek_samples + 256) / 8;
+- bfqq->seek_total = (7*bfqq->seek_total + (u64)256*sdist) / 8;
+- total = bfqq->seek_total + (bfqq->seek_samples/2);
+- do_div(total, bfqq->seek_samples);
+- bfqq->seek_mean = (sector_t)total;
+-
+- bfq_log_bfqq(bfqd, bfqq, "dist=%llu mean=%llu", (u64)sdist,
+- (u64)bfqq->seek_mean);
++ bfqq->seek_history <<= 1;
++ bfqq->seek_history |=
++ get_sdist(bfqq->last_request_pos, rq) > BFQQ_SEEK_THR &&
++ (!blk_queue_nonrot(bfqd->queue) ||
++ blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT);
+ }
+
+ /*
+@@ -3369,7 +4171,8 @@ static void bfq_update_idle_window(struct bfq_data *bfqd,
+ return;
+
+ /* Idle window just restored, statistics are meaningless. */
+- if (bfq_bfqq_just_split(bfqq))
++ if (time_is_after_eq_jiffies(bfqq->split_time +
++ bfqd->bfq_wr_min_idle_time))
+ return;
+
+ enable_idle = bfq_bfqq_idle_window(bfqq);
+@@ -3409,22 +4212,13 @@ static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+
+ bfq_update_io_thinktime(bfqd, bic);
+ bfq_update_io_seektime(bfqd, bfqq, rq);
+- if (!BFQQ_SEEKY(bfqq) && bfq_bfqq_constantly_seeky(bfqq)) {
+- bfq_clear_bfqq_constantly_seeky(bfqq);
+- if (!blk_queue_nonrot(bfqd->queue)) {
+- BUG_ON(!bfqd->const_seeky_busy_in_flight_queues);
+- bfqd->const_seeky_busy_in_flight_queues--;
+- }
+- }
+ if (bfqq->entity.service > bfq_max_budget(bfqd) / 8 ||
+ !BFQQ_SEEKY(bfqq))
+ bfq_update_idle_window(bfqd, bfqq, bic);
+- bfq_clear_bfqq_just_split(bfqq);
+
+ bfq_log_bfqq(bfqd, bfqq,
+- "rq_enqueued: idle_window=%d (seeky %d, mean %llu)",
+- bfq_bfqq_idle_window(bfqq), BFQQ_SEEKY(bfqq),
+- (unsigned long long) bfqq->seek_mean);
++ "rq_enqueued: idle_window=%d (seeky %d)",
++ bfq_bfqq_idle_window(bfqq), BFQQ_SEEKY(bfqq));
+
+ bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
+
+@@ -3438,14 +4232,15 @@ static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ * is small and the queue is not to be expired, then
+ * just exit.
+ *
+- * In this way, if the disk is being idled to wait for
+- * a new request from the in-service queue, we avoid
+- * unplugging the device and committing the disk to serve
+- * just a small request. On the contrary, we wait for
+- * the block layer to decide when to unplug the device:
+- * hopefully, new requests will be merged to this one
+- * quickly, then the device will be unplugged and
+- * larger requests will be dispatched.
++ * In this way, if the device is being idled to wait
++ * for a new request from the in-service queue, we
++ * avoid unplugging the device and committing the
++ * device to serve just a small request. On the
++ * contrary, we wait for the block layer to decide
++ * when to unplug the device: hopefully, new requests
++ * will be merged to this one quickly, then the device
++ * will be unplugged and larger requests will be
++ * dispatched.
+ */
+ if (small_req && !budget_timeout)
+ return;
+@@ -3457,10 +4252,8 @@ static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ * timer.
+ */
+ bfq_clear_bfqq_wait_request(bfqq);
+- del_timer(&bfqd->idle_slice_timer);
+-#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
+ bfqg_stats_update_idle_time(bfqq_group(bfqq));
+-#endif
+
+ /*
+ * The queue is not empty, because a new request just
+@@ -3504,28 +4297,24 @@ static void bfq_insert_request(struct request_queue *q, struct request *rq)
+ */
+ new_bfqq->allocated[rq_data_dir(rq)]++;
+ bfqq->allocated[rq_data_dir(rq)]--;
+- atomic_inc(&new_bfqq->ref);
+- bfq_put_queue(bfqq);
++ new_bfqq->ref++;
++ bfq_clear_bfqq_just_created(bfqq);
+ if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
+ bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
+ bfqq, new_bfqq);
++ /*
++ * rq is about to be enqueued into new_bfqq,
++ * release rq reference on bfqq
++ */
++ bfq_put_queue(bfqq);
+ rq->elv.priv[1] = new_bfqq;
+ bfqq = new_bfqq;
+- } else
+- bfq_bfqq_increase_failed_cooperations(bfqq);
++ }
+ }
+
+ bfq_add_request(rq);
+
+- /*
+- * Here a newly-created bfq_queue has already started a weight-raising
+- * period: clear raising_time_left to prevent bfq_bfqq_save_state()
+- * from assigning it a full weight-raising period. See the detailed
+- * comments about this field in bfq_init_icq().
+- */
+- if (bfqq->bic)
+- bfqq->bic->wr_time_left = 0;
+- rq->fifo_time = jiffies + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
++ rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
+ list_add_tail(&rq->queuelist, &bfqq->fifo);
+
+ bfq_rq_enqueued(bfqd, bfqq, rq);
+@@ -3533,8 +4322,8 @@ static void bfq_insert_request(struct request_queue *q, struct request *rq)
+
+ static void bfq_update_hw_tag(struct bfq_data *bfqd)
+ {
+- bfqd->max_rq_in_driver = max(bfqd->max_rq_in_driver,
+- bfqd->rq_in_driver);
++ bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
++ bfqd->rq_in_driver);
+
+ if (bfqd->hw_tag == 1)
+ return;
+@@ -3560,48 +4349,85 @@ static void bfq_completed_request(struct request_queue *q, struct request *rq)
+ {
+ struct bfq_queue *bfqq = RQ_BFQQ(rq);
+ struct bfq_data *bfqd = bfqq->bfqd;
+- bool sync = bfq_bfqq_sync(bfqq);
++ u64 now_ns;
++ u32 delta_us;
+
+- bfq_log_bfqq(bfqd, bfqq, "completed one req with %u sects left (%d)",
+- blk_rq_sectors(rq), sync);
++ bfq_log_bfqq(bfqd, bfqq, "completed one req with %u sects left",
++ blk_rq_sectors(rq));
+
++ assert_spin_locked(bfqd->queue->queue_lock);
+ bfq_update_hw_tag(bfqd);
+
+ BUG_ON(!bfqd->rq_in_driver);
+ BUG_ON(!bfqq->dispatched);
+ bfqd->rq_in_driver--;
+ bfqq->dispatched--;
+-#ifdef CONFIG_BFQ_GROUP_IOSCHED
+ bfqg_stats_update_completion(bfqq_group(bfqq),
+ rq_start_time_ns(rq),
+- rq_io_start_time_ns(rq), rq->cmd_flags);
+-#endif
++ rq_io_start_time_ns(rq),
++ rq->cmd_flags);
+
+ if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
++ BUG_ON(!RB_EMPTY_ROOT(&bfqq->sort_list));
++ /*
++ * Set budget_timeout (which we overload to store the
++ * time at which the queue remains with no backlog and
++ * no outstanding request; used by the weight-raising
++ * mechanism).
++ */
++ bfqq->budget_timeout = jiffies;
++
+ bfq_weights_tree_remove(bfqd, &bfqq->entity,
+ &bfqd->queue_weights_tree);
+- if (!blk_queue_nonrot(bfqd->queue)) {
+- BUG_ON(!bfqd->busy_in_flight_queues);
+- bfqd->busy_in_flight_queues--;
+- if (bfq_bfqq_constantly_seeky(bfqq)) {
+- BUG_ON(!bfqd->
+- const_seeky_busy_in_flight_queues);
+- bfqd->const_seeky_busy_in_flight_queues--;
+- }
+- }
+ }
+
+- if (sync) {
+- bfqd->sync_flight--;
+- RQ_BIC(rq)->ttime.last_end_request = jiffies;
+- }
++ now_ns = ktime_get_ns();
++
++ RQ_BIC(rq)->ttime.last_end_request = now_ns;
++
++ /*
++ * Using us instead of ns, to get a reasonable precision in
++ * computing rate in next check.
++ */
++ delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
++
++ bfq_log(bfqd, "rq_completed: delta %uus/%luus max_size %u rate %llu/%llu",
++ delta_us, BFQ_MIN_TT/NSEC_PER_USEC, bfqd->last_rq_max_size,
++ (USEC_PER_SEC*
++ (u64)((bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us))
++ >>BFQ_RATE_SHIFT,
++ (USEC_PER_SEC*(u64)(1UL<<(BFQ_RATE_SHIFT-10)))>>BFQ_RATE_SHIFT);
++
++ /*
++ * If the request took rather long to complete, and, according
++ * to the maximum request size recorded, this completion latency
++ * implies that the request was certainly served at a very low
++ * rate (less than 1M sectors/sec), then the whole observation
++ * interval that lasts up to this time instant cannot be a
++ * valid time interval for computing a new peak rate. Invoke
++ * bfq_update_rate_reset to have the following three steps
++ * taken:
++ * - close the observation interval at the last (previous)
++ * request dispatch or completion
++ * - compute rate, if possible, for that observation interval
++ * - reset to zero samples, which will trigger a proper
++ * re-initialization of the observation interval on next
++ * dispatch
++ */
++ if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
++ (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
++ 1UL<<(BFQ_RATE_SHIFT - 10))
++ bfq_update_rate_reset(bfqd, NULL);
++ bfqd->last_completion = now_ns;
+
+ /*
+- * If we are waiting to discover whether the request pattern of the
+- * task associated with the queue is actually isochronous, and
+- * both requisites for this condition to hold are satisfied, then
+- * compute soft_rt_next_start (see the comments to the function
+- * bfq_bfqq_softrt_next_start()).
++ * If we are waiting to discover whether the request pattern
++ * of the task associated with the queue is actually
++ * isochronous, and both requisites for this condition to hold
++ * are now satisfied, then compute soft_rt_next_start (see the
++ * comments on the function bfq_bfqq_softrt_next_start()). We
++ * schedule this delayed check when bfqq expires, if it still
++ * has in-flight requests.
+ */
+ if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
+ RB_EMPTY_ROOT(&bfqq->sort_list))
+@@ -3613,10 +4439,7 @@ static void bfq_completed_request(struct request_queue *q, struct request *rq)
+ * or if we want to idle in case it has no pending requests.
+ */
+ if (bfqd->in_service_queue == bfqq) {
+- if (bfq_bfqq_budget_new(bfqq))
+- bfq_set_budget_timeout(bfqd);
+-
+- if (bfq_bfqq_must_idle(bfqq)) {
++ if (bfqq->dispatched == 0 && bfq_bfqq_must_idle(bfqq)) {
+ bfq_arm_slice_timer(bfqd);
+ goto out;
+ } else if (bfq_may_expire_for_budg_timeout(bfqq))
+@@ -3646,7 +4469,7 @@ static int __bfq_may_queue(struct bfq_queue *bfqq)
+ return ELV_MQUEUE_MAY;
+ }
+
+-static int bfq_may_queue(struct request_queue *q, int rw)
++static int bfq_may_queue(struct request_queue *q, unsigned int op)
+ {
+ struct bfq_data *bfqd = q->elevator->elevator_data;
+ struct task_struct *tsk = current;
+@@ -3663,7 +4486,7 @@ static int bfq_may_queue(struct request_queue *q, int rw)
+ if (!bic)
+ return ELV_MQUEUE_MAY;
+
+- bfqq = bic_to_bfqq(bic, rw_is_sync(rw));
++ bfqq = bic_to_bfqq(bic, op_is_sync(op));
+ if (bfqq)
+ return __bfq_may_queue(bfqq);
+
+@@ -3687,14 +4510,14 @@ static void bfq_put_request(struct request *rq)
+ rq->elv.priv[1] = NULL;
+
+ bfq_log_bfqq(bfqq->bfqd, bfqq, "put_request %p, %d",
+- bfqq, atomic_read(&bfqq->ref));
++ bfqq, bfqq->ref);
+ bfq_put_queue(bfqq);
+ }
+ }
+
+ /*
+ * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
+- * was the last process referring to said bfqq.
++ * was the last process referring to that bfqq.
+ */
+ static struct bfq_queue *
+ bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
+@@ -3732,37 +4555,60 @@ static int bfq_set_request(struct request_queue *q, struct request *rq,
+ unsigned long flags;
+ bool split = false;
+
+- might_sleep_if(gfpflags_allow_blocking(gfp_mask));
+-
+- bfq_check_ioprio_change(bic, bio);
+-
+ spin_lock_irqsave(q->queue_lock, flags);
++ bfq_check_ioprio_change(bic, bio);
+
+ if (!bic)
+ goto queue_fail;
+
++ bfq_check_ioprio_change(bic, bio);
++
+ bfq_bic_update_cgroup(bic, bio);
+
+ new_queue:
+ bfqq = bic_to_bfqq(bic, is_sync);
+ if (!bfqq || bfqq == &bfqd->oom_bfqq) {
+- bfqq = bfq_get_queue(bfqd, bio, is_sync, bic, gfp_mask);
++ if (bfqq)
++ bfq_put_queue(bfqq);
++ bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
++ BUG_ON(!hlist_unhashed(&bfqq->burst_list_node));
++
+ bic_set_bfqq(bic, bfqq, is_sync);
+ if (split && is_sync) {
++ bfq_log_bfqq(bfqd, bfqq,
++ "set_request: was_in_list %d "
++ "was_in_large_burst %d "
++ "large burst in progress %d",
++ bic->was_in_burst_list,
++ bic->saved_in_large_burst,
++ bfqd->large_burst);
++
+ if ((bic->was_in_burst_list && bfqd->large_burst) ||
+- bic->saved_in_large_burst)
++ bic->saved_in_large_burst) {
++ bfq_log_bfqq(bfqd, bfqq,
++ "set_request: marking in "
++ "large burst");
+ bfq_mark_bfqq_in_large_burst(bfqq);
+- else {
++ } else {
++ bfq_log_bfqq(bfqd, bfqq,
++ "set_request: clearing in "
++ "large burst");
+ bfq_clear_bfqq_in_large_burst(bfqq);
+ if (bic->was_in_burst_list)
+ hlist_add_head(&bfqq->burst_list_node,
+ &bfqd->burst_list);
+ }
++ bfqq->split_time = jiffies;
+ }
+ } else {
+ /* If the queue was seeky for too long, break it apart. */
+ if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
+ bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
++
++ /* Update bic before losing reference to bfqq */
++ if (bfq_bfqq_in_large_burst(bfqq))
++ bic->saved_in_large_burst = true;
++
+ bfqq = bfq_split_bfqq(bic, bfqq);
+ split = true;
+ if (!bfqq)
+@@ -3771,9 +4617,8 @@ static int bfq_set_request(struct request_queue *q, struct request *rq,
+ }
+
+ bfqq->allocated[rw]++;
+- atomic_inc(&bfqq->ref);
+- bfq_log_bfqq(bfqd, bfqq, "set_request: bfqq %p, %d", bfqq,
+- atomic_read(&bfqq->ref));
++ bfqq->ref++;
++ bfq_log_bfqq(bfqd, bfqq, "set_request: bfqq %p, %d", bfqq, bfqq->ref);
+
+ rq->elv.priv[0] = bic;
+ rq->elv.priv[1] = bfqq;
+@@ -3788,7 +4633,6 @@ static int bfq_set_request(struct request_queue *q, struct request *rq,
+ if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
+ bfqq->bic = bic;
+ if (split) {
+- bfq_mark_bfqq_just_split(bfqq);
+ /*
+ * If the queue has just been split from a shared
+ * queue, restore the idle window and the possible
+@@ -3798,6 +4642,9 @@ static int bfq_set_request(struct request_queue *q, struct request *rq,
+ }
+ }
+
++ if (unlikely(bfq_bfqq_just_created(bfqq)))
++ bfq_handle_burst(bfqd, bfqq);
++
+ spin_unlock_irqrestore(q->queue_lock, flags);
+
+ return 0;
+@@ -3824,9 +4671,10 @@ static void bfq_kick_queue(struct work_struct *work)
+ * Handler of the expiration of the timer running if the in-service queue
+ * is idling inside its time slice.
+ */
+-static void bfq_idle_slice_timer(unsigned long data)
++static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
+ {
+- struct bfq_data *bfqd = (struct bfq_data *)data;
++ struct bfq_data *bfqd = container_of(timer, struct bfq_data,
++ idle_slice_timer);
+ struct bfq_queue *bfqq;
+ unsigned long flags;
+ enum bfqq_expiration reason;
+@@ -3844,6 +4692,8 @@ static void bfq_idle_slice_timer(unsigned long data)
+ */
+ if (bfqq) {
+ bfq_log_bfqq(bfqd, bfqq, "slice_timer expired");
++ bfq_clear_bfqq_wait_request(bfqq);
++
+ if (bfq_bfqq_budget_timeout(bfqq))
+ /*
+ * Also here the queue can be safely expired
+@@ -3869,25 +4719,26 @@ static void bfq_idle_slice_timer(unsigned long data)
+ bfq_schedule_dispatch(bfqd);
+
+ spin_unlock_irqrestore(bfqd->queue->queue_lock, flags);
++ return HRTIMER_NORESTART;
+ }
+
+ static void bfq_shutdown_timer_wq(struct bfq_data *bfqd)
+ {
+- del_timer_sync(&bfqd->idle_slice_timer);
++ hrtimer_cancel(&bfqd->idle_slice_timer);
+ cancel_work_sync(&bfqd->unplug_work);
+ }
+
+ static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
+- struct bfq_queue **bfqq_ptr)
++ struct bfq_queue **bfqq_ptr)
+ {
+ struct bfq_group *root_group = bfqd->root_group;
+ struct bfq_queue *bfqq = *bfqq_ptr;
+
+ bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
+ if (bfqq) {
+- bfq_bfqq_move(bfqd, bfqq, &bfqq->entity, root_group);
++ bfq_bfqq_move(bfqd, bfqq, root_group);
+ bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
+- bfqq, atomic_read(&bfqq->ref));
++ bfqq, bfqq->ref);
+ bfq_put_queue(bfqq);
+ *bfqq_ptr = NULL;
+ }
+@@ -3922,19 +4773,18 @@ static void bfq_exit_queue(struct elevator_queue *e)
+
+ BUG_ON(bfqd->in_service_queue);
+ list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
+- bfq_deactivate_bfqq(bfqd, bfqq, 0);
++ bfq_deactivate_bfqq(bfqd, bfqq, false, false);
+
+ spin_unlock_irq(q->queue_lock);
+
+ bfq_shutdown_timer_wq(bfqd);
+
+- synchronize_rcu();
+-
+- BUG_ON(timer_pending(&bfqd->idle_slice_timer));
++ BUG_ON(hrtimer_active(&bfqd->idle_slice_timer));
+
+ #ifdef CONFIG_BFQ_GROUP_IOSCHED
+ blkcg_deactivate_policy(q, &blkcg_policy_bfq);
+ #else
++ bfq_put_async_queues(bfqd, bfqd->root_group);
+ kfree(bfqd->root_group);
+ #endif
+
+@@ -3954,6 +4804,7 @@ static void bfq_init_root_group(struct bfq_group *root_group,
+ root_group->rq_pos_tree = RB_ROOT;
+ for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
+ root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
++ root_group->sched_data.bfq_class_idle_last_service = jiffies;
+ }
+
+ static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
+@@ -3978,11 +4829,14 @@ static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
+ * will not attempt to free it.
+ */
+ bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
+- atomic_inc(&bfqd->oom_bfqq.ref);
++ bfqd->oom_bfqq.ref++;
+ bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
+ bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
+ bfqd->oom_bfqq.entity.new_weight =
+ bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
++
++ /* oom_bfqq does not participate to bursts */
++ bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
+ /*
+ * Trigger weight initialization, according to ioprio, at the
+ * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
+@@ -4001,13 +4855,10 @@ static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
+ goto out_free;
+ bfq_init_root_group(bfqd->root_group, bfqd);
+ bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
+-#ifdef CONFIG_BFQ_GROUP_IOSCHED
+- bfqd->active_numerous_groups = 0;
+-#endif
+
+- init_timer(&bfqd->idle_slice_timer);
++ hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
++ HRTIMER_MODE_REL);
+ bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
+- bfqd->idle_slice_timer.data = (unsigned long)bfqd;
+
+ bfqd->queue_weights_tree = RB_ROOT;
+ bfqd->group_weights_tree = RB_ROOT;
+@@ -4027,21 +4878,19 @@ static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
+ bfqd->bfq_back_max = bfq_back_max;
+ bfqd->bfq_back_penalty = bfq_back_penalty;
+ bfqd->bfq_slice_idle = bfq_slice_idle;
+- bfqd->bfq_class_idle_last_service = 0;
+- bfqd->bfq_max_budget_async_rq = bfq_max_budget_async_rq;
+- bfqd->bfq_timeout[BLK_RW_ASYNC] = bfq_timeout_async;
+- bfqd->bfq_timeout[BLK_RW_SYNC] = bfq_timeout_sync;
++ bfqd->bfq_timeout = bfq_timeout;
+
+- bfqd->bfq_coop_thresh = 2;
+- bfqd->bfq_failed_cooperations = 7000;
+ bfqd->bfq_requests_within_timer = 120;
+
+- bfqd->bfq_large_burst_thresh = 11;
+- bfqd->bfq_burst_interval = msecs_to_jiffies(500);
++ bfqd->bfq_large_burst_thresh = 8;
++ bfqd->bfq_burst_interval = msecs_to_jiffies(180);
+
+ bfqd->low_latency = true;
+
+- bfqd->bfq_wr_coeff = 20;
++ /*
++ * Trade-off between responsiveness and fairness.
++ */
++ bfqd->bfq_wr_coeff = 30;
+ bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
+ bfqd->bfq_wr_max_time = 0;
+ bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
+@@ -4053,16 +4902,15 @@ static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
+ * video.
+ */
+ bfqd->wr_busy_queues = 0;
+- bfqd->busy_in_flight_queues = 0;
+- bfqd->const_seeky_busy_in_flight_queues = 0;
+
+ /*
+- * Begin by assuming, optimistically, that the device peak rate is
+- * equal to the highest reference rate.
++ * Begin by assuming, optimistically, that the device is a
++ * high-speed one, and that its peak rate is equal to 2/3 of
++ * the highest reference rate.
+ */
+ bfqd->RT_prod = R_fast[blk_queue_nonrot(bfqd->queue)] *
+ T_fast[blk_queue_nonrot(bfqd->queue)];
+- bfqd->peak_rate = R_fast[blk_queue_nonrot(bfqd->queue)];
++ bfqd->peak_rate = R_fast[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
+ bfqd->device_speed = BFQ_BFQD_FAST;
+
+ return 0;
+@@ -4088,7 +4936,7 @@ static int __init bfq_slab_setup(void)
+
+ static ssize_t bfq_var_show(unsigned int var, char *page)
+ {
+- return sprintf(page, "%d\n", var);
++ return sprintf(page, "%u\n", var);
+ }
+
+ static ssize_t bfq_var_store(unsigned long *var, const char *page,
+@@ -4159,21 +5007,21 @@ static ssize_t bfq_weights_show(struct elevator_queue *e, char *page)
+ static ssize_t __FUNC(struct elevator_queue *e, char *page) \
+ { \
+ struct bfq_data *bfqd = e->elevator_data; \
+- unsigned int __data = __VAR; \
+- if (__CONV) \
++ u64 __data = __VAR; \
++ if (__CONV == 1) \
+ __data = jiffies_to_msecs(__data); \
++ else if (__CONV == 2) \
++ __data = div_u64(__data, NSEC_PER_MSEC); \
+ return bfq_var_show(__data, (page)); \
+ }
+-SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 1);
+-SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 1);
++SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
++SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
+ SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
+ SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
+-SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 1);
++SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
+ SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
+-SHOW_FUNCTION(bfq_max_budget_async_rq_show,
+- bfqd->bfq_max_budget_async_rq, 0);
+-SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout[BLK_RW_SYNC], 1);
+-SHOW_FUNCTION(bfq_timeout_async_show, bfqd->bfq_timeout[BLK_RW_ASYNC], 1);
++SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
++SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
+ SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
+ SHOW_FUNCTION(bfq_wr_coeff_show, bfqd->bfq_wr_coeff, 0);
+ SHOW_FUNCTION(bfq_wr_rt_max_time_show, bfqd->bfq_wr_rt_max_time, 1);
+@@ -4183,6 +5031,17 @@ SHOW_FUNCTION(bfq_wr_min_inter_arr_async_show, bfqd->bfq_wr_min_inter_arr_async,
+ SHOW_FUNCTION(bfq_wr_max_softrt_rate_show, bfqd->bfq_wr_max_softrt_rate, 0);
+ #undef SHOW_FUNCTION
+
++#define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
++static ssize_t __FUNC(struct elevator_queue *e, char *page) \
++{ \
++ struct bfq_data *bfqd = e->elevator_data; \
++ u64 __data = __VAR; \
++ __data = div_u64(__data, NSEC_PER_USEC); \
++ return bfq_var_show(__data, (page)); \
++}
++USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
++#undef USEC_SHOW_FUNCTION
++
+ #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
+ static ssize_t \
+ __FUNC(struct elevator_queue *e, const char *page, size_t count) \
+@@ -4194,24 +5053,22 @@ __FUNC(struct elevator_queue *e, const char *page, size_t count) \
+ __data = (MIN); \
+ else if (__data > (MAX)) \
+ __data = (MAX); \
+- if (__CONV) \
++ if (__CONV == 1) \
+ *(__PTR) = msecs_to_jiffies(__data); \
++ else if (__CONV == 2) \
++ *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
+ else \
+ *(__PTR) = __data; \
+ return ret; \
+ }
+ STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
+- INT_MAX, 1);
++ INT_MAX, 2);
+ STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
+- INT_MAX, 1);
++ INT_MAX, 2);
+ STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
+ STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
+ INT_MAX, 0);
+-STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 1);
+-STORE_FUNCTION(bfq_max_budget_async_rq_store, &bfqd->bfq_max_budget_async_rq,
+- 1, INT_MAX, 0);
+-STORE_FUNCTION(bfq_timeout_async_store, &bfqd->bfq_timeout[BLK_RW_ASYNC], 0,
+- INT_MAX, 1);
++STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
+ STORE_FUNCTION(bfq_wr_coeff_store, &bfqd->bfq_wr_coeff, 1, INT_MAX, 0);
+ STORE_FUNCTION(bfq_wr_max_time_store, &bfqd->bfq_wr_max_time, 0, INT_MAX, 1);
+ STORE_FUNCTION(bfq_wr_rt_max_time_store, &bfqd->bfq_wr_rt_max_time, 0, INT_MAX,
+@@ -4224,6 +5081,23 @@ STORE_FUNCTION(bfq_wr_max_softrt_rate_store, &bfqd->bfq_wr_max_softrt_rate, 0,
+ INT_MAX, 0);
+ #undef STORE_FUNCTION
+
++#define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
++static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
++{ \
++ struct bfq_data *bfqd = e->elevator_data; \
++ unsigned long uninitialized_var(__data); \
++ int ret = bfq_var_store(&__data, (page), count); \
++ if (__data < (MIN)) \
++ __data = (MIN); \
++ else if (__data > (MAX)) \
++ __data = (MAX); \
++ *(__PTR) = (u64)__data * NSEC_PER_USEC; \
++ return ret; \
++}
++USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
++ UINT_MAX);
++#undef USEC_STORE_FUNCTION
++
+ /* do nothing for the moment */
+ static ssize_t bfq_weights_store(struct elevator_queue *e,
+ const char *page, size_t count)
+@@ -4231,16 +5105,6 @@ static ssize_t bfq_weights_store(struct elevator_queue *e,
+ return count;
+ }
+
+-static unsigned long bfq_estimated_max_budget(struct bfq_data *bfqd)
+-{
+- u64 timeout = jiffies_to_msecs(bfqd->bfq_timeout[BLK_RW_SYNC]);
+-
+- if (bfqd->peak_rate_samples >= BFQ_PEAK_RATE_SAMPLES)
+- return bfq_calc_max_budget(bfqd->peak_rate, timeout);
+- else
+- return bfq_default_max_budget;
+-}
+-
+ static ssize_t bfq_max_budget_store(struct elevator_queue *e,
+ const char *page, size_t count)
+ {
+@@ -4249,7 +5113,7 @@ static ssize_t bfq_max_budget_store(struct elevator_queue *e,
+ int ret = bfq_var_store(&__data, (page), count);
+
+ if (__data == 0)
+- bfqd->bfq_max_budget = bfq_estimated_max_budget(bfqd);
++ bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
+ else {
+ if (__data > INT_MAX)
+ __data = INT_MAX;
+@@ -4261,6 +5125,10 @@ static ssize_t bfq_max_budget_store(struct elevator_queue *e,
+ return ret;
+ }
+
++/*
++ * Leaving this name to preserve name compatibility with cfq
++ * parameters, but this timeout is used for both sync and async.
++ */
+ static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
+ const char *page, size_t count)
+ {
+@@ -4273,9 +5141,27 @@ static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
+ else if (__data > INT_MAX)
+ __data = INT_MAX;
+
+- bfqd->bfq_timeout[BLK_RW_SYNC] = msecs_to_jiffies(__data);
++ bfqd->bfq_timeout = msecs_to_jiffies(__data);
+ if (bfqd->bfq_user_max_budget == 0)
+- bfqd->bfq_max_budget = bfq_estimated_max_budget(bfqd);
++ bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
++
++ return ret;
++}
++
++static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
++ const char *page, size_t count)
++{
++ struct bfq_data *bfqd = e->elevator_data;
++ unsigned long uninitialized_var(__data);
++ int ret = bfq_var_store(&__data, (page), count);
++
++ if (__data > 1)
++ __data = 1;
++ if (!bfqd->strict_guarantees && __data == 1
++ && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
++ bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
++
++ bfqd->strict_guarantees = __data;
+
+ return ret;
+ }
+@@ -4305,10 +5191,10 @@ static struct elv_fs_entry bfq_attrs[] = {
+ BFQ_ATTR(back_seek_max),
+ BFQ_ATTR(back_seek_penalty),
+ BFQ_ATTR(slice_idle),
++ BFQ_ATTR(slice_idle_us),
+ BFQ_ATTR(max_budget),
+- BFQ_ATTR(max_budget_async_rq),
+ BFQ_ATTR(timeout_sync),
+- BFQ_ATTR(timeout_async),
++ BFQ_ATTR(strict_guarantees),
+ BFQ_ATTR(low_latency),
+ BFQ_ATTR(wr_coeff),
+ BFQ_ATTR(wr_max_time),
+@@ -4321,14 +5207,15 @@ static struct elv_fs_entry bfq_attrs[] = {
+ };
+
+ static struct elevator_type iosched_bfq = {
+- .ops = {
++ .ops.sq = {
+ .elevator_merge_fn = bfq_merge,
+ .elevator_merged_fn = bfq_merged_request,
+ .elevator_merge_req_fn = bfq_merged_requests,
+ #ifdef CONFIG_BFQ_GROUP_IOSCHED
+ .elevator_bio_merged_fn = bfq_bio_merged,
+ #endif
+- .elevator_allow_merge_fn = bfq_allow_merge,
++ .elevator_allow_bio_merge_fn = bfq_allow_bio_merge,
++ .elevator_allow_rq_merge_fn = bfq_allow_rq_merge,
+ .elevator_dispatch_fn = bfq_dispatch_requests,
+ .elevator_add_req_fn = bfq_insert_request,
+ .elevator_activate_req_fn = bfq_activate_request,
+@@ -4351,18 +5238,28 @@ static struct elevator_type iosched_bfq = {
+ .elevator_owner = THIS_MODULE,
+ };
+
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++static struct blkcg_policy blkcg_policy_bfq = {
++ .dfl_cftypes = bfq_blkg_files,
++ .legacy_cftypes = bfq_blkcg_legacy_files,
++
++ .cpd_alloc_fn = bfq_cpd_alloc,
++ .cpd_init_fn = bfq_cpd_init,
++ .cpd_bind_fn = bfq_cpd_init,
++ .cpd_free_fn = bfq_cpd_free,
++
++ .pd_alloc_fn = bfq_pd_alloc,
++ .pd_init_fn = bfq_pd_init,
++ .pd_offline_fn = bfq_pd_offline,
++ .pd_free_fn = bfq_pd_free,
++ .pd_reset_stats_fn = bfq_pd_reset_stats,
++};
++#endif
++
+ static int __init bfq_init(void)
+ {
+ int ret;
+-
+- /*
+- * Can be 0 on HZ < 1000 setups.
+- */
+- if (bfq_slice_idle == 0)
+- bfq_slice_idle = 1;
+-
+- if (bfq_timeout_async == 0)
+- bfq_timeout_async = 1;
++ char msg[60] = "BFQ I/O-scheduler: v8r11";
+
+ #ifdef CONFIG_BFQ_GROUP_IOSCHED
+ ret = blkcg_policy_register(&blkcg_policy_bfq);
+@@ -4375,27 +5272,46 @@ static int __init bfq_init(void)
+ goto err_pol_unreg;
+
+ /*
+- * Times to load large popular applications for the typical systems
+- * installed on the reference devices (see the comments before the
+- * definitions of the two arrays).
++ * Times to load large popular applications for the typical
++ * systems installed on the reference devices (see the
++ * comments before the definitions of the next two
++ * arrays). Actually, we use slightly slower values, as the
++ * estimated peak rate tends to be smaller than the actual
++ * peak rate. The reason for this last fact is that estimates
++ * are computed over much shorter time intervals than the long
++ * intervals typically used for benchmarking. Why? First, to
++ * adapt more quickly to variations. Second, because an I/O
++ * scheduler cannot rely on a peak-rate-evaluation workload to
++ * be run for a long time.
+ */
+- T_slow[0] = msecs_to_jiffies(2600);
+- T_slow[1] = msecs_to_jiffies(1000);
+- T_fast[0] = msecs_to_jiffies(5500);
+- T_fast[1] = msecs_to_jiffies(2000);
++ T_slow[0] = msecs_to_jiffies(3500); /* actually 4 sec */
++ T_slow[1] = msecs_to_jiffies(6000); /* actually 6.5 sec */
++ T_fast[0] = msecs_to_jiffies(7000); /* actually 8 sec */
++ T_fast[1] = msecs_to_jiffies(2500); /* actually 3 sec */
+
+ /*
+- * Thresholds that determine the switch between speed classes (see
+- * the comments before the definition of the array).
++ * Thresholds that determine the switch between speed classes
++ * (see the comments before the definition of the array
++ * device_speed_thresh). These thresholds are biased towards
++ * transitions to the fast class. This is safer than the
++ * opposite bias. In fact, a wrong transition to the slow
++ * class results in short weight-raising periods, because the
++ * speed of the device then tends to be higher that the
++ * reference peak rate. On the opposite end, a wrong
++ * transition to the fast class tends to increase
++ * weight-raising periods, because of the opposite reason.
+ */
+- device_speed_thresh[0] = (R_fast[0] + R_slow[0]) / 2;
+- device_speed_thresh[1] = (R_fast[1] + R_slow[1]) / 2;
++ device_speed_thresh[0] = (4 * R_slow[0]) / 3;
++ device_speed_thresh[1] = (4 * R_slow[1]) / 3;
+
+ ret = elv_register(&iosched_bfq);
+ if (ret)
+ goto err_pol_unreg;
+
+- pr_info("BFQ I/O-scheduler: v7r11");
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ strcat(msg, " (with cgroups support)");
++#endif
++ pr_info("%s", msg);
+
+ return 0;
+
+diff --git a/block/bfq-sched.c b/block/bfq-sched.c
+index a5ed694..1fde070 100644
+--- a/block/bfq-sched.c
++++ b/block/bfq-sched.c
+@@ -7,28 +7,173 @@
+ * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
+ * Paolo Valente <paolo.valente@unimore.it>
+ *
+- * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
++ * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
++ *
++ * Copyright (C) 2016 Paolo Valente <paolo.valente@linaro.org>
+ */
+
+-#ifdef CONFIG_BFQ_GROUP_IOSCHED
+-#define for_each_entity(entity) \
+- for (; entity ; entity = entity->parent)
++static struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
+
+-#define for_each_entity_safe(entity, parent) \
+- for (; entity && ({ parent = entity->parent; 1; }); entity = parent)
++/**
++ * bfq_gt - compare two timestamps.
++ * @a: first ts.
++ * @b: second ts.
++ *
++ * Return @a > @b, dealing with wrapping correctly.
++ */
++static int bfq_gt(u64 a, u64 b)
++{
++ return (s64)(a - b) > 0;
++}
++
++static struct bfq_entity *bfq_root_active_entity(struct rb_root *tree)
++{
++ struct rb_node *node = tree->rb_node;
+
++ return rb_entry(node, struct bfq_entity, rb_node);
++}
+
+-static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
+- int extract,
+- struct bfq_data *bfqd);
++static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd);
+
+-static struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
++static bool bfq_update_parent_budget(struct bfq_entity *next_in_service);
++
++/**
++ * bfq_update_next_in_service - update sd->next_in_service
++ * @sd: sched_data for which to perform the update.
++ * @new_entity: if not NULL, pointer to the entity whose activation,
++ * requeueing or repositionig triggered the invocation of
++ * this function.
++ *
++ * This function is called to update sd->next_in_service, which, in
++ * its turn, may change as a consequence of the insertion or
++ * extraction of an entity into/from one of the active trees of
++ * sd. These insertions/extractions occur as a consequence of
++ * activations/deactivations of entities, with some activations being
++ * 'true' activations, and other activations being requeueings (i.e.,
++ * implementing the second, requeueing phase of the mechanism used to
++ * reposition an entity in its active tree; see comments on
++ * __bfq_activate_entity and __bfq_requeue_entity for details). In
++ * both the last two activation sub-cases, new_entity points to the
++ * just activated or requeued entity.
++ *
++ * Returns true if sd->next_in_service changes in such a way that
++ * entity->parent may become the next_in_service for its parent
++ * entity.
++ */
++static bool bfq_update_next_in_service(struct bfq_sched_data *sd,
++ struct bfq_entity *new_entity)
++{
++ struct bfq_entity *next_in_service = sd->next_in_service;
++ struct bfq_queue *bfqq;
++ bool parent_sched_may_change = false;
++
++ /*
++ * If this update is triggered by the activation, requeueing
++ * or repositiong of an entity that does not coincide with
++ * sd->next_in_service, then a full lookup in the active tree
++ * can be avoided. In fact, it is enough to check whether the
++ * just-modified entity has a higher priority than
++ * sd->next_in_service, or, even if it has the same priority
++ * as sd->next_in_service, is eligible and has a lower virtual
++ * finish time than sd->next_in_service. If this compound
++ * condition holds, then the new entity becomes the new
++ * next_in_service. Otherwise no change is needed.
++ */
++ if (new_entity && new_entity != sd->next_in_service) {
++ /*
++ * Flag used to decide whether to replace
++ * sd->next_in_service with new_entity. Tentatively
++ * set to true, and left as true if
++ * sd->next_in_service is NULL.
++ */
++ bool replace_next = true;
++
++ /*
++ * If there is already a next_in_service candidate
++ * entity, then compare class priorities or timestamps
++ * to decide whether to replace sd->service_tree with
++ * new_entity.
++ */
++ if (next_in_service) {
++ unsigned int new_entity_class_idx =
++ bfq_class_idx(new_entity);
++ struct bfq_service_tree *st =
++ sd->service_tree + new_entity_class_idx;
++
++ /*
++ * For efficiency, evaluate the most likely
++ * sub-condition first.
++ */
++ replace_next =
++ (new_entity_class_idx ==
++ bfq_class_idx(next_in_service)
++ &&
++ !bfq_gt(new_entity->start, st->vtime)
++ &&
++ bfq_gt(next_in_service->finish,
++ new_entity->finish))
++ ||
++ new_entity_class_idx <
++ bfq_class_idx(next_in_service);
++ }
++
++ if (replace_next)
++ next_in_service = new_entity;
++ } else /* invoked because of a deactivation: lookup needed */
++ next_in_service = bfq_lookup_next_entity(sd);
++
++ if (next_in_service) {
++ parent_sched_may_change = !sd->next_in_service ||
++ bfq_update_parent_budget(next_in_service);
++ } else
++ parent_sched_may_change = sd->next_in_service;
++
++ sd->next_in_service = next_in_service;
++
++ if (!next_in_service)
++ return parent_sched_may_change;
++
++ bfqq = bfq_entity_to_bfqq(next_in_service);
++ if (bfqq)
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "update_next_in_service: chosen this queue");
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ else {
++ struct bfq_group *bfqg =
++ container_of(next_in_service,
++ struct bfq_group, entity);
+
+-static void bfq_update_budget(struct bfq_entity *next_in_service)
++ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
++ "update_next_in_service: chosen this entity");
++ }
++#endif
++ return parent_sched_may_change;
++}
++
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++/* both next loops stop at one of the child entities of the root group */
++#define for_each_entity(entity) \
++ for (; entity ; entity = entity->parent)
++
++/*
++ * For each iteration, compute parent in advance, so as to be safe if
++ * entity is deallocated during the iteration. Such a deallocation may
++ * happen as a consequence of a bfq_put_queue that frees the bfq_queue
++ * containing entity.
++ */
++#define for_each_entity_safe(entity, parent) \
++ for (; entity && ({ parent = entity->parent; 1; }); entity = parent)
++
++/*
++ * Returns true if this budget changes may let next_in_service->parent
++ * become the next_in_service entity for its parent entity.
++ */
++static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
+ {
+ struct bfq_entity *bfqg_entity;
+ struct bfq_group *bfqg;
+ struct bfq_sched_data *group_sd;
++ bool ret = false;
+
+ BUG_ON(!next_in_service);
+
+@@ -41,60 +186,68 @@ static void bfq_update_budget(struct bfq_entity *next_in_service)
+ * as it must never become an in-service entity.
+ */
+ bfqg_entity = bfqg->my_entity;
+- if (bfqg_entity)
++ if (bfqg_entity) {
++ if (bfqg_entity->budget > next_in_service->budget)
++ ret = true;
+ bfqg_entity->budget = next_in_service->budget;
++ }
++
++ return ret;
+ }
+
+-static int bfq_update_next_in_service(struct bfq_sched_data *sd)
++/*
++ * This function tells whether entity stops being a candidate for next
++ * service, according to the following logic.
++ *
++ * This function is invoked for an entity that is about to be set in
++ * service. If such an entity is a queue, then the entity is no longer
++ * a candidate for next service (i.e, a candidate entity to serve
++ * after the in-service entity is expired). The function then returns
++ * true.
++ *
++ * In contrast, the entity could stil be a candidate for next service
++ * if it is not a queue, and has more than one child. In fact, even if
++ * one of its children is about to be set in service, other children
++ * may still be the next to serve. As a consequence, a non-queue
++ * entity is not a candidate for next-service only if it has only one
++ * child. And only if this condition holds, then the function returns
++ * true for a non-queue entity.
++ */
++static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
+ {
+- struct bfq_entity *next_in_service;
++ struct bfq_group *bfqg;
+
+- if (sd->in_service_entity)
+- /* will update/requeue at the end of service */
+- return 0;
++ if (bfq_entity_to_bfqq(entity))
++ return true;
+
+- /*
+- * NOTE: this can be improved in many ways, such as returning
+- * 1 (and thus propagating upwards the update) only when the
+- * budget changes, or caching the bfqq that will be scheduled
+- * next from this subtree. By now we worry more about
+- * correctness than about performance...
+- */
+- next_in_service = bfq_lookup_next_entity(sd, 0, NULL);
+- sd->next_in_service = next_in_service;
++ bfqg = container_of(entity, struct bfq_group, entity);
+
+- if (next_in_service)
+- bfq_update_budget(next_in_service);
++ BUG_ON(bfqg == ((struct bfq_data *)(bfqg->bfqd))->root_group);
++ BUG_ON(bfqg->active_entities == 0);
++ if (bfqg->active_entities == 1)
++ return true;
+
+- return 1;
++ return false;
+ }
+
+-static void bfq_check_next_in_service(struct bfq_sched_data *sd,
+- struct bfq_entity *entity)
+-{
+- BUG_ON(sd->next_in_service != entity);
+-}
+-#else
++#else /* CONFIG_BFQ_GROUP_IOSCHED */
+ #define for_each_entity(entity) \
+ for (; entity ; entity = NULL)
+
+ #define for_each_entity_safe(entity, parent) \
+ for (parent = NULL; entity ; entity = parent)
+
+-static int bfq_update_next_in_service(struct bfq_sched_data *sd)
++static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
+ {
+- return 0;
++ return false;
+ }
+
+-static void bfq_check_next_in_service(struct bfq_sched_data *sd,
+- struct bfq_entity *entity)
++static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
+ {
++ return true;
+ }
+
+-static void bfq_update_budget(struct bfq_entity *next_in_service)
+-{
+-}
+-#endif
++#endif /* CONFIG_BFQ_GROUP_IOSCHED */
+
+ /*
+ * Shift for timestamp calculations. This actually limits the maximum
+@@ -105,18 +258,6 @@ static void bfq_update_budget(struct bfq_entity *next_in_service)
+ */
+ #define WFQ_SERVICE_SHIFT 22
+
+-/**
+- * bfq_gt - compare two timestamps.
+- * @a: first ts.
+- * @b: second ts.
+- *
+- * Return @a > @b, dealing with wrapping correctly.
+- */
+-static int bfq_gt(u64 a, u64 b)
+-{
+- return (s64)(a - b) > 0;
+-}
+-
+ static struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity)
+ {
+ struct bfq_queue *bfqq = NULL;
+@@ -151,20 +292,36 @@ static u64 bfq_delta(unsigned long service, unsigned long weight)
+ static void bfq_calc_finish(struct bfq_entity *entity, unsigned long service)
+ {
+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++ unsigned long long start, finish, delta;
+
+ BUG_ON(entity->weight == 0);
+
+ entity->finish = entity->start +
+ bfq_delta(service, entity->weight);
+
++ start = ((entity->start>>10)*1000)>>12;
++ finish = ((entity->finish>>10)*1000)>>12;
++ delta = ((bfq_delta(service, entity->weight)>>10)*1000)>>12;
++
+ if (bfqq) {
+ bfq_log_bfqq(bfqq->bfqd, bfqq,
+ "calc_finish: serv %lu, w %d",
+ service, entity->weight);
+ bfq_log_bfqq(bfqq->bfqd, bfqq,
+ "calc_finish: start %llu, finish %llu, delta %llu",
+- entity->start, entity->finish,
+- bfq_delta(service, entity->weight));
++ start, finish, delta);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ } else {
++ struct bfq_group *bfqg =
++ container_of(entity, struct bfq_group, entity);
++
++ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
++ "calc_finish group: serv %lu, w %d",
++ service, entity->weight);
++ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
++ "calc_finish group: start %llu, finish %llu, delta %llu",
++ start, finish, delta);
++#endif
+ }
+ }
+
+@@ -293,10 +450,26 @@ static void bfq_update_min(struct bfq_entity *entity, struct rb_node *node)
+ static void bfq_update_active_node(struct rb_node *node)
+ {
+ struct bfq_entity *entity = rb_entry(node, struct bfq_entity, rb_node);
++ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
+
+ entity->min_start = entity->start;
+ bfq_update_min(entity, node->rb_right);
+ bfq_update_min(entity, node->rb_left);
++
++ if (bfqq) {
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "update_active_node: new min_start %llu",
++ ((entity->min_start>>10)*1000)>>12);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ } else {
++ struct bfq_group *bfqg =
++ container_of(entity, struct bfq_group, entity);
++
++ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
++ "update_active_node: new min_start %llu",
++ ((entity->min_start>>10)*1000)>>12);
++#endif
++ }
+ }
+
+ /**
+@@ -386,8 +559,6 @@ static void bfq_active_insert(struct bfq_service_tree *st,
+ BUG_ON(!bfqg);
+ BUG_ON(!bfqd);
+ bfqg->active_entities++;
+- if (bfqg->active_entities == 2)
+- bfqd->active_numerous_groups++;
+ }
+ #endif
+ }
+@@ -399,7 +570,7 @@ static void bfq_active_insert(struct bfq_service_tree *st,
+ static unsigned short bfq_ioprio_to_weight(int ioprio)
+ {
+ BUG_ON(ioprio < 0 || ioprio >= IOPRIO_BE_NR);
+- return IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF - ioprio;
++ return (IOPRIO_BE_NR - ioprio) * BFQ_WEIGHT_CONVERSION_COEFF;
+ }
+
+ /**
+@@ -422,9 +593,9 @@ static void bfq_get_entity(struct bfq_entity *entity)
+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
+
+ if (bfqq) {
+- atomic_inc(&bfqq->ref);
++ bfqq->ref++;
+ bfq_log_bfqq(bfqq->bfqd, bfqq, "get_entity: %p %d",
+- bfqq, atomic_read(&bfqq->ref));
++ bfqq, bfqq->ref);
+ }
+ }
+
+@@ -499,10 +670,6 @@ static void bfq_active_extract(struct bfq_service_tree *st,
+ BUG_ON(!bfqd);
+ BUG_ON(!bfqg->active_entities);
+ bfqg->active_entities--;
+- if (bfqg->active_entities == 1) {
+- BUG_ON(!bfqd->active_numerous_groups);
+- bfqd->active_numerous_groups--;
+- }
+ }
+ #endif
+ }
+@@ -531,28 +698,32 @@ static void bfq_idle_insert(struct bfq_service_tree *st,
+ }
+
+ /**
+- * bfq_forget_entity - remove an entity from the wfq trees.
++ * bfq_forget_entity - do not consider entity any longer for scheduling
+ * @st: the service tree.
+ * @entity: the entity being removed.
++ * @is_in_service: true if entity is currently the in-service entity.
+ *
+- * Update the device status and forget everything about @entity, putting
+- * the device reference to it, if it is a queue. Entities belonging to
+- * groups are not refcounted.
++ * Forget everything about @entity. In addition, if entity represents
++ * a queue, and the latter is not in service, then release the service
++ * reference to the queue (the one taken through bfq_get_entity). In
++ * fact, in this case, there is really no more service reference to
++ * the queue, as the latter is also outside any service tree. If,
++ * instead, the queue is in service, then __bfq_bfqd_reset_in_service
++ * will take care of putting the reference when the queue finally
++ * stops being served.
+ */
+ static void bfq_forget_entity(struct bfq_service_tree *st,
+- struct bfq_entity *entity)
++ struct bfq_entity *entity,
++ bool is_in_service)
+ {
+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
+- struct bfq_sched_data *sd;
+-
+ BUG_ON(!entity->on_st);
+
+- entity->on_st = 0;
++ entity->on_st = false;
+ st->wsum -= entity->weight;
+- if (bfqq) {
+- sd = entity->sched_data;
+- bfq_log_bfqq(bfqq->bfqd, bfqq, "forget_entity: %p %d",
+- bfqq, atomic_read(&bfqq->ref));
++ if (bfqq && !is_in_service) {
++ bfq_log_bfqq(bfqq->bfqd, bfqq, "forget_entity (before): %p %d",
++ bfqq, bfqq->ref);
+ bfq_put_queue(bfqq);
+ }
+ }
+@@ -566,7 +737,8 @@ static void bfq_put_idle_entity(struct bfq_service_tree *st,
+ struct bfq_entity *entity)
+ {
+ bfq_idle_extract(st, entity);
+- bfq_forget_entity(st, entity);
++ bfq_forget_entity(st, entity,
++ entity == entity->sched_data->in_service_entity);
+ }
+
+ /**
+@@ -602,7 +774,7 @@ __bfq_entity_update_weight_prio(struct bfq_service_tree *old_st,
+
+ if (entity->prio_changed) {
+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
+- unsigned short prev_weight, new_weight;
++ unsigned int prev_weight, new_weight;
+ struct bfq_data *bfqd = NULL;
+ struct rb_root *root;
+ #ifdef CONFIG_BFQ_GROUP_IOSCHED
+@@ -630,7 +802,10 @@ __bfq_entity_update_weight_prio(struct bfq_service_tree *old_st,
+ entity->new_weight > BFQ_MAX_WEIGHT) {
+ pr_crit("update_weight_prio: new_weight %d\n",
+ entity->new_weight);
+- BUG();
++ if (entity->new_weight < BFQ_MIN_WEIGHT)
++ entity->new_weight = BFQ_MIN_WEIGHT;
++ else
++ entity->new_weight = BFQ_MAX_WEIGHT;
+ }
+ entity->orig_weight = entity->new_weight;
+ if (bfqq)
+@@ -661,6 +836,13 @@ __bfq_entity_update_weight_prio(struct bfq_service_tree *old_st,
+ * associated with its new weight.
+ */
+ if (prev_weight != new_weight) {
++ if (bfqq)
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "weight changed %d %d(%d %d)",
++ prev_weight, new_weight,
++ entity->orig_weight,
++ bfqq->wr_coeff);
++
+ root = bfqq ? &bfqd->queue_weights_tree :
+ &bfqd->group_weights_tree;
+ bfq_weights_tree_remove(bfqd, entity, root);
+@@ -707,7 +889,7 @@ static void bfq_bfqq_served(struct bfq_queue *bfqq, int served)
+ st = bfq_entity_service_tree(entity);
+
+ entity->service += served;
+- BUG_ON(entity->service > entity->budget);
++
+ BUG_ON(st->wsum == 0);
+
+ st->vtime += bfq_delta(served, st->wsum);
+@@ -716,234 +898,589 @@ static void bfq_bfqq_served(struct bfq_queue *bfqq, int served)
+ #ifdef CONFIG_BFQ_GROUP_IOSCHED
+ bfqg_stats_set_start_empty_time(bfqq_group(bfqq));
+ #endif
+- bfq_log_bfqq(bfqq->bfqd, bfqq, "bfqq_served %d secs", served);
++ st = bfq_entity_service_tree(&bfqq->entity);
++ bfq_log_bfqq(bfqq->bfqd, bfqq, "bfqq_served %d secs, vtime %llu on %p",
++ served, ((st->vtime>>10)*1000)>>12, st);
+ }
+
+ /**
+- * bfq_bfqq_charge_full_budget - set the service to the entity budget.
++ * bfq_bfqq_charge_time - charge an amount of service equivalent to the length
++ * of the time interval during which bfqq has been in
++ * service.
++ * @bfqd: the device
+ * @bfqq: the queue that needs a service update.
++ * @time_ms: the amount of time during which the queue has received service
++ *
++ * If a queue does not consume its budget fast enough, then providing
++ * the queue with service fairness may impair throughput, more or less
++ * severely. For this reason, queues that consume their budget slowly
++ * are provided with time fairness instead of service fairness. This
++ * goal is achieved through the BFQ scheduling engine, even if such an
++ * engine works in the service, and not in the time domain. The trick
++ * is charging these queues with an inflated amount of service, equal
++ * to the amount of service that they would have received during their
++ * service slot if they had been fast, i.e., if their requests had
++ * been dispatched at a rate equal to the estimated peak rate.
+ *
+- * When it's not possible to be fair in the service domain, because
+- * a queue is not consuming its budget fast enough (the meaning of
+- * fast depends on the timeout parameter), we charge it a full
+- * budget. In this way we should obtain a sort of time-domain
+- * fairness among all the seeky/slow queues.
++ * It is worth noting that time fairness can cause important
++ * distortions in terms of bandwidth distribution, on devices with
++ * internal queueing. The reason is that I/O requests dispatched
++ * during the service slot of a queue may be served after that service
++ * slot is finished, and may have a total processing time loosely
++ * correlated with the duration of the service slot. This is
++ * especially true for short service slots.
+ */
+-static void bfq_bfqq_charge_full_budget(struct bfq_queue *bfqq)
++static void bfq_bfqq_charge_time(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++ unsigned long time_ms)
+ {
+ struct bfq_entity *entity = &bfqq->entity;
++ int tot_serv_to_charge = entity->service;
++ unsigned int timeout_ms = jiffies_to_msecs(bfq_timeout);
++
++ if (time_ms > 0 && time_ms < timeout_ms)
++ tot_serv_to_charge =
++ (bfqd->bfq_max_budget * time_ms) / timeout_ms;
++
++ if (tot_serv_to_charge < entity->service)
++ tot_serv_to_charge = entity->service;
++
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "charge_time: %lu/%u ms, %d/%d/%d sectors",
++ time_ms, timeout_ms, entity->service,
++ tot_serv_to_charge, entity->budget);
++
++ /* Increase budget to avoid inconsistencies */
++ if (tot_serv_to_charge > entity->budget)
++ entity->budget = tot_serv_to_charge;
++
++ bfq_bfqq_served(bfqq,
++ max_t(int, 0, tot_serv_to_charge - entity->service));
++}
++
++static void bfq_update_fin_time_enqueue(struct bfq_entity *entity,
++ struct bfq_service_tree *st,
++ bool backshifted)
++{
++ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++ struct bfq_sched_data *sd = entity->sched_data;
+
+- bfq_log_bfqq(bfqq->bfqd, bfqq, "charge_full_budget");
++ st = __bfq_entity_update_weight_prio(st, entity);
++ bfq_calc_finish(entity, entity->budget);
++
++ /*
++ * If some queues enjoy backshifting for a while, then their
++ * (virtual) finish timestamps may happen to become lower and
++ * lower than the system virtual time. In particular, if
++ * these queues often happen to be idle for short time
++ * periods, and during such time periods other queues with
++ * higher timestamps happen to be busy, then the backshifted
++ * timestamps of the former queues can become much lower than
++ * the system virtual time. In fact, to serve the queues with
++ * higher timestamps while the ones with lower timestamps are
++ * idle, the system virtual time may be pushed-up to much
++ * higher values than the finish timestamps of the idle
++ * queues. As a consequence, the finish timestamps of all new
++ * or newly activated queues may end up being much larger than
++ * those of lucky queues with backshifted timestamps. The
++ * latter queues may then monopolize the device for a lot of
++ * time. This would simply break service guarantees.
++ *
++ * To reduce this problem, push up a little bit the
++ * backshifted timestamps of the queue associated with this
++ * entity (only a queue can happen to have the backshifted
++ * flag set): just enough to let the finish timestamp of the
++ * queue be equal to the current value of the system virtual
++ * time. This may introduce a little unfairness among queues
++ * with backshifted timestamps, but it does not break
++ * worst-case fairness guarantees.
++ *
++ * As a special case, if bfqq is weight-raised, push up
++ * timestamps much less, to keep very low the probability that
++ * this push up causes the backshifted finish timestamps of
++ * weight-raised queues to become higher than the backshifted
++ * finish timestamps of non weight-raised queues.
++ */
++ if (backshifted && bfq_gt(st->vtime, entity->finish)) {
++ unsigned long delta = st->vtime - entity->finish;
++
++ if (bfqq)
++ delta /= bfqq->wr_coeff;
+
+- bfq_bfqq_served(bfqq, entity->budget - entity->service);
++ entity->start += delta;
++ entity->finish += delta;
++
++ if (bfqq) {
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "__activate_entity: new queue finish %llu",
++ ((entity->finish>>10)*1000)>>12);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ } else {
++ struct bfq_group *bfqg =
++ container_of(entity, struct bfq_group, entity);
++
++ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
++ "__activate_entity: new group finish %llu",
++ ((entity->finish>>10)*1000)>>12);
++#endif
++ }
++ }
++
++ bfq_active_insert(st, entity);
++
++ if (bfqq) {
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "__activate_entity: queue %seligible in st %p",
++ entity->start <= st->vtime ? "" : "non ", st);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ } else {
++ struct bfq_group *bfqg =
++ container_of(entity, struct bfq_group, entity);
++
++ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
++ "__activate_entity: group %seligible in st %p",
++ entity->start <= st->vtime ? "" : "non ", st);
++#endif
++ }
++ BUG_ON(RB_EMPTY_ROOT(&st->active));
++ BUG_ON(&st->active != &sd->service_tree->active &&
++ &st->active != &(sd->service_tree+1)->active &&
++ &st->active != &(sd->service_tree+2)->active);
+ }
+
+ /**
+- * __bfq_activate_entity - activate an entity.
++ * __bfq_activate_entity - handle activation of entity.
+ * @entity: the entity being activated.
++ * @non_blocking_wait_rq: true if entity was waiting for a request
++ *
++ * Called for a 'true' activation, i.e., if entity is not active and
++ * one of its children receives a new request.
+ *
+- * Called whenever an entity is activated, i.e., it is not active and one
+- * of its children receives a new request, or has to be reactivated due to
+- * budget exhaustion. It uses the current budget of the entity (and the
+- * service received if @entity is active) of the queue to calculate its
+- * timestamps.
++ * Basically, this function updates the timestamps of entity and
++ * inserts entity into its active tree, ater possible extracting it
++ * from its idle tree.
+ */
+-static void __bfq_activate_entity(struct bfq_entity *entity)
++static void __bfq_activate_entity(struct bfq_entity *entity,
++ bool non_blocking_wait_rq)
+ {
+ struct bfq_sched_data *sd = entity->sched_data;
+ struct bfq_service_tree *st = bfq_entity_service_tree(entity);
++ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++ bool backshifted = false;
++ unsigned long long min_vstart;
+
+- if (entity == sd->in_service_entity) {
+- BUG_ON(entity->tree);
+- /*
+- * If we are requeueing the current entity we have
+- * to take care of not charging to it service it has
+- * not received.
+- */
+- bfq_calc_finish(entity, entity->service);
+- entity->start = entity->finish;
+- sd->in_service_entity = NULL;
+- } else if (entity->tree == &st->active) {
+- /*
+- * Requeueing an entity due to a change of some
+- * next_in_service entity below it. We reuse the
+- * old start time.
+- */
+- bfq_active_extract(st, entity);
+- } else if (entity->tree == &st->idle) {
++ BUG_ON(!sd);
++ BUG_ON(!st);
++
++ /* See comments on bfq_fqq_update_budg_for_activation */
++ if (non_blocking_wait_rq && bfq_gt(st->vtime, entity->finish)) {
++ backshifted = true;
++ min_vstart = entity->finish;
++ } else
++ min_vstart = st->vtime;
++
++ if (entity->tree == &st->idle) {
+ /*
+ * Must be on the idle tree, bfq_idle_extract() will
+ * check for that.
+ */
+ bfq_idle_extract(st, entity);
+- entity->start = bfq_gt(st->vtime, entity->finish) ?
+- st->vtime : entity->finish;
++ entity->start = bfq_gt(min_vstart, entity->finish) ?
++ min_vstart : entity->finish;
+ } else {
+ /*
+ * The finish time of the entity may be invalid, and
+ * it is in the past for sure, otherwise the queue
+ * would have been on the idle tree.
+ */
+- entity->start = st->vtime;
++ entity->start = min_vstart;
+ st->wsum += entity->weight;
++ /*
++ * entity is about to be inserted into a service tree,
++ * and then set in service: get a reference to make
++ * sure entity does not disappear until it is no
++ * longer in service or scheduled for service.
++ */
+ bfq_get_entity(entity);
+
+- BUG_ON(entity->on_st);
+- entity->on_st = 1;
++ BUG_ON(entity->on_st && bfqq);
++
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ if (entity->on_st && !bfqq) {
++ struct bfq_group *bfqg =
++ container_of(entity, struct bfq_group,
++ entity);
++
++ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd,
++ bfqg,
++ "activate bug, class %d in_service %p",
++ bfq_class_idx(entity), sd->in_service_entity);
++ }
++#endif
++ BUG_ON(entity->on_st && !bfqq);
++ entity->on_st = true;
+ }
+
+- st = __bfq_entity_update_weight_prio(st, entity);
+- bfq_calc_finish(entity, entity->budget);
+- bfq_active_insert(st, entity);
++ bfq_update_fin_time_enqueue(entity, st, backshifted);
+ }
+
+ /**
+- * bfq_activate_entity - activate an entity and its ancestors if necessary.
+- * @entity: the entity to activate.
++ * __bfq_requeue_entity - handle requeueing or repositioning of an entity.
++ * @entity: the entity being requeued or repositioned.
++ *
++ * Requeueing is needed if this entity stops being served, which
++ * happens if a leaf descendant entity has expired. On the other hand,
++ * repositioning is needed if the next_inservice_entity for the child
++ * entity has changed. See the comments inside the function for
++ * details.
+ *
+- * Activate @entity and all the entities on the path from it to the root.
++ * Basically, this function: 1) removes entity from its active tree if
++ * present there, 2) updates the timestamps of entity and 3) inserts
++ * entity back into its active tree (in the new, right position for
++ * the new values of the timestamps).
+ */
+-static void bfq_activate_entity(struct bfq_entity *entity)
++static void __bfq_requeue_entity(struct bfq_entity *entity)
++{
++ struct bfq_sched_data *sd = entity->sched_data;
++ struct bfq_service_tree *st = bfq_entity_service_tree(entity);
++
++ BUG_ON(!sd);
++ BUG_ON(!st);
++
++ BUG_ON(entity != sd->in_service_entity &&
++ entity->tree != &st->active);
++
++ if (entity == sd->in_service_entity) {
++ /*
++ * We are requeueing the current in-service entity,
++ * which may have to be done for one of the following
++ * reasons:
++ * - entity represents the in-service queue, and the
++ * in-service queue is being requeued after an
++ * expiration;
++ * - entity represents a group, and its budget has
++ * changed because one of its child entities has
++ * just been either activated or requeued for some
++ * reason; the timestamps of the entity need then to
++ * be updated, and the entity needs to be enqueued
++ * or repositioned accordingly.
++ *
++ * In particular, before requeueing, the start time of
++ * the entity must be moved forward to account for the
++ * service that the entity has received while in
++ * service. This is done by the next instructions. The
++ * finish time will then be updated according to this
++ * new value of the start time, and to the budget of
++ * the entity.
++ */
++ bfq_calc_finish(entity, entity->service);
++ entity->start = entity->finish;
++ BUG_ON(entity->tree && entity->tree != &st->active);
++ /*
++ * In addition, if the entity had more than one child
++ * when set in service, then was not extracted from
++ * the active tree. This implies that the position of
++ * the entity in the active tree may need to be
++ * changed now, because we have just updated the start
++ * time of the entity, and we will update its finish
++ * time in a moment (the requeueing is then, more
++ * precisely, a repositioning in this case). To
++ * implement this repositioning, we: 1) dequeue the
++ * entity here, 2) update the finish time and
++ * requeue the entity according to the new
++ * timestamps below.
++ */
++ if (entity->tree)
++ bfq_active_extract(st, entity);
++ } else { /* The entity is already active, and not in service */
++ /*
++ * In this case, this function gets called only if the
++ * next_in_service entity below this entity has
++ * changed, and this change has caused the budget of
++ * this entity to change, which, finally implies that
++ * the finish time of this entity must be
++ * updated. Such an update may cause the scheduling,
++ * i.e., the position in the active tree, of this
++ * entity to change. We handle this change by: 1)
++ * dequeueing the entity here, 2) updating the finish
++ * time and requeueing the entity according to the new
++ * timestamps below. This is the same approach as the
++ * non-extracted-entity sub-case above.
++ */
++ bfq_active_extract(st, entity);
++ }
++
++ bfq_update_fin_time_enqueue(entity, st, false);
++}
++
++static void __bfq_activate_requeue_entity(struct bfq_entity *entity,
++ struct bfq_sched_data *sd,
++ bool non_blocking_wait_rq)
++{
++ struct bfq_service_tree *st = bfq_entity_service_tree(entity);
++
++ if (sd->in_service_entity == entity || entity->tree == &st->active)
++ /*
++ * in service or already queued on the active tree,
++ * requeue or reposition
++ */
++ __bfq_requeue_entity(entity);
++ else
++ /*
++ * Not in service and not queued on its active tree:
++ * the activity is idle and this is a true activation.
++ */
++ __bfq_activate_entity(entity, non_blocking_wait_rq);
++}
++
++
++/**
++ * bfq_activate_entity - activate or requeue an entity representing a bfq_queue,
++ * and activate, requeue or reposition all ancestors
++ * for which such an update becomes necessary.
++ * @entity: the entity to activate.
++ * @non_blocking_wait_rq: true if this entity was waiting for a request
++ * @requeue: true if this is a requeue, which implies that bfqq is
++ * being expired; thus ALL its ancestors stop being served and must
++ * therefore be requeued
++ */
++static void bfq_activate_requeue_entity(struct bfq_entity *entity,
++ bool non_blocking_wait_rq,
++ bool requeue)
+ {
+ struct bfq_sched_data *sd;
+
+ for_each_entity(entity) {
+- __bfq_activate_entity(entity);
+-
++ BUG_ON(!entity);
+ sd = entity->sched_data;
+- if (!bfq_update_next_in_service(sd))
+- /*
+- * No need to propagate the activation to the
+- * upper entities, as they will be updated when
+- * the in-service entity is rescheduled.
+- */
++ __bfq_activate_requeue_entity(entity, sd, non_blocking_wait_rq);
++
++ BUG_ON(RB_EMPTY_ROOT(&sd->service_tree->active) &&
++ RB_EMPTY_ROOT(&(sd->service_tree+1)->active) &&
++ RB_EMPTY_ROOT(&(sd->service_tree+2)->active));
++
++ if (!bfq_update_next_in_service(sd, entity) && !requeue) {
++ BUG_ON(!sd->next_in_service);
+ break;
++ }
++ BUG_ON(!sd->next_in_service);
+ }
+ }
+
+ /**
+ * __bfq_deactivate_entity - deactivate an entity from its service tree.
+ * @entity: the entity to deactivate.
+- * @requeue: if false, the entity will not be put into the idle tree.
+- *
+- * Deactivate an entity, independently from its previous state. If the
+- * entity was not on a service tree just return, otherwise if it is on
+- * any scheduler tree, extract it from that tree, and if necessary
+- * and if the caller did not specify @requeue, put it on the idle tree.
++ * @ins_into_idle_tree: if false, the entity will not be put into the
++ * idle tree.
+ *
+- * Return %1 if the caller should update the entity hierarchy, i.e.,
+- * if the entity was in service or if it was the next_in_service for
+- * its sched_data; return %0 otherwise.
++ * Deactivates an entity, independently from its previous state. Must
++ * be invoked only if entity is on a service tree. Extracts the entity
++ * from that tree, and if necessary and allowed, puts it on the idle
++ * tree.
+ */
+-static int __bfq_deactivate_entity(struct bfq_entity *entity, int requeue)
++static bool __bfq_deactivate_entity(struct bfq_entity *entity,
++ bool ins_into_idle_tree)
+ {
+ struct bfq_sched_data *sd = entity->sched_data;
+ struct bfq_service_tree *st;
+- int was_in_service;
+- int ret = 0;
++ bool is_in_service;
+
+- if (sd == NULL || !entity->on_st) /* never activated, or inactive */
+- return 0;
++ if (!entity->on_st) { /* entity never activated, or already inactive */
++ BUG_ON(sd && entity == sd->in_service_entity);
++ return false;
++ }
+
++ /*
++ * If we get here, then entity is active, which implies that
++ * bfq_group_set_parent has already been invoked for the group
++ * represented by entity. Therefore, the field
++ * entity->sched_data has been set, and we can safely use it.
++ */
+ st = bfq_entity_service_tree(entity);
+- was_in_service = entity == sd->in_service_entity;
++ is_in_service = entity == sd->in_service_entity;
+
+- BUG_ON(was_in_service && entity->tree);
++ BUG_ON(is_in_service && entity->tree && entity->tree != &st->active);
+
+- if (was_in_service) {
++ if (is_in_service)
+ bfq_calc_finish(entity, entity->service);
+- sd->in_service_entity = NULL;
+- } else if (entity->tree == &st->active)
++
++ if (entity->tree == &st->active)
+ bfq_active_extract(st, entity);
+- else if (entity->tree == &st->idle)
++ else if (!is_in_service && entity->tree == &st->idle)
+ bfq_idle_extract(st, entity);
+ else if (entity->tree)
+ BUG();
+
+- if (was_in_service || sd->next_in_service == entity)
+- ret = bfq_update_next_in_service(sd);
+-
+- if (!requeue || !bfq_gt(entity->finish, st->vtime))
+- bfq_forget_entity(st, entity);
++ if (!ins_into_idle_tree || !bfq_gt(entity->finish, st->vtime))
++ bfq_forget_entity(st, entity, is_in_service);
+ else
+ bfq_idle_insert(st, entity);
+
+- BUG_ON(sd->in_service_entity == entity);
+- BUG_ON(sd->next_in_service == entity);
+-
+- return ret;
++ return true;
+ }
+
+ /**
+- * bfq_deactivate_entity - deactivate an entity.
++ * bfq_deactivate_entity - deactivate an entity representing a bfq_queue.
+ * @entity: the entity to deactivate.
+- * @requeue: true if the entity can be put on the idle tree
++ * @ins_into_idle_tree: true if the entity can be put on the idle tree
+ */
+-static void bfq_deactivate_entity(struct bfq_entity *entity, int requeue)
++static void bfq_deactivate_entity(struct bfq_entity *entity,
++ bool ins_into_idle_tree,
++ bool expiration)
+ {
+ struct bfq_sched_data *sd;
+- struct bfq_entity *parent;
++ struct bfq_entity *parent = NULL;
+
+ for_each_entity_safe(entity, parent) {
+ sd = entity->sched_data;
+
+- if (!__bfq_deactivate_entity(entity, requeue))
++ BUG_ON(sd == NULL); /*
++ * It would mean that this is the
++ * root group.
++ */
++
++ BUG_ON(expiration && entity != sd->in_service_entity);
++
++ BUG_ON(entity != sd->in_service_entity &&
++ entity->tree ==
++ &bfq_entity_service_tree(entity)->active &&
++ !sd->next_in_service);
++
++ if (!__bfq_deactivate_entity(entity, ins_into_idle_tree)) {
+ /*
+- * The parent entity is still backlogged, and
+- * we don't need to update it as it is still
+- * in service.
++ * entity is not in any tree any more, so
++ * this deactivation is a no-op, and there is
++ * nothing to change for upper-level entities
++ * (in case of expiration, this can never
++ * happen).
+ */
+- break;
++ BUG_ON(expiration); /*
++ * entity cannot be already out of
++ * any tree
++ */
++ return;
++ }
++
++ if (sd->next_in_service == entity)
++ /*
++ * entity was the next_in_service entity,
++ * then, since entity has just been
++ * deactivated, a new one must be found.
++ */
++ bfq_update_next_in_service(sd, NULL);
+
+- if (sd->next_in_service)
++ if (sd->next_in_service) {
+ /*
+- * The parent entity is still backlogged and
+- * the budgets on the path towards the root
+- * need to be updated.
++ * The parent entity is still backlogged,
++ * because next_in_service is not NULL. So, no
++ * further upwards deactivation must be
++ * performed. Yet, next_in_service has
++ * changed. Then the schedule does need to be
++ * updated upwards.
+ */
+- goto update;
++ BUG_ON(sd->next_in_service == entity);
++ break;
++ }
+
+ /*
+- * If we reach there the parent is no more backlogged and
+- * we want to propagate the dequeue upwards.
++ * If we get here, then the parent is no more
++ * backlogged and we need to propagate the
++ * deactivation upwards. Thus let the loop go on.
+ */
+- requeue = 1;
+- }
+
+- return;
++ /*
++ * Also let parent be queued into the idle tree on
++ * deactivation, to preserve service guarantees, and
++ * assuming that who invoked this function does not
++ * need parent entities too to be removed completely.
++ */
++ ins_into_idle_tree = true;
++ }
+
+-update:
++ /*
++ * If the deactivation loop is fully executed, then there are
++ * no more entities to touch and next loop is not executed at
++ * all. Otherwise, requeue remaining entities if they are
++ * about to stop receiving service, or reposition them if this
++ * is not the case.
++ */
+ entity = parent;
+ for_each_entity(entity) {
+- __bfq_activate_entity(entity);
++ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++
++ /*
++ * Invoke __bfq_requeue_entity on entity, even if
++ * already active, to requeue/reposition it in the
++ * active tree (because sd->next_in_service has
++ * changed)
++ */
++ __bfq_requeue_entity(entity);
+
+ sd = entity->sched_data;
+- if (!bfq_update_next_in_service(sd))
++ BUG_ON(expiration && sd->in_service_entity != entity);
++
++ if (bfqq)
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "invoking udpdate_next for this queue");
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ else {
++ struct bfq_group *bfqg =
++ container_of(entity,
++ struct bfq_group, entity);
++
++ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
++ "invoking udpdate_next for this entity");
++ }
++#endif
++ if (!bfq_update_next_in_service(sd, entity) &&
++ !expiration)
++ /*
++ * next_in_service unchanged or not causing
++ * any change in entity->parent->sd, and no
++ * requeueing needed for expiration: stop
++ * here.
++ */
+ break;
+ }
+ }
+
+ /**
+- * bfq_update_vtime - update vtime if necessary.
++ * bfq_calc_vtime_jump - compute the value to which the vtime should jump,
++ * if needed, to have at least one entity eligible.
+ * @st: the service tree to act upon.
+ *
+- * If necessary update the service tree vtime to have at least one
+- * eligible entity, skipping to its start time. Assumes that the
+- * active tree of the device is not empty.
+- *
+- * NOTE: this hierarchical implementation updates vtimes quite often,
+- * we may end up with reactivated processes getting timestamps after a
+- * vtime skip done because we needed a ->first_active entity on some
+- * intermediate node.
++ * Assumes that st is not empty.
+ */
+-static void bfq_update_vtime(struct bfq_service_tree *st)
++static u64 bfq_calc_vtime_jump(struct bfq_service_tree *st)
+ {
+- struct bfq_entity *entry;
+- struct rb_node *node = st->active.rb_node;
++ struct bfq_entity *root_entity = bfq_root_active_entity(&st->active);
++
++ if (bfq_gt(root_entity->min_start, st->vtime)) {
++ struct bfq_queue *bfqq = bfq_entity_to_bfqq(root_entity);
+
+- entry = rb_entry(node, struct bfq_entity, rb_node);
+- if (bfq_gt(entry->min_start, st->vtime)) {
+- st->vtime = entry->min_start;
++ if (bfqq)
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "calc_vtime_jump: new value %llu",
++ root_entity->min_start);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ else {
++ struct bfq_group *bfqg =
++ container_of(root_entity, struct bfq_group,
++ entity);
++
++ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
++ "calc_vtime_jump: new value %llu",
++ root_entity->min_start);
++ }
++#endif
++ return root_entity->min_start;
++ }
++ return st->vtime;
++}
++
++static void bfq_update_vtime(struct bfq_service_tree *st, u64 new_value)
++{
++ if (new_value > st->vtime) {
++ st->vtime = new_value;
+ bfq_forget_idle(st);
+ }
+ }
+@@ -952,6 +1489,7 @@ static void bfq_update_vtime(struct bfq_service_tree *st)
+ * bfq_first_active_entity - find the eligible entity with
+ * the smallest finish time
+ * @st: the service tree to select from.
++ * @vtime: the system virtual to use as a reference for eligibility
+ *
+ * This function searches the first schedulable entity, starting from the
+ * root of the tree and going on the left every time on this side there is
+@@ -959,7 +1497,8 @@ static void bfq_update_vtime(struct bfq_service_tree *st)
+ * the right is followed only if a) the left subtree contains no eligible
+ * entities and b) no eligible entity has been found yet.
+ */
+-static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st)
++static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st,
++ u64 vtime)
+ {
+ struct bfq_entity *entry, *first = NULL;
+ struct rb_node *node = st->active.rb_node;
+@@ -967,15 +1506,15 @@ static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st)
+ while (node) {
+ entry = rb_entry(node, struct bfq_entity, rb_node);
+ left:
+- if (!bfq_gt(entry->start, st->vtime))
++ if (!bfq_gt(entry->start, vtime))
+ first = entry;
+
+- BUG_ON(bfq_gt(entry->min_start, st->vtime));
++ BUG_ON(bfq_gt(entry->min_start, vtime));
+
+ if (node->rb_left) {
+ entry = rb_entry(node->rb_left,
+ struct bfq_entity, rb_node);
+- if (!bfq_gt(entry->min_start, st->vtime)) {
++ if (!bfq_gt(entry->min_start, vtime)) {
+ node = node->rb_left;
+ goto left;
+ }
+@@ -993,31 +1532,84 @@ static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st)
+ * __bfq_lookup_next_entity - return the first eligible entity in @st.
+ * @st: the service tree.
+ *
+- * Update the virtual time in @st and return the first eligible entity
+- * it contains.
++ * If there is no in-service entity for the sched_data st belongs to,
++ * then return the entity that will be set in service if:
++ * 1) the parent entity this st belongs to is set in service;
++ * 2) no entity belonging to such parent entity undergoes a state change
++ * that would influence the timestamps of the entity (e.g., becomes idle,
++ * becomes backlogged, changes its budget, ...).
++ *
++ * In this first case, update the virtual time in @st too (see the
++ * comments on this update inside the function).
++ *
++ * In constrast, if there is an in-service entity, then return the
++ * entity that would be set in service if not only the above
++ * conditions, but also the next one held true: the currently
++ * in-service entity, on expiration,
++ * 1) gets a finish time equal to the current one, or
++ * 2) is not eligible any more, or
++ * 3) is idle.
+ */
+-static struct bfq_entity *__bfq_lookup_next_entity(struct bfq_service_tree *st,
+- bool force)
++static struct bfq_entity *
++__bfq_lookup_next_entity(struct bfq_service_tree *st, bool in_service
++#if 0
++ , bool force
++#endif
++ )
+ {
+- struct bfq_entity *entity, *new_next_in_service = NULL;
++ struct bfq_entity *entity
++#if 0
++ , *new_next_in_service = NULL
++#endif
++ ;
++ u64 new_vtime;
++ struct bfq_queue *bfqq;
+
+ if (RB_EMPTY_ROOT(&st->active))
+ return NULL;
+
+- bfq_update_vtime(st);
+- entity = bfq_first_active_entity(st);
+- BUG_ON(bfq_gt(entity->start, st->vtime));
++ /*
++ * Get the value of the system virtual time for which at
++ * least one entity is eligible.
++ */
++ new_vtime = bfq_calc_vtime_jump(st);
+
+ /*
+- * If the chosen entity does not match with the sched_data's
+- * next_in_service and we are forcedly serving the IDLE priority
+- * class tree, bubble up budget update.
++ * If there is no in-service entity for the sched_data this
++ * active tree belongs to, then push the system virtual time
++ * up to the value that guarantees that at least one entity is
++ * eligible. If, instead, there is an in-service entity, then
++ * do not make any such update, because there is already an
++ * eligible entity, namely the in-service one (even if the
++ * entity is not on st, because it was extracted when set in
++ * service).
+ */
+- if (unlikely(force && entity != entity->sched_data->next_in_service)) {
+- new_next_in_service = entity;
+- for_each_entity(new_next_in_service)
+- bfq_update_budget(new_next_in_service);
++ if (!in_service)
++ bfq_update_vtime(st, new_vtime);
++
++ entity = bfq_first_active_entity(st, new_vtime);
++ BUG_ON(bfq_gt(entity->start, new_vtime));
++
++ /* Log some information */
++ bfqq = bfq_entity_to_bfqq(entity);
++ if (bfqq)
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "__lookup_next: start %llu vtime %llu st %p",
++ ((entity->start>>10)*1000)>>12,
++ ((new_vtime>>10)*1000)>>12, st);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ else {
++ struct bfq_group *bfqg =
++ container_of(entity, struct bfq_group, entity);
++
++ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
++ "__lookup_next: start %llu vtime %llu st %p",
++ ((entity->start>>10)*1000)>>12,
++ ((new_vtime>>10)*1000)>>12, st);
+ }
++#endif
++
++ BUG_ON(!entity);
+
+ return entity;
+ }
+@@ -1025,50 +1617,81 @@ static struct bfq_entity *__bfq_lookup_next_entity(struct bfq_service_tree *st,
+ /**
+ * bfq_lookup_next_entity - return the first eligible entity in @sd.
+ * @sd: the sched_data.
+- * @extract: if true the returned entity will be also extracted from @sd.
+ *
+- * NOTE: since we cache the next_in_service entity at each level of the
+- * hierarchy, the complexity of the lookup can be decreased with
+- * absolutely no effort just returning the cached next_in_service value;
+- * we prefer to do full lookups to test the consistency of * the data
+- * structures.
++ * This function is invoked when there has been a change in the trees
++ * for sd, and we need know what is the new next entity after this
++ * change.
+ */
+-static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
+- int extract,
+- struct bfq_data *bfqd)
++static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd)
+ {
+ struct bfq_service_tree *st = sd->service_tree;
+- struct bfq_entity *entity;
+- int i = 0;
+-
+- BUG_ON(sd->in_service_entity);
++ struct bfq_service_tree *idle_class_st = st + (BFQ_IOPRIO_CLASSES - 1);
++ struct bfq_entity *entity = NULL;
++ struct bfq_queue *bfqq;
++ int class_idx = 0;
+
+- if (bfqd &&
+- jiffies - bfqd->bfq_class_idle_last_service > BFQ_CL_IDLE_TIMEOUT) {
+- entity = __bfq_lookup_next_entity(st + BFQ_IOPRIO_CLASSES - 1,
+- true);
+- if (entity) {
+- i = BFQ_IOPRIO_CLASSES - 1;
+- bfqd->bfq_class_idle_last_service = jiffies;
+- sd->next_in_service = entity;
+- }
++ BUG_ON(!sd);
++ BUG_ON(!st);
++ /*
++ * Choose from idle class, if needed to guarantee a minimum
++ * bandwidth to this class (and if there is some active entity
++ * in idle class). This should also mitigate
++ * priority-inversion problems in case a low priority task is
++ * holding file system resources.
++ */
++ if (time_is_before_jiffies(sd->bfq_class_idle_last_service +
++ BFQ_CL_IDLE_TIMEOUT)) {
++ if (!RB_EMPTY_ROOT(&idle_class_st->active))
++ class_idx = BFQ_IOPRIO_CLASSES - 1;
++ /* About to be served if backlogged, or not yet backlogged */
++ sd->bfq_class_idle_last_service = jiffies;
+ }
+- for (; i < BFQ_IOPRIO_CLASSES; i++) {
+- entity = __bfq_lookup_next_entity(st + i, false);
+- if (entity) {
+- if (extract) {
+- bfq_check_next_in_service(sd, entity);
+- bfq_active_extract(st + i, entity);
+- sd->in_service_entity = entity;
+- sd->next_in_service = NULL;
+- }
++
++ /*
++ * Find the next entity to serve for the highest-priority
++ * class, unless the idle class needs to be served.
++ */
++ for (; class_idx < BFQ_IOPRIO_CLASSES; class_idx++) {
++ entity = __bfq_lookup_next_entity(st + class_idx,
++ sd->in_service_entity);
++
++ if (entity)
+ break;
+- }
+ }
+
++ BUG_ON(!entity &&
++ (!RB_EMPTY_ROOT(&st->active) || !RB_EMPTY_ROOT(&(st+1)->active) ||
++ !RB_EMPTY_ROOT(&(st+2)->active)));
++
++ if (!entity)
++ return NULL;
++
++ /* Log some information */
++ bfqq = bfq_entity_to_bfqq(entity);
++ if (bfqq)
++ bfq_log_bfqq(bfqq->bfqd, bfqq, "chosen from st %p %d",
++ st + class_idx, class_idx);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ else {
++ struct bfq_group *bfqg =
++ container_of(entity, struct bfq_group, entity);
++
++ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
++ "chosen from st %p %d",
++ st + class_idx, class_idx);
++ }
++#endif
++
+ return entity;
+ }
+
++static bool next_queue_may_preempt(struct bfq_data *bfqd)
++{
++ struct bfq_sched_data *sd = &bfqd->root_group->sched_data;
++
++ return sd->next_in_service != sd->in_service_entity;
++}
++
+ /*
+ * Get next queue for service.
+ */
+@@ -1083,58 +1706,273 @@ static struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd)
+ if (bfqd->busy_queues == 0)
+ return NULL;
+
++ /*
++ * Traverse the path from the root to the leaf entity to
++ * serve. Set in service all the entities visited along the
++ * way.
++ */
+ sd = &bfqd->root_group->sched_data;
+ for (; sd ; sd = entity->my_sched_data) {
+- entity = bfq_lookup_next_entity(sd, 1, bfqd);
+- BUG_ON(!entity);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ if (entity) {
++ struct bfq_group *bfqg =
++ container_of(entity, struct bfq_group, entity);
++
++ bfq_log_bfqg(bfqd, bfqg,
++ "get_next_queue: lookup in this group");
++ if (!sd->next_in_service)
++ pr_crit("get_next_queue: lookup in this group");
++ } else {
++ bfq_log_bfqg(bfqd, bfqd->root_group,
++ "get_next_queue: lookup in root group");
++ if (!sd->next_in_service)
++ pr_crit("get_next_queue: lookup in root group");
++ }
++#endif
++
++ BUG_ON(!sd->next_in_service);
++
++ /*
++ * WARNING. We are about to set the in-service entity
++ * to sd->next_in_service, i.e., to the (cached) value
++ * returned by bfq_lookup_next_entity(sd) the last
++ * time it was invoked, i.e., the last time when the
++ * service order in sd changed as a consequence of the
++ * activation or deactivation of an entity. In this
++ * respect, if we execute bfq_lookup_next_entity(sd)
++ * in this very moment, it may, although with low
++ * probability, yield a different entity than that
++ * pointed to by sd->next_in_service. This rare event
++ * happens in case there was no CLASS_IDLE entity to
++ * serve for sd when bfq_lookup_next_entity(sd) was
++ * invoked for the last time, while there is now one
++ * such entity.
++ *
++ * If the above event happens, then the scheduling of
++ * such entity in CLASS_IDLE is postponed until the
++ * service of the sd->next_in_service entity
++ * finishes. In fact, when the latter is expired,
++ * bfq_lookup_next_entity(sd) gets called again,
++ * exactly to update sd->next_in_service.
++ */
++
++ /* Make next_in_service entity become in_service_entity */
++ entity = sd->next_in_service;
++ sd->in_service_entity = entity;
++
++ /*
++ * Reset the accumulator of the amount of service that
++ * the entity is about to receive.
++ */
+ entity->service = 0;
++
++ /*
++ * If entity is no longer a candidate for next
++ * service, then we extract it from its active tree,
++ * for the following reason. To further boost the
++ * throughput in some special case, BFQ needs to know
++ * which is the next candidate entity to serve, while
++ * there is already an entity in service. In this
++ * respect, to make it easy to compute/update the next
++ * candidate entity to serve after the current
++ * candidate has been set in service, there is a case
++ * where it is necessary to extract the current
++ * candidate from its service tree. Such a case is
++ * when the entity just set in service cannot be also
++ * a candidate for next service. Details about when
++ * this conditions holds are reported in the comments
++ * on the function bfq_no_longer_next_in_service()
++ * invoked below.
++ */
++ if (bfq_no_longer_next_in_service(entity))
++ bfq_active_extract(bfq_entity_service_tree(entity),
++ entity);
++
++ /*
++ * For the same reason why we may have just extracted
++ * entity from its active tree, we may need to update
++ * next_in_service for the sched_data of entity too,
++ * regardless of whether entity has been extracted.
++ * In fact, even if entity has not been extracted, a
++ * descendant entity may get extracted. Such an event
++ * would cause a change in next_in_service for the
++ * level of the descendant entity, and thus possibly
++ * back to upper levels.
++ *
++ * We cannot perform the resulting needed update
++ * before the end of this loop, because, to know which
++ * is the correct next-to-serve candidate entity for
++ * each level, we need first to find the leaf entity
++ * to set in service. In fact, only after we know
++ * which is the next-to-serve leaf entity, we can
++ * discover whether the parent entity of the leaf
++ * entity becomes the next-to-serve, and so on.
++ */
++
++ /* Log some information */
++ bfqq = bfq_entity_to_bfqq(entity);
++ if (bfqq)
++ bfq_log_bfqq(bfqd, bfqq,
++ "get_next_queue: this queue, finish %llu",
++ (((entity->finish>>10)*1000)>>10)>>2);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ else {
++ struct bfq_group *bfqg =
++ container_of(entity, struct bfq_group, entity);
++
++ bfq_log_bfqg(bfqd, bfqg,
++ "get_next_queue: this entity, finish %llu",
++ (((entity->finish>>10)*1000)>>10)>>2);
++ }
++#endif
++
+ }
+
++ BUG_ON(!entity);
+ bfqq = bfq_entity_to_bfqq(entity);
+ BUG_ON(!bfqq);
+
++ /*
++ * We can finally update all next-to-serve entities along the
++ * path from the leaf entity just set in service to the root.
++ */
++ for_each_entity(entity) {
++ struct bfq_sched_data *sd = entity->sched_data;
++
++ if(!bfq_update_next_in_service(sd, NULL))
++ break;
++ }
++
+ return bfqq;
+ }
+
+ static void __bfq_bfqd_reset_in_service(struct bfq_data *bfqd)
+ {
++ struct bfq_queue *in_serv_bfqq = bfqd->in_service_queue;
++ struct bfq_entity *in_serv_entity = &in_serv_bfqq->entity;
++ struct bfq_entity *entity = in_serv_entity;
++
+ if (bfqd->in_service_bic) {
+ put_io_context(bfqd->in_service_bic->icq.ioc);
+ bfqd->in_service_bic = NULL;
+ }
+
++ bfq_clear_bfqq_wait_request(in_serv_bfqq);
++ hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
+ bfqd->in_service_queue = NULL;
+- del_timer(&bfqd->idle_slice_timer);
++
++ /*
++ * When this function is called, all in-service entities have
++ * been properly deactivated or requeued, so we can safely
++ * execute the final step: reset in_service_entity along the
++ * path from entity to the root.
++ */
++ for_each_entity(entity)
++ entity->sched_data->in_service_entity = NULL;
++
++ /*
++ * in_serv_entity is no longer in service, so, if it is in no
++ * service tree either, then release the service reference to
++ * the queue it represents (taken with bfq_get_entity).
++ */
++ if (!in_serv_entity->on_st)
++ bfq_put_queue(in_serv_bfqq);
++}
++
++static void set_next_in_service_bfqq(struct bfq_data *bfqd)
++{
++ struct bfq_entity *entity = NULL;
++ struct bfq_queue *bfqq;
++ struct bfq_sched_data *sd = &bfqd->root_group->sched_data;
++
++ BUG_ON(!sd);
++
++ /* Traverse the path from the root to the in-service leaf entity */
++ for (; sd ; sd = entity->my_sched_data) {
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ if (entity) {
++ struct bfq_group *bfqg =
++ container_of(entity, struct bfq_group, entity);
++
++ bfq_log_bfqg(bfqd, bfqg,
++ "set_next_in_service_bfqq: lookup in this group");
++ } else
++ bfq_log_bfqg(bfqd, bfqd->root_group,
++ "set_next_in_service_bfqq: lookup in root group");
++#endif
++
++ entity = sd->next_in_service;
++
++ if (!entity) {
++ bfqd->next_in_service_queue = NULL;
++ return;
++ }
++
++ /* Log some information */
++ bfqq = bfq_entity_to_bfqq(entity);
++ if (bfqq)
++ bfq_log_bfqq(bfqd, bfqq,
++ "set_next_in_service_bfqq: this queue, finish %llu",
++ (((entity->finish>>10)*1000)>>10)>>2);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ else {
++ struct bfq_group *bfqg =
++ container_of(entity, struct bfq_group, entity);
++
++ bfq_log_bfqg(bfqd, bfqg,
++ "set_next_in_service_bfqq: this entity, finish %llu",
++ (((entity->finish>>10)*1000)>>10)>>2);
++ }
++#endif
++
++ }
++ BUG_ON(!bfq_entity_to_bfqq(entity));
++
++ bfqd->next_in_service_queue = bfq_entity_to_bfqq(entity);
+ }
+
+ static void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+- int requeue)
++ bool ins_into_idle_tree, bool expiration)
+ {
+ struct bfq_entity *entity = &bfqq->entity;
+
+- if (bfqq == bfqd->in_service_queue)
+- __bfq_bfqd_reset_in_service(bfqd);
+-
+- bfq_deactivate_entity(entity, requeue);
++ bfq_deactivate_entity(entity, ins_into_idle_tree, expiration);
++ set_next_in_service_bfqq(bfqd);
+ }
+
+ static void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+ {
+ struct bfq_entity *entity = &bfqq->entity;
++ struct bfq_service_tree *st = bfq_entity_service_tree(entity);
++
++ BUG_ON(bfqq == bfqd->in_service_queue);
++ BUG_ON(entity->tree != &st->active && entity->tree != &st->idle &&
++ entity->on_st);
+
+- bfq_activate_entity(entity);
++ bfq_activate_requeue_entity(entity, bfq_bfqq_non_blocking_wait_rq(bfqq),
++ false);
++ bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
++ set_next_in_service_bfqq(bfqd);
++}
++
++static void bfq_requeue_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
++{
++ struct bfq_entity *entity = &bfqq->entity;
++
++ bfq_activate_requeue_entity(entity, false,
++ bfqq == bfqd->in_service_queue);
++ set_next_in_service_bfqq(bfqd);
+ }
+
+-#ifdef CONFIG_BFQ_GROUP_IOSCHED
+ static void bfqg_stats_update_dequeue(struct bfq_group *bfqg);
+-#endif
+
+ /*
+ * Called when the bfqq no longer has requests pending, remove it from
+- * the service tree.
++ * the service tree. As a special case, it can be invoked during an
++ * expiration.
+ */
+ static void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+- int requeue)
++ bool expiration)
+ {
+ BUG_ON(!bfq_bfqq_busy(bfqq));
+ BUG_ON(!RB_EMPTY_ROOT(&bfqq->sort_list));
+@@ -1146,27 +1984,18 @@ static void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ BUG_ON(bfqd->busy_queues == 0);
+ bfqd->busy_queues--;
+
+- if (!bfqq->dispatched) {
++ if (!bfqq->dispatched)
+ bfq_weights_tree_remove(bfqd, &bfqq->entity,
+ &bfqd->queue_weights_tree);
+- if (!blk_queue_nonrot(bfqd->queue)) {
+- BUG_ON(!bfqd->busy_in_flight_queues);
+- bfqd->busy_in_flight_queues--;
+- if (bfq_bfqq_constantly_seeky(bfqq)) {
+- BUG_ON(!bfqd->
+- const_seeky_busy_in_flight_queues);
+- bfqd->const_seeky_busy_in_flight_queues--;
+- }
+- }
+- }
++
+ if (bfqq->wr_coeff > 1)
+ bfqd->wr_busy_queues--;
+
+-#ifdef CONFIG_BFQ_GROUP_IOSCHED
+ bfqg_stats_update_dequeue(bfqq_group(bfqq));
+-#endif
+
+- bfq_deactivate_bfqq(bfqd, bfqq, requeue);
++ BUG_ON(bfqq->entity.budget < 0);
++
++ bfq_deactivate_bfqq(bfqd, bfqq, true, expiration);
+ }
+
+ /*
+@@ -1184,16 +2013,11 @@ static void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+ bfq_mark_bfqq_busy(bfqq);
+ bfqd->busy_queues++;
+
+- if (!bfqq->dispatched) {
++ if (!bfqq->dispatched)
+ if (bfqq->wr_coeff == 1)
+ bfq_weights_tree_add(bfqd, &bfqq->entity,
+ &bfqd->queue_weights_tree);
+- if (!blk_queue_nonrot(bfqd->queue)) {
+- bfqd->busy_in_flight_queues++;
+- if (bfq_bfqq_constantly_seeky(bfqq))
+- bfqd->const_seeky_busy_in_flight_queues++;
+- }
+- }
++
+ if (bfqq->wr_coeff > 1)
+ bfqd->wr_busy_queues++;
+ }
+diff --git a/block/bfq.h b/block/bfq.h
+index fcce855..5f08990 100644
+--- a/block/bfq.h
++++ b/block/bfq.h
+@@ -1,5 +1,5 @@
+ /*
+- * BFQ-v7r11 for 4.5.0: data structures and common functions prototypes.
++ * BFQ v8r11 for 4.11.0: data structures and common functions prototypes.
+ *
+ * Based on ideas and code from CFQ:
+ * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
+@@ -7,7 +7,9 @@
+ * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
+ * Paolo Valente <paolo.valente@unimore.it>
+ *
+- * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
++ * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
++ *
++ * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
+ */
+
+ #ifndef _BFQ_H
+@@ -15,8 +17,6 @@
+
+ #include <linux/blktrace_api.h>
+ #include <linux/hrtimer.h>
+-#include <linux/ioprio.h>
+-#include <linux/rbtree.h>
+ #include <linux/blk-cgroup.h>
+
+ #define BFQ_IOPRIO_CLASSES 3
+@@ -28,20 +28,21 @@
+
+ #define BFQ_DEFAULT_QUEUE_IOPRIO 4
+
+-#define BFQ_DEFAULT_GRP_WEIGHT 10
++#define BFQ_WEIGHT_LEGACY_DFL 100
+ #define BFQ_DEFAULT_GRP_IOPRIO 0
+ #define BFQ_DEFAULT_GRP_CLASS IOPRIO_CLASS_BE
+
++/*
++ * Soft real-time applications are extremely more latency sensitive
++ * than interactive ones. Over-raise the weight of the former to
++ * privilege them against the latter.
++ */
++#define BFQ_SOFTRT_WEIGHT_FACTOR 100
++
+ struct bfq_entity;
+
+ /**
+ * struct bfq_service_tree - per ioprio_class service tree.
+- * @active: tree for active entities (i.e., those backlogged).
+- * @idle: tree for idle entities (i.e., those not backlogged, with V <= F_i).
+- * @first_idle: idle entity with minimum F_i.
+- * @last_idle: idle entity with maximum F_i.
+- * @vtime: scheduler virtual time.
+- * @wsum: scheduler weight sum; active and idle entities contribute to it.
+ *
+ * Each service tree represents a B-WF2Q+ scheduler on its own. Each
+ * ioprio_class has its own independent scheduler, and so its own
+@@ -49,27 +50,28 @@ struct bfq_entity;
+ * of the containing bfqd.
+ */
+ struct bfq_service_tree {
++ /* tree for active entities (i.e., those backlogged) */
+ struct rb_root active;
++ /* tree for idle entities (i.e., not backlogged, with V <= F_i)*/
+ struct rb_root idle;
+
+- struct bfq_entity *first_idle;
+- struct bfq_entity *last_idle;
++ struct bfq_entity *first_idle; /* idle entity with minimum F_i */
++ struct bfq_entity *last_idle; /* idle entity with maximum F_i */
+
+- u64 vtime;
++ u64 vtime; /* scheduler virtual time */
++ /* scheduler weight sum; active and idle entities contribute to it */
+ unsigned long wsum;
+ };
+
+ /**
+ * struct bfq_sched_data - multi-class scheduler.
+- * @in_service_entity: entity in service.
+- * @next_in_service: head-of-the-line entity in the scheduler.
+- * @service_tree: array of service trees, one per ioprio_class.
+ *
+ * bfq_sched_data is the basic scheduler queue. It supports three
+- * ioprio_classes, and can be used either as a toplevel queue or as
+- * an intermediate queue on a hierarchical setup.
+- * @next_in_service points to the active entity of the sched_data
+- * service trees that will be scheduled next.
++ * ioprio_classes, and can be used either as a toplevel queue or as an
++ * intermediate queue on a hierarchical setup. @next_in_service
++ * points to the active entity of the sched_data service trees that
++ * will be scheduled next. It is used to reduce the number of steps
++ * needed for each hierarchical-schedule update.
+ *
+ * The supported ioprio_classes are the same as in CFQ, in descending
+ * priority order, IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, IOPRIO_CLASS_IDLE.
+@@ -79,48 +81,32 @@ struct bfq_service_tree {
+ * All the fields are protected by the queue lock of the containing bfqd.
+ */
+ struct bfq_sched_data {
+- struct bfq_entity *in_service_entity;
++ struct bfq_entity *in_service_entity; /* entity in service */
++ /* head-of-the-line entity in the scheduler (see comments above) */
+ struct bfq_entity *next_in_service;
++ /* array of service trees, one per ioprio_class */
+ struct bfq_service_tree service_tree[BFQ_IOPRIO_CLASSES];
++ /* last time CLASS_IDLE was served */
++ unsigned long bfq_class_idle_last_service;
++
+ };
+
+ /**
+ * struct bfq_weight_counter - counter of the number of all active entities
+ * with a given weight.
+- * @weight: weight of the entities that this counter refers to.
+- * @num_active: number of active entities with this weight.
+- * @weights_node: weights tree member (see bfq_data's @queue_weights_tree
+- * and @group_weights_tree).
+ */
+ struct bfq_weight_counter {
+- short int weight;
+- unsigned int num_active;
++ unsigned int weight; /* weight of the entities this counter refers to */
++ unsigned int num_active; /* nr of active entities with this weight */
++ /*
++ * Weights tree member (see bfq_data's @queue_weights_tree and
++ * @group_weights_tree)
++ */
+ struct rb_node weights_node;
+ };
+
+ /**
+ * struct bfq_entity - schedulable entity.
+- * @rb_node: service_tree member.
+- * @weight_counter: pointer to the weight counter associated with this entity.
+- * @on_st: flag, true if the entity is on a tree (either the active or
+- * the idle one of its service_tree).
+- * @finish: B-WF2Q+ finish timestamp (aka F_i).
+- * @start: B-WF2Q+ start timestamp (aka S_i).
+- * @tree: tree the entity is enqueued into; %NULL if not on a tree.
+- * @min_start: minimum start time of the (active) subtree rooted at
+- * this entity; used for O(log N) lookups into active trees.
+- * @service: service received during the last round of service.
+- * @budget: budget used to calculate F_i; F_i = S_i + @budget / @weight.
+- * @weight: weight of the queue
+- * @parent: parent entity, for hierarchical scheduling.
+- * @my_sched_data: for non-leaf nodes in the cgroup hierarchy, the
+- * associated scheduler queue, %NULL on leaf nodes.
+- * @sched_data: the scheduler queue this entity belongs to.
+- * @ioprio: the ioprio in use.
+- * @new_weight: when a weight change is requested, the new weight value.
+- * @orig_weight: original weight, used to implement weight boosting
+- * @prio_changed: flag, true when the user requested a weight, ioprio or
+- * ioprio_class change.
+ *
+ * A bfq_entity is used to represent either a bfq_queue (leaf node in the
+ * cgroup hierarchy) or a bfq_group into the upper level scheduler. Each
+@@ -147,27 +133,52 @@ struct bfq_weight_counter {
+ * containing bfqd.
+ */
+ struct bfq_entity {
+- struct rb_node rb_node;
++ struct rb_node rb_node; /* service_tree member */
++ /* pointer to the weight counter associated with this entity */
+ struct bfq_weight_counter *weight_counter;
+
+- int on_st;
++ /*
++ * Flag, true if the entity is on a tree (either the active or
++ * the idle one of its service_tree) or is in service.
++ */
++ bool on_st;
+
+- u64 finish;
+- u64 start;
++ u64 finish; /* B-WF2Q+ finish timestamp (aka F_i) */
++ u64 start; /* B-WF2Q+ start timestamp (aka S_i) */
+
++ /* tree the entity is enqueued into; %NULL if not on a tree */
+ struct rb_root *tree;
+
++ /*
++ * minimum start time of the (active) subtree rooted at this
++ * entity; used for O(log N) lookups into active trees
++ */
+ u64 min_start;
+
+- int service, budget;
+- unsigned short weight, new_weight;
+- unsigned short orig_weight;
++ /* amount of service received during the last service slot */
++ int service;
++
++ /* budget, used also to calculate F_i: F_i = S_i + @budget / @weight */
++ int budget;
++
++ unsigned int weight; /* weight of the queue */
++ unsigned int new_weight; /* next weight if a change is in progress */
++
++ /* original weight, used to implement weight boosting */
++ unsigned int orig_weight;
+
++ /* parent entity, for hierarchical scheduling */
+ struct bfq_entity *parent;
+
++ /*
++ * For non-leaf nodes in the hierarchy, the associated
++ * scheduler queue, %NULL on leaf nodes.
++ */
+ struct bfq_sched_data *my_sched_data;
++ /* the scheduler queue this entity belongs to */
+ struct bfq_sched_data *sched_data;
+
++ /* flag, set to request a weight, ioprio or ioprio_class change */
+ int prio_changed;
+ };
+
+@@ -175,56 +186,6 @@ struct bfq_group;
+
+ /**
+ * struct bfq_queue - leaf schedulable entity.
+- * @ref: reference counter.
+- * @bfqd: parent bfq_data.
+- * @new_ioprio: when an ioprio change is requested, the new ioprio value.
+- * @ioprio_class: the ioprio_class in use.
+- * @new_ioprio_class: when an ioprio_class change is requested, the new
+- * ioprio_class value.
+- * @new_bfqq: shared bfq_queue if queue is cooperating with
+- * one or more other queues.
+- * @pos_node: request-position tree member (see bfq_group's @rq_pos_tree).
+- * @pos_root: request-position tree root (see bfq_group's @rq_pos_tree).
+- * @sort_list: sorted list of pending requests.
+- * @next_rq: if fifo isn't expired, next request to serve.
+- * @queued: nr of requests queued in @sort_list.
+- * @allocated: currently allocated requests.
+- * @meta_pending: pending metadata requests.
+- * @fifo: fifo list of requests in sort_list.
+- * @entity: entity representing this queue in the scheduler.
+- * @max_budget: maximum budget allowed from the feedback mechanism.
+- * @budget_timeout: budget expiration (in jiffies).
+- * @dispatched: number of requests on the dispatch list or inside driver.
+- * @flags: status flags.
+- * @bfqq_list: node for active/idle bfqq list inside our bfqd.
+- * @burst_list_node: node for the device's burst list.
+- * @seek_samples: number of seeks sampled
+- * @seek_total: sum of the distances of the seeks sampled
+- * @seek_mean: mean seek distance
+- * @last_request_pos: position of the last request enqueued
+- * @requests_within_timer: number of consecutive pairs of request completion
+- * and arrival, such that the queue becomes idle
+- * after the completion, but the next request arrives
+- * within an idle time slice; used only if the queue's
+- * IO_bound has been cleared.
+- * @pid: pid of the process owning the queue, used for logging purposes.
+- * @last_wr_start_finish: start time of the current weight-raising period if
+- * the @bfq-queue is being weight-raised, otherwise
+- * finish time of the last weight-raising period
+- * @wr_cur_max_time: current max raising time for this queue
+- * @soft_rt_next_start: minimum time instant such that, only if a new
+- * request is enqueued after this time instant in an
+- * idle @bfq_queue with no outstanding requests, then
+- * the task associated with the queue it is deemed as
+- * soft real-time (see the comments to the function
+- * bfq_bfqq_softrt_next_start())
+- * @last_idle_bklogged: time of the last transition of the @bfq_queue from
+- * idle to backlogged
+- * @service_from_backlogged: cumulative service received from the @bfq_queue
+- * since the last transition from idle to
+- * backlogged
+- * @bic: pointer to the bfq_io_cq owning the bfq_queue, set to %NULL if the
+- * queue is shared
+ *
+ * A bfq_queue is a leaf request queue; it can be associated with an
+ * io_context or more, if it is async or shared between cooperating
+@@ -235,117 +196,175 @@ struct bfq_group;
+ * All the fields are protected by the queue lock of the containing bfqd.
+ */
+ struct bfq_queue {
+- atomic_t ref;
++ /* reference counter */
++ int ref;
++ /* parent bfq_data */
+ struct bfq_data *bfqd;
+
+- unsigned short ioprio, new_ioprio;
+- unsigned short ioprio_class, new_ioprio_class;
++ /* current ioprio and ioprio class */
++ unsigned short ioprio, ioprio_class;
++ /* next ioprio and ioprio class if a change is in progress */
++ unsigned short new_ioprio, new_ioprio_class;
+
+- /* fields for cooperating queues handling */
++ /*
++ * Shared bfq_queue if queue is cooperating with one or more
++ * other queues.
++ */
+ struct bfq_queue *new_bfqq;
++ /* request-position tree member (see bfq_group's @rq_pos_tree) */
+ struct rb_node pos_node;
++ /* request-position tree root (see bfq_group's @rq_pos_tree) */
+ struct rb_root *pos_root;
+
++ /* sorted list of pending requests */
+ struct rb_root sort_list;
++ /* if fifo isn't expired, next request to serve */
+ struct request *next_rq;
++ /* number of sync and async requests queued */
+ int queued[2];
++ /* number of sync and async requests currently allocated */
+ int allocated[2];
++ /* number of pending metadata requests */
+ int meta_pending;
++ /* fifo list of requests in sort_list */
+ struct list_head fifo;
+
++ /* entity representing this queue in the scheduler */
+ struct bfq_entity entity;
+
++ /* maximum budget allowed from the feedback mechanism */
+ int max_budget;
++ /* budget expiration (in jiffies) */
+ unsigned long budget_timeout;
+
++ /* number of requests on the dispatch list or inside driver */
+ int dispatched;
+
+- unsigned int flags;
++ unsigned int flags; /* status flags.*/
+
++ /* node for active/idle bfqq list inside parent bfqd */
+ struct list_head bfqq_list;
+
++ /* bit vector: a 1 for each seeky requests in history */
++ u32 seek_history;
++
++ /* node for the device's burst list */
+ struct hlist_node burst_list_node;
+
+- unsigned int seek_samples;
+- u64 seek_total;
+- sector_t seek_mean;
++ /* position of the last request enqueued */
+ sector_t last_request_pos;
+
++ /* Number of consecutive pairs of request completion and
++ * arrival, such that the queue becomes idle after the
++ * completion, but the next request arrives within an idle
++ * time slice; used only if the queue's IO_bound flag has been
++ * cleared.
++ */
+ unsigned int requests_within_timer;
+
++ /* pid of the process owning the queue, used for logging purposes */
+ pid_t pid;
++
++ /*
++ * Pointer to the bfq_io_cq owning the bfq_queue, set to %NULL
++ * if the queue is shared.
++ */
+ struct bfq_io_cq *bic;
+
+- /* weight-raising fields */
++ /* current maximum weight-raising time for this queue */
+ unsigned long wr_cur_max_time;
++ /*
++ * Minimum time instant such that, only if a new request is
++ * enqueued after this time instant in an idle @bfq_queue with
++ * no outstanding requests, then the task associated with the
++ * queue it is deemed as soft real-time (see the comments on
++ * the function bfq_bfqq_softrt_next_start())
++ */
+ unsigned long soft_rt_next_start;
++ /*
++ * Start time of the current weight-raising period if
++ * the @bfq-queue is being weight-raised, otherwise
++ * finish time of the last weight-raising period.
++ */
+ unsigned long last_wr_start_finish;
++ /* factor by which the weight of this queue is multiplied */
+ unsigned int wr_coeff;
++ /*
++ * Time of the last transition of the @bfq_queue from idle to
++ * backlogged.
++ */
+ unsigned long last_idle_bklogged;
++ /*
++ * Cumulative service received from the @bfq_queue since the
++ * last transition from idle to backlogged.
++ */
+ unsigned long service_from_backlogged;
++ /*
++ * Value of wr start time when switching to soft rt
++ */
++ unsigned long wr_start_at_switch_to_srt;
++
++ unsigned long split_time; /* time of last split */
+ };
+
+ /**
+ * struct bfq_ttime - per process thinktime stats.
+- * @ttime_total: total process thinktime
+- * @ttime_samples: number of thinktime samples
+- * @ttime_mean: average process thinktime
+ */
+ struct bfq_ttime {
+- unsigned long last_end_request;
++ u64 last_end_request; /* completion time of last request */
++
++ u64 ttime_total; /* total process thinktime */
++ unsigned long ttime_samples; /* number of thinktime samples */
++ u64 ttime_mean; /* average process thinktime */
+
+- unsigned long ttime_total;
+- unsigned long ttime_samples;
+- unsigned long ttime_mean;
+ };
+
+ /**
+ * struct bfq_io_cq - per (request_queue, io_context) structure.
+- * @icq: associated io_cq structure
+- * @bfqq: array of two process queues, the sync and the async
+- * @ttime: associated @bfq_ttime struct
+- * @ioprio: per (request_queue, blkcg) ioprio.
+- * @blkcg_id: id of the blkcg the related io_cq belongs to.
+- * @wr_time_left: snapshot of the time left before weight raising ends
+- * for the sync queue associated to this process; this
+- * snapshot is taken to remember this value while the weight
+- * raising is suspended because the queue is merged with a
+- * shared queue, and is used to set @raising_cur_max_time
+- * when the queue is split from the shared queue and its
+- * weight is raised again
+- * @saved_idle_window: same purpose as the previous field for the idle
+- * window
+- * @saved_IO_bound: same purpose as the previous two fields for the I/O
+- * bound classification of a queue
+- * @saved_in_large_burst: same purpose as the previous fields for the
+- * value of the field keeping the queue's belonging
+- * to a large burst
+- * @was_in_burst_list: true if the queue belonged to a burst list
+- * before its merge with another cooperating queue
+- * @cooperations: counter of consecutive successful queue merges underwent
+- * by any of the process' @bfq_queues
+- * @failed_cooperations: counter of consecutive failed queue merges of any
+- * of the process' @bfq_queues
+ */
+ struct bfq_io_cq {
++ /* associated io_cq structure */
+ struct io_cq icq; /* must be the first member */
++ /* array of two process queues, the sync and the async */
+ struct bfq_queue *bfqq[2];
++ /* associated @bfq_ttime struct */
+ struct bfq_ttime ttime;
++ /* per (request_queue, blkcg) ioprio */
+ int ioprio;
+-
+ #ifdef CONFIG_BFQ_GROUP_IOSCHED
+- uint64_t blkcg_id; /* the current blkcg ID */
++ uint64_t blkcg_serial_nr; /* the current blkcg serial */
+ #endif
+
+- unsigned int wr_time_left;
++ /*
++ * Snapshot of the idle window before merging; taken to
++ * remember this value while the queue is merged, so as to be
++ * able to restore it in case of split.
++ */
+ bool saved_idle_window;
++ /*
++ * Same purpose as the previous two fields for the I/O bound
++ * classification of a queue.
++ */
+ bool saved_IO_bound;
+
++ /*
++ * Same purpose as the previous fields for the value of the
++ * field keeping the queue's belonging to a large burst
++ */
+ bool saved_in_large_burst;
++ /*
++ * True if the queue belonged to a burst list before its merge
++ * with another cooperating queue.
++ */
+ bool was_in_burst_list;
+
+- unsigned int cooperations;
+- unsigned int failed_cooperations;
++ /*
++ * Similar to previous fields: save wr information.
++ */
++ unsigned long saved_wr_coeff;
++ unsigned long saved_last_wr_start_finish;
++ unsigned long saved_wr_start_at_switch_to_srt;
++ unsigned int saved_wr_cur_max_time;
+ };
+
+ enum bfq_device_speed {
+@@ -354,224 +373,234 @@ enum bfq_device_speed {
+ };
+
+ /**
+- * struct bfq_data - per device data structure.
+- * @queue: request queue for the managed device.
+- * @root_group: root bfq_group for the device.
+- * @active_numerous_groups: number of bfq_groups containing more than one
+- * active @bfq_entity.
+- * @queue_weights_tree: rbtree of weight counters of @bfq_queues, sorted by
+- * weight. Used to keep track of whether all @bfq_queues
+- * have the same weight. The tree contains one counter
+- * for each distinct weight associated to some active
+- * and not weight-raised @bfq_queue (see the comments to
+- * the functions bfq_weights_tree_[add|remove] for
+- * further details).
+- * @group_weights_tree: rbtree of non-queue @bfq_entity weight counters, sorted
+- * by weight. Used to keep track of whether all
+- * @bfq_groups have the same weight. The tree contains
+- * one counter for each distinct weight associated to
+- * some active @bfq_group (see the comments to the
+- * functions bfq_weights_tree_[add|remove] for further
+- * details).
+- * @busy_queues: number of bfq_queues containing requests (including the
+- * queue in service, even if it is idling).
+- * @busy_in_flight_queues: number of @bfq_queues containing pending or
+- * in-flight requests, plus the @bfq_queue in
+- * service, even if idle but waiting for the
+- * possible arrival of its next sync request. This
+- * field is updated only if the device is rotational,
+- * but used only if the device is also NCQ-capable.
+- * The reason why the field is updated also for non-
+- * NCQ-capable rotational devices is related to the
+- * fact that the value of @hw_tag may be set also
+- * later than when busy_in_flight_queues may need to
+- * be incremented for the first time(s). Taking also
+- * this possibility into account, to avoid unbalanced
+- * increments/decrements, would imply more overhead
+- * than just updating busy_in_flight_queues
+- * regardless of the value of @hw_tag.
+- * @const_seeky_busy_in_flight_queues: number of constantly-seeky @bfq_queues
+- * (that is, seeky queues that expired
+- * for budget timeout at least once)
+- * containing pending or in-flight
+- * requests, including the in-service
+- * @bfq_queue if constantly seeky. This
+- * field is updated only if the device
+- * is rotational, but used only if the
+- * device is also NCQ-capable (see the
+- * comments to @busy_in_flight_queues).
+- * @wr_busy_queues: number of weight-raised busy @bfq_queues.
+- * @queued: number of queued requests.
+- * @rq_in_driver: number of requests dispatched and waiting for completion.
+- * @sync_flight: number of sync requests in the driver.
+- * @max_rq_in_driver: max number of reqs in driver in the last
+- * @hw_tag_samples completed requests.
+- * @hw_tag_samples: nr of samples used to calculate hw_tag.
+- * @hw_tag: flag set to one if the driver is showing a queueing behavior.
+- * @budgets_assigned: number of budgets assigned.
+- * @idle_slice_timer: timer set when idling for the next sequential request
+- * from the queue in service.
+- * @unplug_work: delayed work to restart dispatching on the request queue.
+- * @in_service_queue: bfq_queue in service.
+- * @in_service_bic: bfq_io_cq (bic) associated with the @in_service_queue.
+- * @last_position: on-disk position of the last served request.
+- * @last_budget_start: beginning of the last budget.
+- * @last_idling_start: beginning of the last idle slice.
+- * @peak_rate: peak transfer rate observed for a budget.
+- * @peak_rate_samples: number of samples used to calculate @peak_rate.
+- * @bfq_max_budget: maximum budget allotted to a bfq_queue before
+- * rescheduling.
+- * @active_list: list of all the bfq_queues active on the device.
+- * @idle_list: list of all the bfq_queues idle on the device.
+- * @bfq_fifo_expire: timeout for async/sync requests; when it expires
+- * requests are served in fifo order.
+- * @bfq_back_penalty: weight of backward seeks wrt forward ones.
+- * @bfq_back_max: maximum allowed backward seek.
+- * @bfq_slice_idle: maximum idling time.
+- * @bfq_user_max_budget: user-configured max budget value
+- * (0 for auto-tuning).
+- * @bfq_max_budget_async_rq: maximum budget (in nr of requests) allotted to
+- * async queues.
+- * @bfq_timeout: timeout for bfq_queues to consume their budget; used to
+- * to prevent seeky queues to impose long latencies to well
+- * behaved ones (this also implies that seeky queues cannot
+- * receive guarantees in the service domain; after a timeout
+- * they are charged for the whole allocated budget, to try
+- * to preserve a behavior reasonably fair among them, but
+- * without service-domain guarantees).
+- * @bfq_coop_thresh: number of queue merges after which a @bfq_queue is
+- * no more granted any weight-raising.
+- * @bfq_failed_cooperations: number of consecutive failed cooperation
+- * chances after which weight-raising is restored
+- * to a queue subject to more than bfq_coop_thresh
+- * queue merges.
+- * @bfq_requests_within_timer: number of consecutive requests that must be
+- * issued within the idle time slice to set
+- * again idling to a queue which was marked as
+- * non-I/O-bound (see the definition of the
+- * IO_bound flag for further details).
+- * @last_ins_in_burst: last time at which a queue entered the current
+- * burst of queues being activated shortly after
+- * each other; for more details about this and the
+- * following parameters related to a burst of
+- * activations, see the comments to the function
+- * @bfq_handle_burst.
+- * @bfq_burst_interval: reference time interval used to decide whether a
+- * queue has been activated shortly after
+- * @last_ins_in_burst.
+- * @burst_size: number of queues in the current burst of queue activations.
+- * @bfq_large_burst_thresh: maximum burst size above which the current
+- * queue-activation burst is deemed as 'large'.
+- * @large_burst: true if a large queue-activation burst is in progress.
+- * @burst_list: head of the burst list (as for the above fields, more details
+- * in the comments to the function bfq_handle_burst).
+- * @low_latency: if set to true, low-latency heuristics are enabled.
+- * @bfq_wr_coeff: maximum factor by which the weight of a weight-raised
+- * queue is multiplied.
+- * @bfq_wr_max_time: maximum duration of a weight-raising period (jiffies).
+- * @bfq_wr_rt_max_time: maximum duration for soft real-time processes.
+- * @bfq_wr_min_idle_time: minimum idle period after which weight-raising
+- * may be reactivated for a queue (in jiffies).
+- * @bfq_wr_min_inter_arr_async: minimum period between request arrivals
+- * after which weight-raising may be
+- * reactivated for an already busy queue
+- * (in jiffies).
+- * @bfq_wr_max_softrt_rate: max service-rate for a soft real-time queue,
+- * sectors per seconds.
+- * @RT_prod: cached value of the product R*T used for computing the maximum
+- * duration of the weight raising automatically.
+- * @device_speed: device-speed class for the low-latency heuristic.
+- * @oom_bfqq: fallback dummy bfqq for extreme OOM conditions.
++ * struct bfq_data - per-device data structure.
+ *
+ * All the fields are protected by the @queue lock.
+ */
+ struct bfq_data {
++ /* request queue for the device */
+ struct request_queue *queue;
+
++ /* root bfq_group for the device */
+ struct bfq_group *root_group;
+
+-#ifdef CONFIG_BFQ_GROUP_IOSCHED
+- int active_numerous_groups;
+-#endif
+-
++ /*
++ * rbtree of weight counters of @bfq_queues, sorted by
++ * weight. Used to keep track of whether all @bfq_queues have
++ * the same weight. The tree contains one counter for each
++ * distinct weight associated to some active and not
++ * weight-raised @bfq_queue (see the comments to the functions
++ * bfq_weights_tree_[add|remove] for further details).
++ */
+ struct rb_root queue_weights_tree;
++ /*
++ * rbtree of non-queue @bfq_entity weight counters, sorted by
++ * weight. Used to keep track of whether all @bfq_groups have
++ * the same weight. The tree contains one counter for each
++ * distinct weight associated to some active @bfq_group (see
++ * the comments to the functions bfq_weights_tree_[add|remove]
++ * for further details).
++ */
+ struct rb_root group_weights_tree;
+
++ /*
++ * Number of bfq_queues containing requests (including the
++ * queue in service, even if it is idling).
++ */
+ int busy_queues;
+- int busy_in_flight_queues;
+- int const_seeky_busy_in_flight_queues;
++ /* number of weight-raised busy @bfq_queues */
+ int wr_busy_queues;
++ /* number of queued requests */
+ int queued;
++ /* number of requests dispatched and waiting for completion */
+ int rq_in_driver;
+- int sync_flight;
+
++ /*
++ * Maximum number of requests in driver in the last
++ * @hw_tag_samples completed requests.
++ */
+ int max_rq_in_driver;
++ /* number of samples used to calculate hw_tag */
+ int hw_tag_samples;
++ /* flag set to one if the driver is showing a queueing behavior */
+ int hw_tag;
+
++ /* number of budgets assigned */
+ int budgets_assigned;
+
+- struct timer_list idle_slice_timer;
++ /*
++ * Timer set when idling (waiting) for the next request from
++ * the queue in service.
++ */
++ struct hrtimer idle_slice_timer;
++ /* delayed work to restart dispatching on the request queue */
+ struct work_struct unplug_work;
+
++ /* bfq_queue in service */
+ struct bfq_queue *in_service_queue;
++ /* candidate bfq_queue to become the next in-service queue */
++ struct bfq_queue *next_in_service_queue;
++ /* bfq_io_cq (bic) associated with the @in_service_queue */
+ struct bfq_io_cq *in_service_bic;
+
++ /* on-disk position of the last served request */
+ sector_t last_position;
+
++ /* time of last request completion (ns) */
++ u64 last_completion;
++
++ /* time of first rq dispatch in current observation interval (ns) */
++ u64 first_dispatch;
++ /* time of last rq dispatch in current observation interval (ns) */
++ u64 last_dispatch;
++
++ /* beginning of the last budget */
+ ktime_t last_budget_start;
++ /* beginning of the last idle slice */
+ ktime_t last_idling_start;
++
++ /* number of samples in current observation interval */
+ int peak_rate_samples;
+- u64 peak_rate;
++ /* num of samples of seq dispatches in current observation interval */
++ u32 sequential_samples;
++ /* total num of sectors transferred in current observation interval */
++ u64 tot_sectors_dispatched;
++ /* max rq size seen during current observation interval (sectors) */
++ u32 last_rq_max_size;
++ /* time elapsed from first dispatch in current observ. interval (us) */
++ u64 delta_from_first;
++ /* current estimate of device peak rate */
++ u32 peak_rate;
++
++ /* maximum budget allotted to a bfq_queue before rescheduling */
+ int bfq_max_budget;
+
++ /* list of all the bfq_queues active on the device */
+ struct list_head active_list;
++ /* list of all the bfq_queues idle on the device */
+ struct list_head idle_list;
+
+- unsigned int bfq_fifo_expire[2];
++ /*
++ * Timeout for async/sync requests; when it fires, requests
++ * are served in fifo order.
++ */
++ u64 bfq_fifo_expire[2];
++ /* weight of backward seeks wrt forward ones */
+ unsigned int bfq_back_penalty;
++ /* maximum allowed backward seek */
+ unsigned int bfq_back_max;
+- unsigned int bfq_slice_idle;
+- u64 bfq_class_idle_last_service;
++ /* maximum idling time */
++ u32 bfq_slice_idle;
+
++ /* user-configured max budget value (0 for auto-tuning) */
+ int bfq_user_max_budget;
+- int bfq_max_budget_async_rq;
+- unsigned int bfq_timeout[2];
+-
+- unsigned int bfq_coop_thresh;
+- unsigned int bfq_failed_cooperations;
++ /*
++ * Timeout for bfq_queues to consume their budget; used to
++ * prevent seeky queues from imposing long latencies to
++ * sequential or quasi-sequential ones (this also implies that
++ * seeky queues cannot receive guarantees in the service
++ * domain; after a timeout they are charged for the time they
++ * have been in service, to preserve fairness among them, but
++ * without service-domain guarantees).
++ */
++ unsigned int bfq_timeout;
++
++ /*
++ * Number of consecutive requests that must be issued within
++ * the idle time slice to set again idling to a queue which
++ * was marked as non-I/O-bound (see the definition of the
++ * IO_bound flag for further details).
++ */
+ unsigned int bfq_requests_within_timer;
+
++ /*
++ * Force device idling whenever needed to provide accurate
++ * service guarantees, without caring about throughput
++ * issues. CAVEAT: this may even increase latencies, in case
++ * of useless idling for processes that did stop doing I/O.
++ */
++ bool strict_guarantees;
++
++ /*
++ * Last time at which a queue entered the current burst of
++ * queues being activated shortly after each other; for more
++ * details about this and the following parameters related to
++ * a burst of activations, see the comments on the function
++ * bfq_handle_burst.
++ */
+ unsigned long last_ins_in_burst;
++ /*
++ * Reference time interval used to decide whether a queue has
++ * been activated shortly after @last_ins_in_burst.
++ */
+ unsigned long bfq_burst_interval;
++ /* number of queues in the current burst of queue activations */
+ int burst_size;
++
++ /* common parent entity for the queues in the burst */
++ struct bfq_entity *burst_parent_entity;
++ /* Maximum burst size above which the current queue-activation
++ * burst is deemed as 'large'.
++ */
+ unsigned long bfq_large_burst_thresh;
++ /* true if a large queue-activation burst is in progress */
+ bool large_burst;
++ /*
++ * Head of the burst list (as for the above fields, more
++ * details in the comments on the function bfq_handle_burst).
++ */
+ struct hlist_head burst_list;
+
++ /* if set to true, low-latency heuristics are enabled */
+ bool low_latency;
+-
+- /* parameters of the low_latency heuristics */
++ /*
++ * Maximum factor by which the weight of a weight-raised queue
++ * is multiplied.
++ */
+ unsigned int bfq_wr_coeff;
++ /* maximum duration of a weight-raising period (jiffies) */
+ unsigned int bfq_wr_max_time;
++
++ /* Maximum weight-raising duration for soft real-time processes */
+ unsigned int bfq_wr_rt_max_time;
++ /*
++ * Minimum idle period after which weight-raising may be
++ * reactivated for a queue (in jiffies).
++ */
+ unsigned int bfq_wr_min_idle_time;
++ /*
++ * Minimum period between request arrivals after which
++ * weight-raising may be reactivated for an already busy async
++ * queue (in jiffies).
++ */
+ unsigned long bfq_wr_min_inter_arr_async;
++
++ /* Max service-rate for a soft real-time queue, in sectors/sec */
+ unsigned int bfq_wr_max_softrt_rate;
++ /*
++ * Cached value of the product R*T, used for computing the
++ * maximum duration of weight raising automatically.
++ */
+ u64 RT_prod;
++ /* device-speed class for the low-latency heuristic */
+ enum bfq_device_speed device_speed;
+
++ /* fallback dummy bfqq for extreme OOM conditions */
+ struct bfq_queue oom_bfqq;
+ };
+
+ enum bfqq_state_flags {
+- BFQ_BFQQ_FLAG_busy = 0, /* has requests or is in service */
++ BFQ_BFQQ_FLAG_just_created = 0, /* queue just allocated */
++ BFQ_BFQQ_FLAG_busy, /* has requests or is in service */
+ BFQ_BFQQ_FLAG_wait_request, /* waiting for a request */
++ BFQ_BFQQ_FLAG_non_blocking_wait_rq, /*
++ * waiting for a request
++ * without idling the device
++ */
+ BFQ_BFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
+ BFQ_BFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
+ BFQ_BFQQ_FLAG_idle_window, /* slice idling enabled */
+ BFQ_BFQQ_FLAG_sync, /* synchronous queue */
+- BFQ_BFQQ_FLAG_budget_new, /* no completion with this budget */
+ BFQ_BFQQ_FLAG_IO_bound, /*
+ * bfqq has timed-out at least once
+ * having consumed at most 2/10 of
+@@ -581,17 +610,12 @@ enum bfqq_state_flags {
+ * bfqq activated in a large burst,
+ * see comments to bfq_handle_burst.
+ */
+- BFQ_BFQQ_FLAG_constantly_seeky, /*
+- * bfqq has proved to be slow and
+- * seeky until budget timeout
+- */
+ BFQ_BFQQ_FLAG_softrt_update, /*
+ * may need softrt-next-start
+ * update
+ */
+ BFQ_BFQQ_FLAG_coop, /* bfqq is shared */
+- BFQ_BFQQ_FLAG_split_coop, /* shared bfqq will be split */
+- BFQ_BFQQ_FLAG_just_split, /* queue has just been split */
++ BFQ_BFQQ_FLAG_split_coop /* shared bfqq will be split */
+ };
+
+ #define BFQ_BFQQ_FNS(name) \
+@@ -608,28 +632,94 @@ static int bfq_bfqq_##name(const struct bfq_queue *bfqq) \
+ return ((bfqq)->flags & (1 << BFQ_BFQQ_FLAG_##name)) != 0; \
+ }
+
++BFQ_BFQQ_FNS(just_created);
+ BFQ_BFQQ_FNS(busy);
+ BFQ_BFQQ_FNS(wait_request);
++BFQ_BFQQ_FNS(non_blocking_wait_rq);
+ BFQ_BFQQ_FNS(must_alloc);
+ BFQ_BFQQ_FNS(fifo_expire);
+ BFQ_BFQQ_FNS(idle_window);
+ BFQ_BFQQ_FNS(sync);
+-BFQ_BFQQ_FNS(budget_new);
+ BFQ_BFQQ_FNS(IO_bound);
+ BFQ_BFQQ_FNS(in_large_burst);
+-BFQ_BFQQ_FNS(constantly_seeky);
+ BFQ_BFQQ_FNS(coop);
+ BFQ_BFQQ_FNS(split_coop);
+-BFQ_BFQQ_FNS(just_split);
+ BFQ_BFQQ_FNS(softrt_update);
+ #undef BFQ_BFQQ_FNS
+
+ /* Logging facilities. */
+-#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) \
+- blk_add_trace_msg((bfqd)->queue, "bfq%d " fmt, (bfqq)->pid, ##args)
++#ifdef CONFIG_BFQ_REDIRECT_TO_CONSOLE
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++static struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
++static struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg);
++
++#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) do { \
++ char __pbuf[128]; \
++ \
++ assert_spin_locked((bfqd)->queue->queue_lock); \
++ blkg_path(bfqg_to_blkg(bfqq_group(bfqq)), __pbuf, sizeof(__pbuf)); \
++ pr_crit("bfq%d%c %s " fmt "\n", \
++ (bfqq)->pid, \
++ bfq_bfqq_sync((bfqq)) ? 'S' : 'A', \
++ __pbuf, ##args); \
++} while (0)
++
++#define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do { \
++ char __pbuf[128]; \
++ \
++ blkg_path(bfqg_to_blkg(bfqg), __pbuf, sizeof(__pbuf)); \
++ pr_crit("%s " fmt "\n", __pbuf, ##args); \
++} while (0)
++
++#else /* CONFIG_BFQ_GROUP_IOSCHED */
++
++#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) \
++ pr_crit("bfq%d%c " fmt "\n", (bfqq)->pid, \
++ bfq_bfqq_sync((bfqq)) ? 'S' : 'A', \
++ ##args)
++#define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do {} while (0)
++
++#endif /* CONFIG_BFQ_GROUP_IOSCHED */
++
++#define bfq_log(bfqd, fmt, args...) \
++ pr_crit("bfq " fmt "\n", ##args)
++
++#else /* CONFIG_BFQ_REDIRECT_TO_CONSOLE */
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++static struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
++static struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg);
++
++#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) do { \
++ char __pbuf[128]; \
++ \
++ assert_spin_locked((bfqd)->queue->queue_lock); \
++ blkg_path(bfqg_to_blkg(bfqq_group(bfqq)), __pbuf, sizeof(__pbuf)); \
++ blk_add_trace_msg((bfqd)->queue, "bfq%d%c %s " fmt, \
++ (bfqq)->pid, \
++ bfq_bfqq_sync((bfqq)) ? 'S' : 'A', \
++ __pbuf, ##args); \
++} while (0)
++
++#define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do { \
++ char __pbuf[128]; \
++ \
++ blkg_path(bfqg_to_blkg(bfqg), __pbuf, sizeof(__pbuf)); \
++ blk_add_trace_msg((bfqd)->queue, "%s " fmt, __pbuf, ##args); \
++} while (0)
++
++#else /* CONFIG_BFQ_GROUP_IOSCHED */
++
++#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) \
++ blk_add_trace_msg((bfqd)->queue, "bfq%d%c " fmt, (bfqq)->pid, \
++ bfq_bfqq_sync((bfqq)) ? 'S' : 'A', \
++ ##args)
++#define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do {} while (0)
++
++#endif /* CONFIG_BFQ_GROUP_IOSCHED */
+
+ #define bfq_log(bfqd, fmt, args...) \
+ blk_add_trace_msg((bfqd)->queue, "bfq " fmt, ##args)
++#endif /* CONFIG_BFQ_REDIRECT_TO_CONSOLE */
+
+ /* Expiration reasons. */
+ enum bfqq_expiration {
+@@ -640,15 +730,12 @@ enum bfqq_expiration {
+ BFQ_BFQQ_BUDGET_TIMEOUT, /* budget took too long to be used */
+ BFQ_BFQQ_BUDGET_EXHAUSTED, /* budget consumed */
+ BFQ_BFQQ_NO_MORE_REQUESTS, /* the queue has no more requests */
++ BFQ_BFQQ_PREEMPTED /* preemption in progress */
+ };
+
+-#ifdef CONFIG_BFQ_GROUP_IOSCHED
+
+ struct bfqg_stats {
+- /* total bytes transferred */
+- struct blkg_rwstat service_bytes;
+- /* total IOs serviced, post merge */
+- struct blkg_rwstat serviced;
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
+ /* number of ios merged */
+ struct blkg_rwstat merged;
+ /* total time spent on device in ns, may not be accurate w/ queueing */
+@@ -657,12 +744,8 @@ struct bfqg_stats {
+ struct blkg_rwstat wait_time;
+ /* number of IOs queued up */
+ struct blkg_rwstat queued;
+- /* total sectors transferred */
+- struct blkg_stat sectors;
+ /* total disk time and nr sectors dispatched by this group */
+ struct blkg_stat time;
+- /* time not charged to this cgroup */
+- struct blkg_stat unaccounted_time;
+ /* sum of number of ios queued across all samples */
+ struct blkg_stat avg_queue_size_sum;
+ /* count of samples taken for average */
+@@ -680,8 +763,10 @@ struct bfqg_stats {
+ uint64_t start_idle_time;
+ uint64_t start_empty_time;
+ uint16_t flags;
++#endif
+ };
+
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
+ /*
+ * struct bfq_group_data - per-blkcg storage for the blkio subsystem.
+ *
+@@ -692,7 +777,7 @@ struct bfq_group_data {
+ /* must be the first member */
+ struct blkcg_policy_data pd;
+
+- unsigned short weight;
++ unsigned int weight;
+ };
+
+ /**
+@@ -712,7 +797,7 @@ struct bfq_group_data {
+ * unused for the root group. Used to know whether there
+ * are groups with more than one active @bfq_entity
+ * (see the comments to the function
+- * bfq_bfqq_must_not_expire()).
++ * bfq_bfqq_may_idle()).
+ * @rq_pos_tree: rbtree sorted by next_request position, used when
+ * determining if two or more queues have interleaving
+ * requests (see bfq_find_close_cooperator()).
+@@ -745,7 +830,6 @@ struct bfq_group {
+ struct rb_root rq_pos_tree;
+
+ struct bfqg_stats stats;
+- struct bfqg_stats dead_stats; /* stats pushed from dead children */
+ };
+
+ #else
+@@ -761,17 +845,38 @@ struct bfq_group {
+
+ static struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity);
+
++static unsigned int bfq_class_idx(struct bfq_entity *entity)
++{
++ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++
++ return bfqq ? bfqq->ioprio_class - 1 :
++ BFQ_DEFAULT_GRP_CLASS - 1;
++}
++
+ static struct bfq_service_tree *
+ bfq_entity_service_tree(struct bfq_entity *entity)
+ {
+ struct bfq_sched_data *sched_data = entity->sched_data;
+ struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
+- unsigned int idx = bfqq ? bfqq->ioprio_class - 1 :
+- BFQ_DEFAULT_GRP_CLASS;
++ unsigned int idx = bfq_class_idx(entity);
+
+ BUG_ON(idx >= BFQ_IOPRIO_CLASSES);
+ BUG_ON(sched_data == NULL);
+
++ if (bfqq)
++ bfq_log_bfqq(bfqq->bfqd, bfqq,
++ "entity_service_tree %p %d",
++ sched_data->service_tree + idx, idx);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++ else {
++ struct bfq_group *bfqg =
++ container_of(entity, struct bfq_group, entity);
++
++ bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
++ "entity_service_tree %p %d",
++ sched_data->service_tree + idx, idx);
++ }
++#endif
+ return sched_data->service_tree + idx;
+ }
+
+@@ -791,47 +896,6 @@ static struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
+ return bic->icq.q->elevator->elevator_data;
+ }
+
+-/**
+- * bfq_get_bfqd_locked - get a lock to a bfqd using a RCU protected pointer.
+- * @ptr: a pointer to a bfqd.
+- * @flags: storage for the flags to be saved.
+- *
+- * This function allows bfqg->bfqd to be protected by the
+- * queue lock of the bfqd they reference; the pointer is dereferenced
+- * under RCU, so the storage for bfqd is assured to be safe as long
+- * as the RCU read side critical section does not end. After the
+- * bfqd->queue->queue_lock is taken the pointer is rechecked, to be
+- * sure that no other writer accessed it. If we raced with a writer,
+- * the function returns NULL, with the queue unlocked, otherwise it
+- * returns the dereferenced pointer, with the queue locked.
+- */
+-static struct bfq_data *bfq_get_bfqd_locked(void **ptr, unsigned long *flags)
+-{
+- struct bfq_data *bfqd;
+-
+- rcu_read_lock();
+- bfqd = rcu_dereference(*(struct bfq_data **)ptr);
+-
+- if (bfqd != NULL) {
+- spin_lock_irqsave(bfqd->queue->queue_lock, *flags);
+- if (ptr == NULL)
+- printk(KERN_CRIT "get_bfqd_locked pointer NULL\n");
+- else if (*ptr == bfqd)
+- goto out;
+- spin_unlock_irqrestore(bfqd->queue->queue_lock, *flags);
+- }
+-
+- bfqd = NULL;
+-out:
+- rcu_read_unlock();
+- return bfqd;
+-}
+-
+-static void bfq_put_bfqd_unlock(struct bfq_data *bfqd, unsigned long *flags)
+-{
+- spin_unlock_irqrestore(bfqd->queue->queue_lock, *flags);
+-}
+-
+ #ifdef CONFIG_BFQ_GROUP_IOSCHED
+
+ static struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
+@@ -857,11 +921,13 @@ static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio);
+ static void bfq_put_queue(struct bfq_queue *bfqq);
+ static void bfq_dispatch_insert(struct request_queue *q, struct request *rq);
+ static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
+- struct bio *bio, int is_sync,
+- struct bfq_io_cq *bic, gfp_t gfp_mask);
++ struct bio *bio, bool is_sync,
++ struct bfq_io_cq *bic);
+ static void bfq_end_wr_async_queues(struct bfq_data *bfqd,
+ struct bfq_group *bfqg);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
+ static void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg);
++#endif
+ static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq);
+
+ #endif /* _BFQ_H */
+--
+2.10.0
+
^ permalink raw reply related [flat|nested] 5+ messages in thread
* [gentoo-commits] proj/linux-patches:4.11 commit in: /
@ 2017-05-14 13:29 Mike Pagano
0 siblings, 0 replies; 5+ messages in thread
From: Mike Pagano @ 2017-05-14 13:29 UTC (permalink / raw
To: gentoo-commits
commit: 97b52b16ce743e5b7a476c30350fbabe35e68f1c
Author: Mike Pagano <mpagano <AT> gentoo <DOT> org>
AuthorDate: Sun May 14 13:29:09 2017 +0000
Commit: Mike Pagano <mpagano <AT> gentoo <DOT> org>
CommitDate: Sun May 14 13:29:09 2017 +0000
URL: https://gitweb.gentoo.org/proj/linux-patches.git/commit/?id=97b52b16
Linux patch 4.11.1
0000_README | 4 +
1000_linux-4.11.1.patch | 1626 +++++++++++++++++++++++++++++++++++++++++++++++
2 files changed, 1630 insertions(+)
diff --git a/0000_README b/0000_README
index 70e3319..85e105d 100644
--- a/0000_README
+++ b/0000_README
@@ -43,6 +43,10 @@ EXPERIMENTAL
Individual Patch Descriptions:
--------------------------------------------------------------------------
+Patch: 1000_linux-4.11.1.patch
+From: http://www.kernel.org
+Desc: Linux 4.11.1
+
Patch: 1500_XATTR_USER_PREFIX.patch
From: https://bugs.gentoo.org/show_bug.cgi?id=470644
Desc: Support for namespace user.pax.* on tmpfs.
diff --git a/1000_linux-4.11.1.patch b/1000_linux-4.11.1.patch
new file mode 100644
index 0000000..3c56ecd
--- /dev/null
+++ b/1000_linux-4.11.1.patch
@@ -0,0 +1,1626 @@
+diff --git a/Makefile b/Makefile
+index 4b074a904106..9dc2aec1c2e5 100644
+--- a/Makefile
++++ b/Makefile
+@@ -1,6 +1,6 @@
+ VERSION = 4
+ PATCHLEVEL = 11
+-SUBLEVEL = 0
++SUBLEVEL = 1
+ EXTRAVERSION =
+ NAME = Fearless Coyote
+
+diff --git a/arch/arm/include/asm/device.h b/arch/arm/include/asm/device.h
+index 220ba207be91..36ec9c8f6e16 100644
+--- a/arch/arm/include/asm/device.h
++++ b/arch/arm/include/asm/device.h
+@@ -16,6 +16,9 @@ struct dev_archdata {
+ #ifdef CONFIG_ARM_DMA_USE_IOMMU
+ struct dma_iommu_mapping *mapping;
+ #endif
++#ifdef CONFIG_XEN
++ const struct dma_map_ops *dev_dma_ops;
++#endif
+ bool dma_coherent;
+ };
+
+diff --git a/arch/arm/include/asm/dma-mapping.h b/arch/arm/include/asm/dma-mapping.h
+index 716656925975..680d3f3889e7 100644
+--- a/arch/arm/include/asm/dma-mapping.h
++++ b/arch/arm/include/asm/dma-mapping.h
+@@ -16,19 +16,9 @@
+ extern const struct dma_map_ops arm_dma_ops;
+ extern const struct dma_map_ops arm_coherent_dma_ops;
+
+-static inline const struct dma_map_ops *__generic_dma_ops(struct device *dev)
+-{
+- if (dev && dev->dma_ops)
+- return dev->dma_ops;
+- return &arm_dma_ops;
+-}
+-
+ static inline const struct dma_map_ops *get_arch_dma_ops(struct bus_type *bus)
+ {
+- if (xen_initial_domain())
+- return xen_dma_ops;
+- else
+- return __generic_dma_ops(NULL);
++ return &arm_dma_ops;
+ }
+
+ #define HAVE_ARCH_DMA_SUPPORTED 1
+diff --git a/arch/arm/mm/dma-mapping.c b/arch/arm/mm/dma-mapping.c
+index 475811f5383a..0268584f1fa0 100644
+--- a/arch/arm/mm/dma-mapping.c
++++ b/arch/arm/mm/dma-mapping.c
+@@ -2414,6 +2414,13 @@ void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
+ dma_ops = arm_get_dma_map_ops(coherent);
+
+ set_dma_ops(dev, dma_ops);
++
++#ifdef CONFIG_XEN
++ if (xen_initial_domain()) {
++ dev->archdata.dev_dma_ops = dev->dma_ops;
++ dev->dma_ops = xen_dma_ops;
++ }
++#endif
+ }
+
+ void arch_teardown_dma_ops(struct device *dev)
+diff --git a/arch/arm64/include/asm/device.h b/arch/arm64/include/asm/device.h
+index 73d5bab015eb..5a5fa47a6b18 100644
+--- a/arch/arm64/include/asm/device.h
++++ b/arch/arm64/include/asm/device.h
+@@ -20,6 +20,9 @@ struct dev_archdata {
+ #ifdef CONFIG_IOMMU_API
+ void *iommu; /* private IOMMU data */
+ #endif
++#ifdef CONFIG_XEN
++ const struct dma_map_ops *dev_dma_ops;
++#endif
+ bool dma_coherent;
+ };
+
+diff --git a/arch/arm64/include/asm/dma-mapping.h b/arch/arm64/include/asm/dma-mapping.h
+index 505756cdc67a..5392dbeffa45 100644
+--- a/arch/arm64/include/asm/dma-mapping.h
++++ b/arch/arm64/include/asm/dma-mapping.h
+@@ -27,11 +27,8 @@
+ #define DMA_ERROR_CODE (~(dma_addr_t)0)
+ extern const struct dma_map_ops dummy_dma_ops;
+
+-static inline const struct dma_map_ops *__generic_dma_ops(struct device *dev)
++static inline const struct dma_map_ops *get_arch_dma_ops(struct bus_type *bus)
+ {
+- if (dev && dev->dma_ops)
+- return dev->dma_ops;
+-
+ /*
+ * We expect no ISA devices, and all other DMA masters are expected to
+ * have someone call arch_setup_dma_ops at device creation time.
+@@ -39,14 +36,6 @@ static inline const struct dma_map_ops *__generic_dma_ops(struct device *dev)
+ return &dummy_dma_ops;
+ }
+
+-static inline const struct dma_map_ops *get_arch_dma_ops(struct bus_type *bus)
+-{
+- if (xen_initial_domain())
+- return xen_dma_ops;
+- else
+- return __generic_dma_ops(NULL);
+-}
+-
+ void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
+ const struct iommu_ops *iommu, bool coherent);
+ #define arch_setup_dma_ops arch_setup_dma_ops
+diff --git a/arch/arm64/mm/dma-mapping.c b/arch/arm64/mm/dma-mapping.c
+index 81cdb2e844ed..7f8b37e85a2b 100644
+--- a/arch/arm64/mm/dma-mapping.c
++++ b/arch/arm64/mm/dma-mapping.c
+@@ -977,4 +977,11 @@ void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
+
+ dev->archdata.dma_coherent = coherent;
+ __iommu_setup_dma_ops(dev, dma_base, size, iommu);
++
++#ifdef CONFIG_XEN
++ if (xen_initial_domain()) {
++ dev->archdata.dev_dma_ops = dev->dma_ops;
++ dev->dma_ops = xen_dma_ops;
++ }
++#endif
+ }
+diff --git a/arch/arm64/net/bpf_jit_comp.c b/arch/arm64/net/bpf_jit_comp.c
+index a785554916c0..ce8ab0409deb 100644
+--- a/arch/arm64/net/bpf_jit_comp.c
++++ b/arch/arm64/net/bpf_jit_comp.c
+@@ -779,14 +779,14 @@ static int build_body(struct jit_ctx *ctx)
+ int ret;
+
+ ret = build_insn(insn, ctx);
+-
+- if (ctx->image == NULL)
+- ctx->offset[i] = ctx->idx;
+-
+ if (ret > 0) {
+ i++;
++ if (ctx->image == NULL)
++ ctx->offset[i] = ctx->idx;
+ continue;
+ }
++ if (ctx->image == NULL)
++ ctx->offset[i] = ctx->idx;
+ if (ret)
+ return ret;
+ }
+diff --git a/arch/sparc/kernel/head_64.S b/arch/sparc/kernel/head_64.S
+index 44101196d02b..41a407328667 100644
+--- a/arch/sparc/kernel/head_64.S
++++ b/arch/sparc/kernel/head_64.S
+@@ -939,3 +939,9 @@ ENTRY(__retl_o1)
+ retl
+ mov %o1, %o0
+ ENDPROC(__retl_o1)
++
++ENTRY(__retl_o1_asi)
++ wr %o5, 0x0, %asi
++ retl
++ mov %o1, %o0
++ENDPROC(__retl_o1_asi)
+diff --git a/arch/sparc/lib/GENbzero.S b/arch/sparc/lib/GENbzero.S
+index 8e7a843ddd88..2fbf6297d57c 100644
+--- a/arch/sparc/lib/GENbzero.S
++++ b/arch/sparc/lib/GENbzero.S
+@@ -8,7 +8,7 @@
+ 98: x,y; \
+ .section __ex_table,"a";\
+ .align 4; \
+- .word 98b, __retl_o1; \
++ .word 98b, __retl_o1_asi;\
+ .text; \
+ .align 4;
+
+diff --git a/arch/sparc/lib/NGbzero.S b/arch/sparc/lib/NGbzero.S
+index beab29bf419b..33053bdf3766 100644
+--- a/arch/sparc/lib/NGbzero.S
++++ b/arch/sparc/lib/NGbzero.S
+@@ -8,7 +8,7 @@
+ 98: x,y; \
+ .section __ex_table,"a";\
+ .align 4; \
+- .word 98b, __retl_o1; \
++ .word 98b, __retl_o1_asi;\
+ .text; \
+ .align 4;
+
+diff --git a/arch/x86/include/asm/xen/events.h b/arch/x86/include/asm/xen/events.h
+index 608a79d5a466..e6911caf5bbf 100644
+--- a/arch/x86/include/asm/xen/events.h
++++ b/arch/x86/include/asm/xen/events.h
+@@ -20,4 +20,15 @@ static inline int xen_irqs_disabled(struct pt_regs *regs)
+ /* No need for a barrier -- XCHG is a barrier on x86. */
+ #define xchg_xen_ulong(ptr, val) xchg((ptr), (val))
+
++extern int xen_have_vector_callback;
++
++/*
++ * Events delivered via platform PCI interrupts are always
++ * routed to vcpu 0 and hence cannot be rebound.
++ */
++static inline bool xen_support_evtchn_rebind(void)
++{
++ return (!xen_hvm_domain() || xen_have_vector_callback);
++}
++
+ #endif /* _ASM_X86_XEN_EVENTS_H */
+diff --git a/arch/x86/pci/xen.c b/arch/x86/pci/xen.c
+index 292ab0364a89..c4b3646bd04c 100644
+--- a/arch/x86/pci/xen.c
++++ b/arch/x86/pci/xen.c
+@@ -447,7 +447,7 @@ void __init xen_msi_init(void)
+
+ int __init pci_xen_hvm_init(void)
+ {
+- if (!xen_feature(XENFEAT_hvm_pirqs))
++ if (!xen_have_vector_callback || !xen_feature(XENFEAT_hvm_pirqs))
+ return 0;
+
+ #ifdef CONFIG_ACPI
+diff --git a/arch/x86/xen/enlighten.c b/arch/x86/xen/enlighten.c
+index ec1d5c46e58f..29b239025b57 100644
+--- a/arch/x86/xen/enlighten.c
++++ b/arch/x86/xen/enlighten.c
+@@ -138,6 +138,8 @@ struct shared_info xen_dummy_shared_info;
+ void *xen_initial_gdt;
+
+ RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
++__read_mostly int xen_have_vector_callback;
++EXPORT_SYMBOL_GPL(xen_have_vector_callback);
+
+ static int xen_cpu_up_prepare(unsigned int cpu);
+ static int xen_cpu_up_online(unsigned int cpu);
+@@ -1861,7 +1863,9 @@ static int xen_cpu_up_prepare(unsigned int cpu)
+ xen_vcpu_setup(cpu);
+ }
+
+- if (xen_pv_domain() || xen_feature(XENFEAT_hvm_safe_pvclock))
++ if (xen_pv_domain() ||
++ (xen_have_vector_callback &&
++ xen_feature(XENFEAT_hvm_safe_pvclock)))
+ xen_setup_timer(cpu);
+
+ rc = xen_smp_intr_init(cpu);
+@@ -1877,7 +1881,9 @@ static int xen_cpu_dead(unsigned int cpu)
+ {
+ xen_smp_intr_free(cpu);
+
+- if (xen_pv_domain() || xen_feature(XENFEAT_hvm_safe_pvclock))
++ if (xen_pv_domain() ||
++ (xen_have_vector_callback &&
++ xen_feature(XENFEAT_hvm_safe_pvclock)))
+ xen_teardown_timer(cpu);
+
+ return 0;
+@@ -1916,8 +1922,8 @@ static void __init xen_hvm_guest_init(void)
+
+ xen_panic_handler_init();
+
+- BUG_ON(!xen_feature(XENFEAT_hvm_callback_vector));
+-
++ if (xen_feature(XENFEAT_hvm_callback_vector))
++ xen_have_vector_callback = 1;
+ xen_hvm_smp_init();
+ WARN_ON(xen_cpuhp_setup());
+ xen_unplug_emulated_devices();
+@@ -1958,7 +1964,7 @@ bool xen_hvm_need_lapic(void)
+ return false;
+ if (!xen_hvm_domain())
+ return false;
+- if (xen_feature(XENFEAT_hvm_pirqs))
++ if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
+ return false;
+ return true;
+ }
+diff --git a/arch/x86/xen/smp.c b/arch/x86/xen/smp.c
+index 7ff2f1bfb7ec..4e6b65baf8e2 100644
+--- a/arch/x86/xen/smp.c
++++ b/arch/x86/xen/smp.c
+@@ -742,6 +742,8 @@ static void __init xen_hvm_smp_prepare_cpus(unsigned int max_cpus)
+
+ void __init xen_hvm_smp_init(void)
+ {
++ if (!xen_have_vector_callback)
++ return;
+ smp_ops.smp_prepare_cpus = xen_hvm_smp_prepare_cpus;
+ smp_ops.smp_send_reschedule = xen_smp_send_reschedule;
+ smp_ops.cpu_die = xen_cpu_die;
+diff --git a/arch/x86/xen/time.c b/arch/x86/xen/time.c
+index 1e69956d7852..4535627cf532 100644
+--- a/arch/x86/xen/time.c
++++ b/arch/x86/xen/time.c
+@@ -432,6 +432,11 @@ static void xen_hvm_setup_cpu_clockevents(void)
+
+ void __init xen_hvm_init_time_ops(void)
+ {
++ /* vector callback is needed otherwise we cannot receive interrupts
++ * on cpu > 0 and at this point we don't know how many cpus are
++ * available */
++ if (!xen_have_vector_callback)
++ return;
+ if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
+ printk(KERN_INFO "Xen doesn't support pvclock on HVM,"
+ "disable pv timer\n");
+diff --git a/block/blk-integrity.c b/block/blk-integrity.c
+index 9f0ff5ba4f84..35c5af1ea068 100644
+--- a/block/blk-integrity.c
++++ b/block/blk-integrity.c
+@@ -417,7 +417,7 @@ void blk_integrity_register(struct gendisk *disk, struct blk_integrity *template
+ bi->tuple_size = template->tuple_size;
+ bi->tag_size = template->tag_size;
+
+- blk_integrity_revalidate(disk);
++ disk->queue->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
+ }
+ EXPORT_SYMBOL(blk_integrity_register);
+
+@@ -430,26 +430,11 @@ EXPORT_SYMBOL(blk_integrity_register);
+ */
+ void blk_integrity_unregister(struct gendisk *disk)
+ {
+- blk_integrity_revalidate(disk);
++ disk->queue->backing_dev_info->capabilities &= ~BDI_CAP_STABLE_WRITES;
+ memset(&disk->queue->integrity, 0, sizeof(struct blk_integrity));
+ }
+ EXPORT_SYMBOL(blk_integrity_unregister);
+
+-void blk_integrity_revalidate(struct gendisk *disk)
+-{
+- struct blk_integrity *bi = &disk->queue->integrity;
+-
+- if (!(disk->flags & GENHD_FL_UP))
+- return;
+-
+- if (bi->profile)
+- disk->queue->backing_dev_info->capabilities |=
+- BDI_CAP_STABLE_WRITES;
+- else
+- disk->queue->backing_dev_info->capabilities &=
+- ~BDI_CAP_STABLE_WRITES;
+-}
+-
+ void blk_integrity_add(struct gendisk *disk)
+ {
+ if (kobject_init_and_add(&disk->integrity_kobj, &integrity_ktype,
+diff --git a/block/partition-generic.c b/block/partition-generic.c
+index 7afb9907821f..0171a2faad68 100644
+--- a/block/partition-generic.c
++++ b/block/partition-generic.c
+@@ -497,7 +497,6 @@ int rescan_partitions(struct gendisk *disk, struct block_device *bdev)
+
+ if (disk->fops->revalidate_disk)
+ disk->fops->revalidate_disk(disk);
+- blk_integrity_revalidate(disk);
+ check_disk_size_change(disk, bdev);
+ bdev->bd_invalidated = 0;
+ if (!get_capacity(disk) || !(state = check_partition(disk, bdev)))
+diff --git a/drivers/gpu/drm/sti/sti_gdp.c b/drivers/gpu/drm/sti/sti_gdp.c
+index 86279f5022c2..88f16cdf6a4b 100644
+--- a/drivers/gpu/drm/sti/sti_gdp.c
++++ b/drivers/gpu/drm/sti/sti_gdp.c
+@@ -66,7 +66,9 @@ static struct gdp_format_to_str {
+ #define GAM_GDP_ALPHARANGE_255 BIT(5)
+ #define GAM_GDP_AGC_FULL_RANGE 0x00808080
+ #define GAM_GDP_PPT_IGNORE (BIT(1) | BIT(0))
+-#define GAM_GDP_SIZE_MAX 0x7FF
++
++#define GAM_GDP_SIZE_MAX_WIDTH 3840
++#define GAM_GDP_SIZE_MAX_HEIGHT 2160
+
+ #define GDP_NODE_NB_BANK 2
+ #define GDP_NODE_PER_FIELD 2
+@@ -632,8 +634,8 @@ static int sti_gdp_atomic_check(struct drm_plane *drm_plane,
+ /* src_x are in 16.16 format */
+ src_x = state->src_x >> 16;
+ src_y = state->src_y >> 16;
+- src_w = clamp_val(state->src_w >> 16, 0, GAM_GDP_SIZE_MAX);
+- src_h = clamp_val(state->src_h >> 16, 0, GAM_GDP_SIZE_MAX);
++ src_w = clamp_val(state->src_w >> 16, 0, GAM_GDP_SIZE_MAX_WIDTH);
++ src_h = clamp_val(state->src_h >> 16, 0, GAM_GDP_SIZE_MAX_HEIGHT);
+
+ format = sti_gdp_fourcc2format(fb->format->format);
+ if (format == -1) {
+@@ -741,8 +743,8 @@ static void sti_gdp_atomic_update(struct drm_plane *drm_plane,
+ /* src_x are in 16.16 format */
+ src_x = state->src_x >> 16;
+ src_y = state->src_y >> 16;
+- src_w = clamp_val(state->src_w >> 16, 0, GAM_GDP_SIZE_MAX);
+- src_h = clamp_val(state->src_h >> 16, 0, GAM_GDP_SIZE_MAX);
++ src_w = clamp_val(state->src_w >> 16, 0, GAM_GDP_SIZE_MAX_WIDTH);
++ src_h = clamp_val(state->src_h >> 16, 0, GAM_GDP_SIZE_MAX_HEIGHT);
+
+ list = sti_gdp_get_free_nodes(gdp);
+ top_field = list->top_field;
+diff --git a/drivers/md/dm-ioctl.c b/drivers/md/dm-ioctl.c
+index 4da6fc6b1ffd..3d040f52539c 100644
+--- a/drivers/md/dm-ioctl.c
++++ b/drivers/md/dm-ioctl.c
+@@ -1848,7 +1848,7 @@ static int ctl_ioctl(uint command, struct dm_ioctl __user *user)
+ if (r)
+ goto out;
+
+- param->data_size = sizeof(*param);
++ param->data_size = offsetof(struct dm_ioctl, data);
+ r = fn(param, input_param_size);
+
+ if (unlikely(param->flags & DM_BUFFER_FULL_FLAG) &&
+diff --git a/drivers/net/ethernet/broadcom/bnxt/bnxt.c b/drivers/net/ethernet/broadcom/bnxt/bnxt.c
+index 1f1e54ba0ecb..2c02a4cebc24 100644
+--- a/drivers/net/ethernet/broadcom/bnxt/bnxt.c
++++ b/drivers/net/ethernet/broadcom/bnxt/bnxt.c
+@@ -3000,7 +3000,8 @@ static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
+ INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
+
+ bp->ntp_fltr_count = 0;
+- bp->ntp_fltr_bmap = kzalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
++ bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
++ sizeof(long),
+ GFP_KERNEL);
+
+ if (!bp->ntp_fltr_bmap)
+diff --git a/drivers/net/ethernet/cadence/macb.c b/drivers/net/ethernet/cadence/macb.c
+index 30606b11b128..377fb0f22a5b 100644
+--- a/drivers/net/ethernet/cadence/macb.c
++++ b/drivers/net/ethernet/cadence/macb.c
+@@ -432,15 +432,17 @@ static int macb_mii_probe(struct net_device *dev)
+ }
+
+ pdata = dev_get_platdata(&bp->pdev->dev);
+- if (pdata && gpio_is_valid(pdata->phy_irq_pin)) {
+- ret = devm_gpio_request(&bp->pdev->dev, pdata->phy_irq_pin,
+- "phy int");
+- if (!ret) {
+- phy_irq = gpio_to_irq(pdata->phy_irq_pin);
+- phydev->irq = (phy_irq < 0) ? PHY_POLL : phy_irq;
++ if (pdata) {
++ if (gpio_is_valid(pdata->phy_irq_pin)) {
++ ret = devm_gpio_request(&bp->pdev->dev,
++ pdata->phy_irq_pin, "phy int");
++ if (!ret) {
++ phy_irq = gpio_to_irq(pdata->phy_irq_pin);
++ phydev->irq = (phy_irq < 0) ? PHY_POLL : phy_irq;
++ }
++ } else {
++ phydev->irq = PHY_POLL;
+ }
+- } else {
+- phydev->irq = PHY_POLL;
+ }
+
+ /* attach the mac to the phy */
+diff --git a/drivers/net/geneve.c b/drivers/net/geneve.c
+index 7074b40ebd7f..dec5d563ab19 100644
+--- a/drivers/net/geneve.c
++++ b/drivers/net/geneve.c
+@@ -1244,7 +1244,7 @@ static int geneve_newlink(struct net *net, struct net_device *dev,
+ metadata = true;
+
+ if (data[IFLA_GENEVE_UDP_CSUM] &&
+- !nla_get_u8(data[IFLA_GENEVE_UDP_CSUM]))
++ nla_get_u8(data[IFLA_GENEVE_UDP_CSUM]))
+ info.key.tun_flags |= TUNNEL_CSUM;
+
+ if (data[IFLA_GENEVE_UDP_ZERO_CSUM6_TX] &&
+diff --git a/drivers/net/phy/mdio-mux-bcm-iproc.c b/drivers/net/phy/mdio-mux-bcm-iproc.c
+index 0a0412524cec..0a5f62e0efcc 100644
+--- a/drivers/net/phy/mdio-mux-bcm-iproc.c
++++ b/drivers/net/phy/mdio-mux-bcm-iproc.c
+@@ -203,11 +203,14 @@ static int mdio_mux_iproc_probe(struct platform_device *pdev)
+ &md->mux_handle, md, md->mii_bus);
+ if (rc) {
+ dev_info(md->dev, "mdiomux initialization failed\n");
+- goto out;
++ goto out_register;
+ }
+
+ dev_info(md->dev, "iProc mdiomux registered\n");
+ return 0;
++
++out_register:
++ mdiobus_unregister(bus);
+ out:
+ mdiobus_free(bus);
+ return rc;
+diff --git a/drivers/net/usb/qmi_wwan.c b/drivers/net/usb/qmi_wwan.c
+index 2474618404f5..4e34568db64f 100644
+--- a/drivers/net/usb/qmi_wwan.c
++++ b/drivers/net/usb/qmi_wwan.c
+@@ -907,6 +907,7 @@ static const struct usb_device_id products[] = {
+ {QMI_FIXED_INTF(0x2357, 0x0201, 4)}, /* TP-LINK HSUPA Modem MA180 */
+ {QMI_FIXED_INTF(0x2357, 0x9000, 4)}, /* TP-LINK MA260 */
+ {QMI_QUIRK_SET_DTR(0x1bc7, 0x1040, 2)}, /* Telit LE922A */
++ {QMI_FIXED_INTF(0x1bc7, 0x1100, 3)}, /* Telit ME910 */
+ {QMI_FIXED_INTF(0x1bc7, 0x1200, 5)}, /* Telit LE920 */
+ {QMI_QUIRK_SET_DTR(0x1bc7, 0x1201, 2)}, /* Telit LE920, LE920A4 */
+ {QMI_FIXED_INTF(0x1c9e, 0x9b01, 3)}, /* XS Stick W100-2 from 4G Systems */
+diff --git a/drivers/net/wireless/broadcom/brcm80211/brcmfmac/core.c b/drivers/net/wireless/broadcom/brcm80211/brcmfmac/core.c
+index 60da86a8d95b..f6b17fb58877 100644
+--- a/drivers/net/wireless/broadcom/brcm80211/brcmfmac/core.c
++++ b/drivers/net/wireless/broadcom/brcm80211/brcmfmac/core.c
+@@ -198,7 +198,7 @@ static netdev_tx_t brcmf_netdev_start_xmit(struct sk_buff *skb,
+ int ret;
+ struct brcmf_if *ifp = netdev_priv(ndev);
+ struct brcmf_pub *drvr = ifp->drvr;
+- struct ethhdr *eh = (struct ethhdr *)(skb->data);
++ struct ethhdr *eh;
+
+ brcmf_dbg(DATA, "Enter, bsscfgidx=%d\n", ifp->bsscfgidx);
+
+@@ -211,22 +211,13 @@ static netdev_tx_t brcmf_netdev_start_xmit(struct sk_buff *skb,
+ goto done;
+ }
+
+- /* Make sure there's enough room for any header */
+- if (skb_headroom(skb) < drvr->hdrlen) {
+- struct sk_buff *skb2;
+-
+- brcmf_dbg(INFO, "%s: insufficient headroom\n",
++ /* Make sure there's enough writable headroom*/
++ ret = skb_cow_head(skb, drvr->hdrlen);
++ if (ret < 0) {
++ brcmf_err("%s: skb_cow_head failed\n",
+ brcmf_ifname(ifp));
+- drvr->bus_if->tx_realloc++;
+- skb2 = skb_realloc_headroom(skb, drvr->hdrlen);
+ dev_kfree_skb(skb);
+- skb = skb2;
+- if (skb == NULL) {
+- brcmf_err("%s: skb_realloc_headroom failed\n",
+- brcmf_ifname(ifp));
+- ret = -ENOMEM;
+- goto done;
+- }
++ goto done;
+ }
+
+ /* validate length for ether packet */
+@@ -236,6 +227,8 @@ static netdev_tx_t brcmf_netdev_start_xmit(struct sk_buff *skb,
+ goto done;
+ }
+
++ eh = (struct ethhdr *)(skb->data);
++
+ if (eh->h_proto == htons(ETH_P_PAE))
+ atomic_inc(&ifp->pend_8021x_cnt);
+
+diff --git a/drivers/power/supply/lp8788-charger.c b/drivers/power/supply/lp8788-charger.c
+index 509e2b341bd6..677f7c40b25a 100644
+--- a/drivers/power/supply/lp8788-charger.c
++++ b/drivers/power/supply/lp8788-charger.c
+@@ -651,7 +651,7 @@ static ssize_t lp8788_show_eoc_time(struct device *dev,
+ {
+ struct lp8788_charger *pchg = dev_get_drvdata(dev);
+ char *stime[] = { "400ms", "5min", "10min", "15min",
+- "20min", "25min", "30min" "No timeout" };
++ "20min", "25min", "30min", "No timeout" };
+ u8 val;
+
+ lp8788_read_byte(pchg->lp, LP8788_CHG_EOC, &val);
+diff --git a/drivers/xen/events/events_base.c b/drivers/xen/events/events_base.c
+index 6a53577772c9..42807ce11c42 100644
+--- a/drivers/xen/events/events_base.c
++++ b/drivers/xen/events/events_base.c
+@@ -1312,6 +1312,9 @@ static int rebind_irq_to_cpu(unsigned irq, unsigned tcpu)
+ if (!VALID_EVTCHN(evtchn))
+ return -1;
+
++ if (!xen_support_evtchn_rebind())
++ return -1;
++
+ /* Send future instances of this interrupt to other vcpu. */
+ bind_vcpu.port = evtchn;
+ bind_vcpu.vcpu = xen_vcpu_nr(tcpu);
+@@ -1645,15 +1648,20 @@ void xen_callback_vector(void)
+ {
+ int rc;
+ uint64_t callback_via;
+-
+- callback_via = HVM_CALLBACK_VECTOR(HYPERVISOR_CALLBACK_VECTOR);
+- rc = xen_set_callback_via(callback_via);
+- BUG_ON(rc);
+- pr_info("Xen HVM callback vector for event delivery is enabled\n");
+- /* in the restore case the vector has already been allocated */
+- if (!test_bit(HYPERVISOR_CALLBACK_VECTOR, used_vectors))
+- alloc_intr_gate(HYPERVISOR_CALLBACK_VECTOR,
+- xen_hvm_callback_vector);
++ if (xen_have_vector_callback) {
++ callback_via = HVM_CALLBACK_VECTOR(HYPERVISOR_CALLBACK_VECTOR);
++ rc = xen_set_callback_via(callback_via);
++ if (rc) {
++ pr_err("Request for Xen HVM callback vector failed\n");
++ xen_have_vector_callback = 0;
++ return;
++ }
++ pr_info("Xen HVM callback vector for event delivery is enabled\n");
++ /* in the restore case the vector has already been allocated */
++ if (!test_bit(HYPERVISOR_CALLBACK_VECTOR, used_vectors))
++ alloc_intr_gate(HYPERVISOR_CALLBACK_VECTOR,
++ xen_hvm_callback_vector);
++ }
+ }
+ #else
+ void xen_callback_vector(void) {}
+diff --git a/drivers/xen/platform-pci.c b/drivers/xen/platform-pci.c
+index 2a165cc8a43c..1c4deac9b0f8 100644
+--- a/drivers/xen/platform-pci.c
++++ b/drivers/xen/platform-pci.c
+@@ -67,7 +67,7 @@ static uint64_t get_callback_via(struct pci_dev *pdev)
+ pin = pdev->pin;
+
+ /* We don't know the GSI. Specify the PCI INTx line instead. */
+- return ((uint64_t)0x01 << HVM_CALLBACK_VIA_TYPE_SHIFT) | /* PCI INTx identifier */
++ return ((uint64_t)0x01 << 56) | /* PCI INTx identifier */
+ ((uint64_t)pci_domain_nr(pdev->bus) << 32) |
+ ((uint64_t)pdev->bus->number << 16) |
+ ((uint64_t)(pdev->devfn & 0xff) << 8) |
+@@ -90,7 +90,7 @@ static int xen_allocate_irq(struct pci_dev *pdev)
+ static int platform_pci_resume(struct pci_dev *pdev)
+ {
+ int err;
+- if (!xen_pv_domain())
++ if (xen_have_vector_callback)
+ return 0;
+ err = xen_set_callback_via(callback_via);
+ if (err) {
+@@ -138,14 +138,7 @@ static int platform_pci_probe(struct pci_dev *pdev,
+ platform_mmio = mmio_addr;
+ platform_mmiolen = mmio_len;
+
+- /*
+- * Xen HVM guests always use the vector callback mechanism.
+- * L1 Dom0 in a nested Xen environment is a PV guest inside in an
+- * HVM environment. It needs the platform-pci driver to get
+- * notifications from L0 Xen, but it cannot use the vector callback
+- * as it is not exported by L1 Xen.
+- */
+- if (xen_pv_domain()) {
++ if (!xen_have_vector_callback) {
+ ret = xen_allocate_irq(pdev);
+ if (ret) {
+ dev_warn(&pdev->dev, "request_irq failed err=%d\n", ret);
+diff --git a/fs/block_dev.c b/fs/block_dev.c
+index 2eca00ec4370..56039dfbc674 100644
+--- a/fs/block_dev.c
++++ b/fs/block_dev.c
+@@ -1451,7 +1451,6 @@ int revalidate_disk(struct gendisk *disk)
+
+ if (disk->fops->revalidate_disk)
+ ret = disk->fops->revalidate_disk(disk);
+- blk_integrity_revalidate(disk);
+ bdev = bdget_disk(disk, 0);
+ if (!bdev)
+ return ret;
+diff --git a/fs/f2fs/super.c b/fs/f2fs/super.c
+index 96fe8ed73100..858aef564a58 100644
+--- a/fs/f2fs/super.c
++++ b/fs/f2fs/super.c
+@@ -1483,6 +1483,13 @@ static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
+ return 1;
+ }
+
++ if (le32_to_cpu(raw_super->segment_count) > F2FS_MAX_SEGMENT) {
++ f2fs_msg(sb, KERN_INFO,
++ "Invalid segment count (%u)",
++ le32_to_cpu(raw_super->segment_count));
++ return 1;
++ }
++
+ /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
+ if (sanity_check_area_boundary(sbi, bh))
+ return 1;
+diff --git a/include/linux/f2fs_fs.h b/include/linux/f2fs_fs.h
+index e2d239ed4c60..661200e6d281 100644
+--- a/include/linux/f2fs_fs.h
++++ b/include/linux/f2fs_fs.h
+@@ -302,6 +302,12 @@ struct f2fs_nat_block {
+ #define SIT_ENTRY_PER_BLOCK (PAGE_SIZE / sizeof(struct f2fs_sit_entry))
+
+ /*
++ * F2FS uses 4 bytes to represent block address. As a result, supported size of
++ * disk is 16 TB and it equals to 16 * 1024 * 1024 / 2 segments.
++ */
++#define F2FS_MAX_SEGMENT ((16 * 1024 * 1024) / 2)
++
++/*
+ * Note that f2fs_sit_entry->vblocks has the following bit-field information.
+ * [15:10] : allocation type such as CURSEG_XXXX_TYPE
+ * [9:0] : valid block count
+diff --git a/include/linux/genhd.h b/include/linux/genhd.h
+index 76f39754e7b0..76d6a1cd4153 100644
+--- a/include/linux/genhd.h
++++ b/include/linux/genhd.h
+@@ -722,11 +722,9 @@ static inline void part_nr_sects_write(struct hd_struct *part, sector_t size)
+ #if defined(CONFIG_BLK_DEV_INTEGRITY)
+ extern void blk_integrity_add(struct gendisk *);
+ extern void blk_integrity_del(struct gendisk *);
+-extern void blk_integrity_revalidate(struct gendisk *);
+ #else /* CONFIG_BLK_DEV_INTEGRITY */
+ static inline void blk_integrity_add(struct gendisk *disk) { }
+ static inline void blk_integrity_del(struct gendisk *disk) { }
+-static inline void blk_integrity_revalidate(struct gendisk *disk) { }
+ #endif /* CONFIG_BLK_DEV_INTEGRITY */
+
+ #else /* CONFIG_BLOCK */
+diff --git a/include/net/addrconf.h b/include/net/addrconf.h
+index 17c6fd84e287..4d93c5ec9b12 100644
+--- a/include/net/addrconf.h
++++ b/include/net/addrconf.h
+@@ -20,6 +20,8 @@
+ #define ADDRCONF_TIMER_FUZZ (HZ / 4)
+ #define ADDRCONF_TIMER_FUZZ_MAX (HZ)
+
++#define ADDRCONF_NOTIFY_PRIORITY 0
++
+ #include <linux/in.h>
+ #include <linux/in6.h>
+
+diff --git a/include/net/ip6_route.h b/include/net/ip6_route.h
+index 9dc2c182a263..f5e625f53367 100644
+--- a/include/net/ip6_route.h
++++ b/include/net/ip6_route.h
+@@ -84,6 +84,7 @@ struct dst_entry *ip6_route_lookup(struct net *net, struct flowi6 *fl6,
+ struct rt6_info *ip6_pol_route(struct net *net, struct fib6_table *table,
+ int ifindex, struct flowi6 *fl6, int flags);
+
++void ip6_route_init_special_entries(void);
+ int ip6_route_init(void);
+ void ip6_route_cleanup(void);
+
+diff --git a/include/net/secure_seq.h b/include/net/secure_seq.h
+index 0caee631a836..b94006f6fbdd 100644
+--- a/include/net/secure_seq.h
++++ b/include/net/secure_seq.h
+@@ -6,10 +6,12 @@
+ u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport);
+ u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr,
+ __be16 dport);
+-u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr,
+- __be16 sport, __be16 dport, u32 *tsoff);
+-u32 secure_tcpv6_sequence_number(const __be32 *saddr, const __be32 *daddr,
+- __be16 sport, __be16 dport, u32 *tsoff);
++u32 secure_tcp_seq(__be32 saddr, __be32 daddr,
++ __be16 sport, __be16 dport);
++u32 secure_tcp_ts_off(__be32 saddr, __be32 daddr);
++u32 secure_tcpv6_seq(const __be32 *saddr, const __be32 *daddr,
++ __be16 sport, __be16 dport);
++u32 secure_tcpv6_ts_off(const __be32 *saddr, const __be32 *daddr);
+ u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr,
+ __be16 sport, __be16 dport);
+ u64 secure_dccpv6_sequence_number(__be32 *saddr, __be32 *daddr,
+diff --git a/include/net/tcp.h b/include/net/tcp.h
+index 6ec4ea652f3f..6423b4698880 100644
+--- a/include/net/tcp.h
++++ b/include/net/tcp.h
+@@ -471,7 +471,7 @@ void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
+ /* From syncookies.c */
+ struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
+ struct request_sock *req,
+- struct dst_entry *dst);
++ struct dst_entry *dst, u32 tsoff);
+ int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
+ u32 cookie);
+ struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
+@@ -1816,7 +1816,8 @@ struct tcp_request_sock_ops {
+ struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
+ const struct request_sock *req,
+ bool *strict);
+- __u32 (*init_seq)(const struct sk_buff *skb, u32 *tsoff);
++ u32 (*init_seq)(const struct sk_buff *skb);
++ u32 (*init_ts_off)(const struct sk_buff *skb);
+ int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
+ struct flowi *fl, struct request_sock *req,
+ struct tcp_fastopen_cookie *foc,
+diff --git a/include/xen/arm/page-coherent.h b/include/xen/arm/page-coherent.h
+index 95ce6ac3a971..b0a2bfc8d647 100644
+--- a/include/xen/arm/page-coherent.h
++++ b/include/xen/arm/page-coherent.h
+@@ -2,8 +2,16 @@
+ #define _ASM_ARM_XEN_PAGE_COHERENT_H
+
+ #include <asm/page.h>
++#include <asm/dma-mapping.h>
+ #include <linux/dma-mapping.h>
+
++static inline const struct dma_map_ops *__generic_dma_ops(struct device *dev)
++{
++ if (dev && dev->archdata.dev_dma_ops)
++ return dev->archdata.dev_dma_ops;
++ return get_arch_dma_ops(NULL);
++}
++
+ void __xen_dma_map_page(struct device *hwdev, struct page *page,
+ dma_addr_t dev_addr, unsigned long offset, size_t size,
+ enum dma_data_direction dir, unsigned long attrs);
+diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c
+index a834068a400e..6fd78d4c4164 100644
+--- a/kernel/bpf/verifier.c
++++ b/kernel/bpf/verifier.c
+@@ -296,7 +296,8 @@ static const char *const bpf_jmp_string[16] = {
+ [BPF_EXIT >> 4] = "exit",
+ };
+
+-static void print_bpf_insn(struct bpf_insn *insn)
++static void print_bpf_insn(const struct bpf_verifier_env *env,
++ const struct bpf_insn *insn)
+ {
+ u8 class = BPF_CLASS(insn->code);
+
+@@ -360,9 +361,19 @@ static void print_bpf_insn(struct bpf_insn *insn)
+ insn->code,
+ bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
+ insn->src_reg, insn->imm);
+- } else if (BPF_MODE(insn->code) == BPF_IMM) {
+- verbose("(%02x) r%d = 0x%x\n",
+- insn->code, insn->dst_reg, insn->imm);
++ } else if (BPF_MODE(insn->code) == BPF_IMM &&
++ BPF_SIZE(insn->code) == BPF_DW) {
++ /* At this point, we already made sure that the second
++ * part of the ldimm64 insn is accessible.
++ */
++ u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
++ bool map_ptr = insn->src_reg == BPF_PSEUDO_MAP_FD;
++
++ if (map_ptr && !env->allow_ptr_leaks)
++ imm = 0;
++
++ verbose("(%02x) r%d = 0x%llx\n", insn->code,
++ insn->dst_reg, (unsigned long long)imm);
+ } else {
+ verbose("BUG_ld_%02x\n", insn->code);
+ return;
+@@ -1911,6 +1922,17 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
+ return 0;
+ } else if (opcode == BPF_ADD &&
+ BPF_CLASS(insn->code) == BPF_ALU64 &&
++ dst_reg->type == PTR_TO_STACK &&
++ ((BPF_SRC(insn->code) == BPF_X &&
++ regs[insn->src_reg].type == CONST_IMM) ||
++ BPF_SRC(insn->code) == BPF_K)) {
++ if (BPF_SRC(insn->code) == BPF_X)
++ dst_reg->imm += regs[insn->src_reg].imm;
++ else
++ dst_reg->imm += insn->imm;
++ return 0;
++ } else if (opcode == BPF_ADD &&
++ BPF_CLASS(insn->code) == BPF_ALU64 &&
+ (dst_reg->type == PTR_TO_PACKET ||
+ (BPF_SRC(insn->code) == BPF_X &&
+ regs[insn->src_reg].type == PTR_TO_PACKET))) {
+@@ -2824,7 +2846,7 @@ static int do_check(struct bpf_verifier_env *env)
+
+ if (log_level) {
+ verbose("%d: ", insn_idx);
+- print_bpf_insn(insn);
++ print_bpf_insn(env, insn);
+ }
+
+ err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
+diff --git a/lib/refcount.c b/lib/refcount.c
+index aa09ad3c30b0..26dffb7e4c04 100644
+--- a/lib/refcount.c
++++ b/lib/refcount.c
+@@ -62,13 +62,13 @@ bool refcount_add_not_zero(unsigned int i, refcount_t *r)
+
+ return true;
+ }
+-EXPORT_SYMBOL_GPL(refcount_add_not_zero);
++EXPORT_SYMBOL(refcount_add_not_zero);
+
+ void refcount_add(unsigned int i, refcount_t *r)
+ {
+ WARN_ONCE(!refcount_add_not_zero(i, r), "refcount_t: addition on 0; use-after-free.\n");
+ }
+-EXPORT_SYMBOL_GPL(refcount_add);
++EXPORT_SYMBOL(refcount_add);
+
+ /*
+ * Similar to atomic_inc_not_zero(), will saturate at UINT_MAX and WARN.
+@@ -101,7 +101,7 @@ bool refcount_inc_not_zero(refcount_t *r)
+
+ return true;
+ }
+-EXPORT_SYMBOL_GPL(refcount_inc_not_zero);
++EXPORT_SYMBOL(refcount_inc_not_zero);
+
+ /*
+ * Similar to atomic_inc(), will saturate at UINT_MAX and WARN.
+@@ -113,7 +113,7 @@ void refcount_inc(refcount_t *r)
+ {
+ WARN_ONCE(!refcount_inc_not_zero(r), "refcount_t: increment on 0; use-after-free.\n");
+ }
+-EXPORT_SYMBOL_GPL(refcount_inc);
++EXPORT_SYMBOL(refcount_inc);
+
+ bool refcount_sub_and_test(unsigned int i, refcount_t *r)
+ {
+@@ -138,7 +138,7 @@ bool refcount_sub_and_test(unsigned int i, refcount_t *r)
+
+ return !new;
+ }
+-EXPORT_SYMBOL_GPL(refcount_sub_and_test);
++EXPORT_SYMBOL(refcount_sub_and_test);
+
+ /*
+ * Similar to atomic_dec_and_test(), it will WARN on underflow and fail to
+@@ -152,7 +152,7 @@ bool refcount_dec_and_test(refcount_t *r)
+ {
+ return refcount_sub_and_test(1, r);
+ }
+-EXPORT_SYMBOL_GPL(refcount_dec_and_test);
++EXPORT_SYMBOL(refcount_dec_and_test);
+
+ /*
+ * Similar to atomic_dec(), it will WARN on underflow and fail to decrement
+@@ -166,7 +166,7 @@ void refcount_dec(refcount_t *r)
+ {
+ WARN_ONCE(refcount_dec_and_test(r), "refcount_t: decrement hit 0; leaking memory.\n");
+ }
+-EXPORT_SYMBOL_GPL(refcount_dec);
++EXPORT_SYMBOL(refcount_dec);
+
+ /*
+ * No atomic_t counterpart, it attempts a 1 -> 0 transition and returns the
+@@ -183,7 +183,7 @@ bool refcount_dec_if_one(refcount_t *r)
+ {
+ return atomic_cmpxchg_release(&r->refs, 1, 0) == 1;
+ }
+-EXPORT_SYMBOL_GPL(refcount_dec_if_one);
++EXPORT_SYMBOL(refcount_dec_if_one);
+
+ /*
+ * No atomic_t counterpart, it decrements unless the value is 1, in which case
+@@ -217,7 +217,7 @@ bool refcount_dec_not_one(refcount_t *r)
+
+ return true;
+ }
+-EXPORT_SYMBOL_GPL(refcount_dec_not_one);
++EXPORT_SYMBOL(refcount_dec_not_one);
+
+ /*
+ * Similar to atomic_dec_and_mutex_lock(), it will WARN on underflow and fail
+@@ -240,7 +240,7 @@ bool refcount_dec_and_mutex_lock(refcount_t *r, struct mutex *lock)
+
+ return true;
+ }
+-EXPORT_SYMBOL_GPL(refcount_dec_and_mutex_lock);
++EXPORT_SYMBOL(refcount_dec_and_mutex_lock);
+
+ /*
+ * Similar to atomic_dec_and_lock(), it will WARN on underflow and fail to
+@@ -263,5 +263,5 @@ bool refcount_dec_and_lock(refcount_t *r, spinlock_t *lock)
+
+ return true;
+ }
+-EXPORT_SYMBOL_GPL(refcount_dec_and_lock);
++EXPORT_SYMBOL(refcount_dec_and_lock);
+
+diff --git a/lib/test_bpf.c b/lib/test_bpf.c
+index 0362da0b66c3..2e385026915c 100644
+--- a/lib/test_bpf.c
++++ b/lib/test_bpf.c
+@@ -4656,6 +4656,51 @@ static struct bpf_test tests[] = {
+ { },
+ { { 0, 1 } },
+ },
++ {
++ /* Mainly testing JIT + imm64 here. */
++ "JMP_JGE_X: ldimm64 test 1",
++ .u.insns_int = {
++ BPF_ALU32_IMM(BPF_MOV, R0, 0),
++ BPF_LD_IMM64(R1, 3),
++ BPF_LD_IMM64(R2, 2),
++ BPF_JMP_REG(BPF_JGE, R1, R2, 2),
++ BPF_LD_IMM64(R0, 0xffffffffffffffffUL),
++ BPF_LD_IMM64(R0, 0xeeeeeeeeeeeeeeeeUL),
++ BPF_EXIT_INSN(),
++ },
++ INTERNAL,
++ { },
++ { { 0, 0xeeeeeeeeU } },
++ },
++ {
++ "JMP_JGE_X: ldimm64 test 2",
++ .u.insns_int = {
++ BPF_ALU32_IMM(BPF_MOV, R0, 0),
++ BPF_LD_IMM64(R1, 3),
++ BPF_LD_IMM64(R2, 2),
++ BPF_JMP_REG(BPF_JGE, R1, R2, 0),
++ BPF_LD_IMM64(R0, 0xffffffffffffffffUL),
++ BPF_EXIT_INSN(),
++ },
++ INTERNAL,
++ { },
++ { { 0, 0xffffffffU } },
++ },
++ {
++ "JMP_JGE_X: ldimm64 test 3",
++ .u.insns_int = {
++ BPF_ALU32_IMM(BPF_MOV, R0, 1),
++ BPF_LD_IMM64(R1, 3),
++ BPF_LD_IMM64(R2, 2),
++ BPF_JMP_REG(BPF_JGE, R1, R2, 4),
++ BPF_LD_IMM64(R0, 0xffffffffffffffffUL),
++ BPF_LD_IMM64(R0, 0xeeeeeeeeeeeeeeeeUL),
++ BPF_EXIT_INSN(),
++ },
++ INTERNAL,
++ { },
++ { { 0, 1 } },
++ },
+ /* BPF_JMP | BPF_JNE | BPF_X */
+ {
+ "JMP_JNE_X: if (3 != 2) return 1",
+diff --git a/net/core/rtnetlink.c b/net/core/rtnetlink.c
+index c4e84c558240..69daf393cbe1 100644
+--- a/net/core/rtnetlink.c
++++ b/net/core/rtnetlink.c
+@@ -1056,7 +1056,7 @@ static int rtnl_phys_port_name_fill(struct sk_buff *skb, struct net_device *dev)
+ return err;
+ }
+
+- if (nla_put(skb, IFLA_PHYS_PORT_NAME, strlen(name), name))
++ if (nla_put_string(skb, IFLA_PHYS_PORT_NAME, name))
+ return -EMSGSIZE;
+
+ return 0;
+diff --git a/net/core/secure_seq.c b/net/core/secure_seq.c
+index d28da7d363f1..ae35cce3a40d 100644
+--- a/net/core/secure_seq.c
++++ b/net/core/secure_seq.c
+@@ -24,9 +24,13 @@ static siphash_key_t ts_secret __read_mostly;
+
+ static __always_inline void net_secret_init(void)
+ {
+- net_get_random_once(&ts_secret, sizeof(ts_secret));
+ net_get_random_once(&net_secret, sizeof(net_secret));
+ }
++
++static __always_inline void ts_secret_init(void)
++{
++ net_get_random_once(&ts_secret, sizeof(ts_secret));
++}
+ #endif
+
+ #ifdef CONFIG_INET
+@@ -47,7 +51,7 @@ static u32 seq_scale(u32 seq)
+ #endif
+
+ #if IS_ENABLED(CONFIG_IPV6)
+-static u32 secure_tcpv6_ts_off(const __be32 *saddr, const __be32 *daddr)
++u32 secure_tcpv6_ts_off(const __be32 *saddr, const __be32 *daddr)
+ {
+ const struct {
+ struct in6_addr saddr;
+@@ -60,12 +64,14 @@ static u32 secure_tcpv6_ts_off(const __be32 *saddr, const __be32 *daddr)
+ if (sysctl_tcp_timestamps != 1)
+ return 0;
+
++ ts_secret_init();
+ return siphash(&combined, offsetofend(typeof(combined), daddr),
+ &ts_secret);
+ }
++EXPORT_SYMBOL(secure_tcpv6_ts_off);
+
+-u32 secure_tcpv6_sequence_number(const __be32 *saddr, const __be32 *daddr,
+- __be16 sport, __be16 dport, u32 *tsoff)
++u32 secure_tcpv6_seq(const __be32 *saddr, const __be32 *daddr,
++ __be16 sport, __be16 dport)
+ {
+ const struct {
+ struct in6_addr saddr;
+@@ -78,14 +84,14 @@ u32 secure_tcpv6_sequence_number(const __be32 *saddr, const __be32 *daddr,
+ .sport = sport,
+ .dport = dport
+ };
+- u64 hash;
++ u32 hash;
++
+ net_secret_init();
+ hash = siphash(&combined, offsetofend(typeof(combined), dport),
+ &net_secret);
+- *tsoff = secure_tcpv6_ts_off(saddr, daddr);
+ return seq_scale(hash);
+ }
+-EXPORT_SYMBOL(secure_tcpv6_sequence_number);
++EXPORT_SYMBOL(secure_tcpv6_seq);
+
+ u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr,
+ __be16 dport)
+@@ -107,30 +113,30 @@ EXPORT_SYMBOL(secure_ipv6_port_ephemeral);
+ #endif
+
+ #ifdef CONFIG_INET
+-static u32 secure_tcp_ts_off(__be32 saddr, __be32 daddr)
++u32 secure_tcp_ts_off(__be32 saddr, __be32 daddr)
+ {
+ if (sysctl_tcp_timestamps != 1)
+ return 0;
+
++ ts_secret_init();
+ return siphash_2u32((__force u32)saddr, (__force u32)daddr,
+ &ts_secret);
+ }
+
+-/* secure_tcp_sequence_number(a, b, 0, d) == secure_ipv4_port_ephemeral(a, b, d),
++/* secure_tcp_seq_and_tsoff(a, b, 0, d) == secure_ipv4_port_ephemeral(a, b, d),
+ * but fortunately, `sport' cannot be 0 in any circumstances. If this changes,
+ * it would be easy enough to have the former function use siphash_4u32, passing
+ * the arguments as separate u32.
+ */
+-
+-u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr,
+- __be16 sport, __be16 dport, u32 *tsoff)
++u32 secure_tcp_seq(__be32 saddr, __be32 daddr,
++ __be16 sport, __be16 dport)
+ {
+- u64 hash;
++ u32 hash;
++
+ net_secret_init();
+ hash = siphash_3u32((__force u32)saddr, (__force u32)daddr,
+ (__force u32)sport << 16 | (__force u32)dport,
+ &net_secret);
+- *tsoff = secure_tcp_ts_off(saddr, daddr);
+ return seq_scale(hash);
+ }
+
+diff --git a/net/ipv4/raw.c b/net/ipv4/raw.c
+index 9d943974de2b..bdffad875691 100644
+--- a/net/ipv4/raw.c
++++ b/net/ipv4/raw.c
+@@ -358,6 +358,9 @@ static int raw_send_hdrinc(struct sock *sk, struct flowi4 *fl4,
+ rt->dst.dev->mtu);
+ return -EMSGSIZE;
+ }
++ if (length < sizeof(struct iphdr))
++ return -EINVAL;
++
+ if (flags&MSG_PROBE)
+ goto out;
+
+diff --git a/net/ipv4/syncookies.c b/net/ipv4/syncookies.c
+index 496b97e17aaf..0257d965f111 100644
+--- a/net/ipv4/syncookies.c
++++ b/net/ipv4/syncookies.c
+@@ -16,6 +16,7 @@
+ #include <linux/siphash.h>
+ #include <linux/kernel.h>
+ #include <linux/export.h>
++#include <net/secure_seq.h>
+ #include <net/tcp.h>
+ #include <net/route.h>
+
+@@ -203,7 +204,7 @@ EXPORT_SYMBOL_GPL(__cookie_v4_check);
+
+ struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
+ struct request_sock *req,
+- struct dst_entry *dst)
++ struct dst_entry *dst, u32 tsoff)
+ {
+ struct inet_connection_sock *icsk = inet_csk(sk);
+ struct sock *child;
+@@ -213,6 +214,7 @@ struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
+ NULL, &own_req);
+ if (child) {
+ atomic_set(&req->rsk_refcnt, 1);
++ tcp_sk(child)->tsoffset = tsoff;
+ sock_rps_save_rxhash(child, skb);
+ inet_csk_reqsk_queue_add(sk, req, child);
+ } else {
+@@ -292,6 +294,7 @@ struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb)
+ struct rtable *rt;
+ __u8 rcv_wscale;
+ struct flowi4 fl4;
++ u32 tsoff = 0;
+
+ if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies || !th->ack || th->rst)
+ goto out;
+@@ -311,6 +314,11 @@ struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb)
+ memset(&tcp_opt, 0, sizeof(tcp_opt));
+ tcp_parse_options(skb, &tcp_opt, 0, NULL);
+
++ if (tcp_opt.saw_tstamp && tcp_opt.rcv_tsecr) {
++ tsoff = secure_tcp_ts_off(ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
++ tcp_opt.rcv_tsecr -= tsoff;
++ }
++
+ if (!cookie_timestamp_decode(&tcp_opt))
+ goto out;
+
+@@ -381,7 +389,7 @@ struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb)
+ ireq->rcv_wscale = rcv_wscale;
+ ireq->ecn_ok = cookie_ecn_ok(&tcp_opt, sock_net(sk), &rt->dst);
+
+- ret = tcp_get_cookie_sock(sk, skb, req, &rt->dst);
++ ret = tcp_get_cookie_sock(sk, skb, req, &rt->dst, tsoff);
+ /* ip_queue_xmit() depends on our flow being setup
+ * Normal sockets get it right from inet_csk_route_child_sock()
+ */
+diff --git a/net/ipv4/tcp.c b/net/ipv4/tcp.c
+index 40ba4249a586..2dc7fcf60bf3 100644
+--- a/net/ipv4/tcp.c
++++ b/net/ipv4/tcp.c
+@@ -533,7 +533,7 @@ unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
+
+ if (tp->urg_data & TCP_URG_VALID)
+ mask |= POLLPRI;
+- } else if (sk->sk_state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
++ } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
+ /* Active TCP fastopen socket with defer_connect
+ * Return POLLOUT so application can call write()
+ * in order for kernel to generate SYN+data
+diff --git a/net/ipv4/tcp_input.c b/net/ipv4/tcp_input.c
+index 659d1baefb2b..3c6c8787b42e 100644
+--- a/net/ipv4/tcp_input.c
++++ b/net/ipv4/tcp_input.c
+@@ -85,7 +85,6 @@ int sysctl_tcp_dsack __read_mostly = 1;
+ int sysctl_tcp_app_win __read_mostly = 31;
+ int sysctl_tcp_adv_win_scale __read_mostly = 1;
+ EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
+-EXPORT_SYMBOL(sysctl_tcp_timestamps);
+
+ /* rfc5961 challenge ack rate limiting */
+ int sysctl_tcp_challenge_ack_limit = 1000;
+@@ -6332,8 +6331,8 @@ int tcp_conn_request(struct request_sock_ops *rsk_ops,
+ if (security_inet_conn_request(sk, skb, req))
+ goto drop_and_free;
+
+- if (isn && tmp_opt.tstamp_ok)
+- af_ops->init_seq(skb, &tcp_rsk(req)->ts_off);
++ if (tmp_opt.tstamp_ok)
++ tcp_rsk(req)->ts_off = af_ops->init_ts_off(skb);
+
+ if (!want_cookie && !isn) {
+ /* VJ's idea. We save last timestamp seen
+@@ -6375,7 +6374,7 @@ int tcp_conn_request(struct request_sock_ops *rsk_ops,
+ goto drop_and_release;
+ }
+
+- isn = af_ops->init_seq(skb, &tcp_rsk(req)->ts_off);
++ isn = af_ops->init_seq(skb);
+ }
+ if (!dst) {
+ dst = af_ops->route_req(sk, &fl, req, NULL);
+@@ -6387,7 +6386,6 @@ int tcp_conn_request(struct request_sock_ops *rsk_ops,
+
+ if (want_cookie) {
+ isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
+- tcp_rsk(req)->ts_off = 0;
+ req->cookie_ts = tmp_opt.tstamp_ok;
+ if (!tmp_opt.tstamp_ok)
+ inet_rsk(req)->ecn_ok = 0;
+diff --git a/net/ipv4/tcp_ipv4.c b/net/ipv4/tcp_ipv4.c
+index 575e19dcc017..1a5fa95c981f 100644
+--- a/net/ipv4/tcp_ipv4.c
++++ b/net/ipv4/tcp_ipv4.c
+@@ -94,12 +94,18 @@ static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
+ struct inet_hashinfo tcp_hashinfo;
+ EXPORT_SYMBOL(tcp_hashinfo);
+
+-static u32 tcp_v4_init_sequence(const struct sk_buff *skb, u32 *tsoff)
++static u32 tcp_v4_init_seq(const struct sk_buff *skb)
+ {
+- return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
+- ip_hdr(skb)->saddr,
+- tcp_hdr(skb)->dest,
+- tcp_hdr(skb)->source, tsoff);
++ return secure_tcp_seq(ip_hdr(skb)->daddr,
++ ip_hdr(skb)->saddr,
++ tcp_hdr(skb)->dest,
++ tcp_hdr(skb)->source);
++}
++
++static u32 tcp_v4_init_ts_off(const struct sk_buff *skb)
++{
++ return secure_tcp_ts_off(ip_hdr(skb)->daddr,
++ ip_hdr(skb)->saddr);
+ }
+
+ int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
+@@ -145,7 +151,6 @@ int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
+ struct flowi4 *fl4;
+ struct rtable *rt;
+ int err;
+- u32 seq;
+ struct ip_options_rcu *inet_opt;
+ struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
+
+@@ -236,13 +241,13 @@ int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
+ rt = NULL;
+
+ if (likely(!tp->repair)) {
+- seq = secure_tcp_sequence_number(inet->inet_saddr,
+- inet->inet_daddr,
+- inet->inet_sport,
+- usin->sin_port,
+- &tp->tsoffset);
+ if (!tp->write_seq)
+- tp->write_seq = seq;
++ tp->write_seq = secure_tcp_seq(inet->inet_saddr,
++ inet->inet_daddr,
++ inet->inet_sport,
++ usin->sin_port);
++ tp->tsoffset = secure_tcp_ts_off(inet->inet_saddr,
++ inet->inet_daddr);
+ }
+
+ inet->inet_id = tp->write_seq ^ jiffies;
+@@ -1253,7 +1258,8 @@ static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
+ .cookie_init_seq = cookie_v4_init_sequence,
+ #endif
+ .route_req = tcp_v4_route_req,
+- .init_seq = tcp_v4_init_sequence,
++ .init_seq = tcp_v4_init_seq,
++ .init_ts_off = tcp_v4_init_ts_off,
+ .send_synack = tcp_v4_send_synack,
+ };
+
+diff --git a/net/ipv4/tcp_lp.c b/net/ipv4/tcp_lp.c
+index 046fd3910873..d6fb6c067af4 100644
+--- a/net/ipv4/tcp_lp.c
++++ b/net/ipv4/tcp_lp.c
+@@ -264,13 +264,15 @@ static void tcp_lp_pkts_acked(struct sock *sk, const struct ack_sample *sample)
+ {
+ struct tcp_sock *tp = tcp_sk(sk);
+ struct lp *lp = inet_csk_ca(sk);
++ u32 delta;
+
+ if (sample->rtt_us > 0)
+ tcp_lp_rtt_sample(sk, sample->rtt_us);
+
+ /* calc inference */
+- if (tcp_time_stamp > tp->rx_opt.rcv_tsecr)
+- lp->inference = 3 * (tcp_time_stamp - tp->rx_opt.rcv_tsecr);
++ delta = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
++ if ((s32)delta > 0)
++ lp->inference = 3 * delta;
+
+ /* test if within inference */
+ if (lp->last_drop && (tcp_time_stamp - lp->last_drop < lp->inference))
+diff --git a/net/ipv4/tcp_minisocks.c b/net/ipv4/tcp_minisocks.c
+index 65c0f3d13eca..c1259ccc422f 100644
+--- a/net/ipv4/tcp_minisocks.c
++++ b/net/ipv4/tcp_minisocks.c
+@@ -536,6 +536,7 @@ struct sock *tcp_create_openreq_child(const struct sock *sk,
+ newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
+ newtp->rx_opt.mss_clamp = req->mss;
+ tcp_ecn_openreq_child(newtp, req);
++ newtp->fastopen_req = NULL;
+ newtp->fastopen_rsk = NULL;
+ newtp->syn_data_acked = 0;
+ newtp->rack.mstamp.v64 = 0;
+diff --git a/net/ipv6/addrconf.c b/net/ipv6/addrconf.c
+index 0ea96c4d334d..311f45641673 100644
+--- a/net/ipv6/addrconf.c
++++ b/net/ipv6/addrconf.c
+@@ -3296,7 +3296,8 @@ static int fixup_permanent_addr(struct inet6_dev *idev,
+ idev->dev, 0, 0);
+ }
+
+- addrconf_dad_start(ifp);
++ if (ifp->state == INET6_IFADDR_STATE_PREDAD)
++ addrconf_dad_start(ifp);
+
+ return 0;
+ }
+@@ -3515,6 +3516,7 @@ static int addrconf_notify(struct notifier_block *this, unsigned long event,
+ */
+ static struct notifier_block ipv6_dev_notf = {
+ .notifier_call = addrconf_notify,
++ .priority = ADDRCONF_NOTIFY_PRIORITY,
+ };
+
+ static void addrconf_type_change(struct net_device *dev, unsigned long event)
+@@ -3651,7 +3653,7 @@ static int addrconf_ifdown(struct net_device *dev, int how)
+ if (keep) {
+ /* set state to skip the notifier below */
+ state = INET6_IFADDR_STATE_DEAD;
+- ifa->state = 0;
++ ifa->state = INET6_IFADDR_STATE_PREDAD;
+ if (!(ifa->flags & IFA_F_NODAD))
+ ifa->flags |= IFA_F_TENTATIVE;
+
+@@ -6408,6 +6410,8 @@ int __init addrconf_init(void)
+ goto errlo;
+ }
+
++ ip6_route_init_special_entries();
++
+ for (i = 0; i < IN6_ADDR_HSIZE; i++)
+ INIT_HLIST_HEAD(&inet6_addr_lst[i]);
+
+diff --git a/net/ipv6/raw.c b/net/ipv6/raw.c
+index 0da6a12b5472..1f992d9e261d 100644
+--- a/net/ipv6/raw.c
++++ b/net/ipv6/raw.c
+@@ -632,6 +632,8 @@ static int rawv6_send_hdrinc(struct sock *sk, struct msghdr *msg, int length,
+ ipv6_local_error(sk, EMSGSIZE, fl6, rt->dst.dev->mtu);
+ return -EMSGSIZE;
+ }
++ if (length < sizeof(struct ipv6hdr))
++ return -EINVAL;
+ if (flags&MSG_PROBE)
+ goto out;
+
+diff --git a/net/ipv6/route.c b/net/ipv6/route.c
+index fb174b590fd3..d316d00e11ab 100644
+--- a/net/ipv6/route.c
++++ b/net/ipv6/route.c
+@@ -3704,7 +3704,10 @@ static int ip6_route_dev_notify(struct notifier_block *this,
+ struct net_device *dev = netdev_notifier_info_to_dev(ptr);
+ struct net *net = dev_net(dev);
+
+- if (event == NETDEV_REGISTER && (dev->flags & IFF_LOOPBACK)) {
++ if (!(dev->flags & IFF_LOOPBACK))
++ return NOTIFY_OK;
++
++ if (event == NETDEV_REGISTER) {
+ net->ipv6.ip6_null_entry->dst.dev = dev;
+ net->ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(dev);
+ #ifdef CONFIG_IPV6_MULTIPLE_TABLES
+@@ -3713,6 +3716,12 @@ static int ip6_route_dev_notify(struct notifier_block *this,
+ net->ipv6.ip6_blk_hole_entry->dst.dev = dev;
+ net->ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(dev);
+ #endif
++ } else if (event == NETDEV_UNREGISTER) {
++ in6_dev_put(net->ipv6.ip6_null_entry->rt6i_idev);
++#ifdef CONFIG_IPV6_MULTIPLE_TABLES
++ in6_dev_put(net->ipv6.ip6_prohibit_entry->rt6i_idev);
++ in6_dev_put(net->ipv6.ip6_blk_hole_entry->rt6i_idev);
++#endif
+ }
+
+ return NOTIFY_OK;
+@@ -4019,9 +4028,24 @@ static struct pernet_operations ip6_route_net_late_ops = {
+
+ static struct notifier_block ip6_route_dev_notifier = {
+ .notifier_call = ip6_route_dev_notify,
+- .priority = 0,
++ .priority = ADDRCONF_NOTIFY_PRIORITY - 10,
+ };
+
++void __init ip6_route_init_special_entries(void)
++{
++ /* Registering of the loopback is done before this portion of code,
++ * the loopback reference in rt6_info will not be taken, do it
++ * manually for init_net */
++ init_net.ipv6.ip6_null_entry->dst.dev = init_net.loopback_dev;
++ init_net.ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
++ #ifdef CONFIG_IPV6_MULTIPLE_TABLES
++ init_net.ipv6.ip6_prohibit_entry->dst.dev = init_net.loopback_dev;
++ init_net.ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
++ init_net.ipv6.ip6_blk_hole_entry->dst.dev = init_net.loopback_dev;
++ init_net.ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
++ #endif
++}
++
+ int __init ip6_route_init(void)
+ {
+ int ret;
+@@ -4048,17 +4072,6 @@ int __init ip6_route_init(void)
+
+ ip6_dst_blackhole_ops.kmem_cachep = ip6_dst_ops_template.kmem_cachep;
+
+- /* Registering of the loopback is done before this portion of code,
+- * the loopback reference in rt6_info will not be taken, do it
+- * manually for init_net */
+- init_net.ipv6.ip6_null_entry->dst.dev = init_net.loopback_dev;
+- init_net.ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
+- #ifdef CONFIG_IPV6_MULTIPLE_TABLES
+- init_net.ipv6.ip6_prohibit_entry->dst.dev = init_net.loopback_dev;
+- init_net.ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
+- init_net.ipv6.ip6_blk_hole_entry->dst.dev = init_net.loopback_dev;
+- init_net.ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
+- #endif
+ ret = fib6_init();
+ if (ret)
+ goto out_register_subsys;
+diff --git a/net/ipv6/syncookies.c b/net/ipv6/syncookies.c
+index 895ff650db43..5abc3692b901 100644
+--- a/net/ipv6/syncookies.c
++++ b/net/ipv6/syncookies.c
+@@ -18,6 +18,7 @@
+ #include <linux/random.h>
+ #include <linux/siphash.h>
+ #include <linux/kernel.h>
++#include <net/secure_seq.h>
+ #include <net/ipv6.h>
+ #include <net/tcp.h>
+
+@@ -143,6 +144,7 @@ struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb)
+ int mss;
+ struct dst_entry *dst;
+ __u8 rcv_wscale;
++ u32 tsoff = 0;
+
+ if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies || !th->ack || th->rst)
+ goto out;
+@@ -162,6 +164,12 @@ struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb)
+ memset(&tcp_opt, 0, sizeof(tcp_opt));
+ tcp_parse_options(skb, &tcp_opt, 0, NULL);
+
++ if (tcp_opt.saw_tstamp && tcp_opt.rcv_tsecr) {
++ tsoff = secure_tcpv6_ts_off(ipv6_hdr(skb)->daddr.s6_addr32,
++ ipv6_hdr(skb)->saddr.s6_addr32);
++ tcp_opt.rcv_tsecr -= tsoff;
++ }
++
+ if (!cookie_timestamp_decode(&tcp_opt))
+ goto out;
+
+@@ -242,7 +250,7 @@ struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb)
+ ireq->rcv_wscale = rcv_wscale;
+ ireq->ecn_ok = cookie_ecn_ok(&tcp_opt, sock_net(sk), dst);
+
+- ret = tcp_get_cookie_sock(sk, skb, req, dst);
++ ret = tcp_get_cookie_sock(sk, skb, req, dst, tsoff);
+ out:
+ return ret;
+ out_free:
+diff --git a/net/ipv6/tcp_ipv6.c b/net/ipv6/tcp_ipv6.c
+index 49fa2e8c3fa9..4c4afdca41ff 100644
+--- a/net/ipv6/tcp_ipv6.c
++++ b/net/ipv6/tcp_ipv6.c
+@@ -101,12 +101,18 @@ static void inet6_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
+ }
+ }
+
+-static u32 tcp_v6_init_sequence(const struct sk_buff *skb, u32 *tsoff)
++static u32 tcp_v6_init_seq(const struct sk_buff *skb)
+ {
+- return secure_tcpv6_sequence_number(ipv6_hdr(skb)->daddr.s6_addr32,
+- ipv6_hdr(skb)->saddr.s6_addr32,
+- tcp_hdr(skb)->dest,
+- tcp_hdr(skb)->source, tsoff);
++ return secure_tcpv6_seq(ipv6_hdr(skb)->daddr.s6_addr32,
++ ipv6_hdr(skb)->saddr.s6_addr32,
++ tcp_hdr(skb)->dest,
++ tcp_hdr(skb)->source);
++}
++
++static u32 tcp_v6_init_ts_off(const struct sk_buff *skb)
++{
++ return secure_tcpv6_ts_off(ipv6_hdr(skb)->daddr.s6_addr32,
++ ipv6_hdr(skb)->saddr.s6_addr32);
+ }
+
+ static int tcp_v6_connect(struct sock *sk, struct sockaddr *uaddr,
+@@ -122,7 +128,6 @@ static int tcp_v6_connect(struct sock *sk, struct sockaddr *uaddr,
+ struct flowi6 fl6;
+ struct dst_entry *dst;
+ int addr_type;
+- u32 seq;
+ int err;
+ struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
+
+@@ -287,13 +292,13 @@ static int tcp_v6_connect(struct sock *sk, struct sockaddr *uaddr,
+ sk_set_txhash(sk);
+
+ if (likely(!tp->repair)) {
+- seq = secure_tcpv6_sequence_number(np->saddr.s6_addr32,
+- sk->sk_v6_daddr.s6_addr32,
+- inet->inet_sport,
+- inet->inet_dport,
+- &tp->tsoffset);
+ if (!tp->write_seq)
+- tp->write_seq = seq;
++ tp->write_seq = secure_tcpv6_seq(np->saddr.s6_addr32,
++ sk->sk_v6_daddr.s6_addr32,
++ inet->inet_sport,
++ inet->inet_dport);
++ tp->tsoffset = secure_tcpv6_ts_off(np->saddr.s6_addr32,
++ sk->sk_v6_daddr.s6_addr32);
+ }
+
+ if (tcp_fastopen_defer_connect(sk, &err))
+@@ -757,7 +762,8 @@ static const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops = {
+ .cookie_init_seq = cookie_v6_init_sequence,
+ #endif
+ .route_req = tcp_v6_route_req,
+- .init_seq = tcp_v6_init_sequence,
++ .init_seq = tcp_v6_init_seq,
++ .init_ts_off = tcp_v6_init_ts_off,
+ .send_synack = tcp_v6_send_synack,
+ };
+
+diff --git a/tools/testing/selftests/bpf/test_verifier.c b/tools/testing/selftests/bpf/test_verifier.c
+index c848e90b6421..8b433bf3fdd7 100644
+--- a/tools/testing/selftests/bpf/test_verifier.c
++++ b/tools/testing/selftests/bpf/test_verifier.c
+@@ -1809,16 +1809,22 @@ static struct bpf_test tests[] = {
+ .result = ACCEPT,
+ },
+ {
+- "unpriv: obfuscate stack pointer",
++ "stack pointer arithmetic",
+ .insns = {
+- BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
+- BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
+- BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
++ BPF_MOV64_IMM(BPF_REG_1, 4),
++ BPF_JMP_IMM(BPF_JA, 0, 0, 0),
++ BPF_MOV64_REG(BPF_REG_7, BPF_REG_10),
++ BPF_ALU64_IMM(BPF_ADD, BPF_REG_7, -10),
++ BPF_ALU64_IMM(BPF_ADD, BPF_REG_7, -10),
++ BPF_MOV64_REG(BPF_REG_2, BPF_REG_7),
++ BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1),
++ BPF_ST_MEM(0, BPF_REG_2, 4, 0),
++ BPF_MOV64_REG(BPF_REG_2, BPF_REG_7),
++ BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 8),
++ BPF_ST_MEM(0, BPF_REG_2, 4, 0),
+ BPF_MOV64_IMM(BPF_REG_0, 0),
+ BPF_EXIT_INSN(),
+ },
+- .errstr_unpriv = "R2 pointer arithmetic",
+- .result_unpriv = REJECT,
+ .result = ACCEPT,
+ },
+ {
^ permalink raw reply related [flat|nested] 5+ messages in thread
* [gentoo-commits] proj/linux-patches:4.11 commit in: /
@ 2017-05-14 23:13 Mike Pagano
0 siblings, 0 replies; 5+ messages in thread
From: Mike Pagano @ 2017-05-14 23:13 UTC (permalink / raw
To: gentoo-commits
commit: 1f1360d605543d4bc5fb55a5e4f0da738c480bb3
Author: Mike Pagano <mpagano <AT> gentoo <DOT> org>
AuthorDate: Sun May 14 23:13:32 2017 +0000
Commit: Mike Pagano <mpagano <AT> gentoo <DOT> org>
CommitDate: Sun May 14 23:13:32 2017 +0000
URL: https://gitweb.gentoo.org/proj/linux-patches.git/commit/?id=1f1360d6
Cleanup BFQ patchset
...lkck-bfq-turn-BFQ-v7r11-for-4.11.0-into-BFQ-v8r11-for-4.patch1 | 8 +++-----
1 file changed, 3 insertions(+), 5 deletions(-)
diff --git a/5004_blkck-bfq-turn-BFQ-v7r11-for-4.11.0-into-BFQ-v8r11-for-4.patch1 b/5004_blkck-bfq-turn-BFQ-v7r11-for-4.11.0-into-BFQ-v8r11-for-4.patch1
index 01826dc..0499343 100644
--- a/5004_blkck-bfq-turn-BFQ-v7r11-for-4.11.0-into-BFQ-v8r11-for-4.patch1
+++ b/5004_blkck-bfq-turn-BFQ-v7r11-for-4.11.0-into-BFQ-v8r11-for-4.patch1
@@ -565,14 +565,12 @@ index 0000000..13b5248
+ Slightly extended version:
+ http://algogroup.unimore.it/people/paolo/disk_sched/bfq-v1-suite-
+ results.pdf
-diff --git a/Makefile b/Makefile
-index 4b074a9..4afff93 100644
---- a/Makefile
-+++ b/Makefile
+--- a/Makefile 2017-05-14 19:00:52.624222620 -0400
++++ b/Makefile 2017-05-14 19:01:06.788239004 -0400
@@ -1,7 +1,7 @@
VERSION = 4
PATCHLEVEL = 11
- SUBLEVEL = 0
+ SUBLEVEL = 1
-EXTRAVERSION =
+EXTRAVERSION = -bfq
NAME = Fearless Coyote
^ permalink raw reply related [flat|nested] 5+ messages in thread
end of thread, other threads:[~2017-05-14 23:13 UTC | newest]
Thread overview: 5+ messages (download: mbox.gz follow: Atom feed
-- links below jump to the message on this page --
2017-05-14 13:29 [gentoo-commits] proj/linux-patches:4.11 commit in: / Mike Pagano
-- strict thread matches above, loose matches on Subject: below --
2017-05-14 23:13 Mike Pagano
2017-05-01 23:09 Mike Pagano
2017-03-23 17:12 Mike Pagano
2017-03-08 19:29 Mike Pagano
This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox