public inbox for gentoo-commits@lists.gentoo.org
 help / color / mirror / Atom feed
* [gentoo-commits] proj/linux-patches:4.11 commit in: /
@ 2017-03-08 19:29 Mike Pagano
  0 siblings, 0 replies; 5+ messages in thread
From: Mike Pagano @ 2017-03-08 19:29 UTC (permalink / raw
  To: gentoo-commits

commit:     296ce1499f60054d8e2bc7aa4a0b5fb897fc28a3
Author:     Mike Pagano <mpagano <AT> gentoo <DOT> org>
AuthorDate: Wed Mar  8 19:29:21 2017 +0000
Commit:     Mike Pagano <mpagano <AT> gentoo <DOT> org>
CommitDate: Wed Mar  8 19:29:21 2017 +0000
URL:        https://gitweb.gentoo.org/proj/linux-patches.git/commit/?id=296ce149

Gentoo Linux support config settings and defaults. Patch to add support for namespace user.pax.* on tmpfs. Patch to enable link security restrictions by default. Patch to ensure that /dev/root doesn't appear in /proc/mounts when booting without an initramfs. Patch to enable control of the unaligned access control policy from sysctl. Workaround to enable poweroff on Mac Pro 11. See bug #601964. Kernel patch enables gcc >= v4.9 optimizations for additional CPUs. fbcondecor bootsplash patch.

 0000_README                                        |   28 +
 1500_XATTR_USER_PREFIX.patch                       |   69 +
 ...ble-link-security-restrictions-by-default.patch |   22 +
 2300_enable-poweroff-on-Mac-Pro-11.patch           |   76 +
 2900_dev-root-proc-mount-fix.patch                 |   38 +
 4200_fbcondecor.patch                              | 2095 ++++++++++++++++++++
 4400_alpha-sysctl-uac.patch                        |  142 ++
 ...able-additional-cpu-optimizations-for-gcc.patch |  426 ++++
 8 files changed, 2896 insertions(+)

diff --git a/0000_README b/0000_README
index 9018993..58e3c74 100644
--- a/0000_README
+++ b/0000_README
@@ -43,6 +43,34 @@ EXPERIMENTAL
 Individual Patch Descriptions:
 --------------------------------------------------------------------------
 
+Patch:  1500_XATTR_USER_PREFIX.patch
+From:   https://bugs.gentoo.org/show_bug.cgi?id=470644
+Desc:   Support for namespace user.pax.* on tmpfs.
+
+Patch:  1510_fs-enable-link-security-restrictions-by-default.patch
+From:   http://sources.debian.net/src/linux/3.16.7-ckt4-3/debian/patches/debian/fs-enable-link-security-restrictions-by-default.patch/
+Desc:   Enable link security restrictions by default.
+
+Patch:  2300_enable-poweroff-on-Mac-Pro-11.patch
+From:   http://kernel.ubuntu.com/git/ubuntu/ubuntu-xenial.git/patch/drivers/pci/quirks.c?id=5080ff61a438f3dd80b88b423e1a20791d8a774c
+Desc:   Workaround to enable poweroff on Mac Pro 11. See bug #601964.
+
+Patch:  2900_dev-root-proc-mount-fix.patch
+From:   https://bugs.gentoo.org/show_bug.cgi?id=438380
+Desc:   Ensure that /dev/root doesn't appear in /proc/mounts when bootint without an initramfs.
+
+Patch:  4200_fbcondecor.patch
+From:   http://www.mepiscommunity.org/fbcondecor
+Desc:   Bootsplash ported by Uladzimir Bely. (Bug #596126)
+
+Patch:  4400_alpha-sysctl-uac.patch
+From:   Tobias Klausmann (klausman@gentoo.org) and http://bugs.gentoo.org/show_bug.cgi?id=217323 
+Desc:   Enable control of the unaligned access control policy from sysctl
+
 Patch:  4567_distro-Gentoo-Kconfig.patch
 From:   Tom Wijsman <TomWij@gentoo.org>
 Desc:   Add Gentoo Linux support config settings and defaults.
+
+Patch:  5010_enable-additional-cpu-optimizations-for-gcc.patch
+From:   https://github.com/graysky2/kernel_gcc_patch/
+Desc:   Kernel patch enables gcc >= v4.9 optimizations for additional CPUs.

diff --git a/1500_XATTR_USER_PREFIX.patch b/1500_XATTR_USER_PREFIX.patch
new file mode 100644
index 0000000..bacd032
--- /dev/null
+++ b/1500_XATTR_USER_PREFIX.patch
@@ -0,0 +1,69 @@
+From: Anthony G. Basile <blueness@gentoo.org>
+
+This patch adds support for a restricted user-controlled namespace on
+tmpfs filesystem used to house PaX flags.  The namespace must be of the
+form user.pax.* and its value cannot exceed a size of 8 bytes.
+
+This is needed even on all Gentoo systems so that XATTR_PAX flags
+are preserved for users who might build packages using portage on
+a tmpfs system with a non-hardened kernel and then switch to a
+hardened kernel with XATTR_PAX enabled.
+
+The namespace is added to any user with Extended Attribute support
+enabled for tmpfs.  Users who do not enable xattrs will not have
+the XATTR_PAX flags preserved.
+
+diff --git a/include/uapi/linux/xattr.h b/include/uapi/linux/xattr.h
+index 1590c49..5eab462 100644
+--- a/include/uapi/linux/xattr.h
++++ b/include/uapi/linux/xattr.h
+@@ -73,5 +73,9 @@
+ #define XATTR_POSIX_ACL_DEFAULT  "posix_acl_default"
+ #define XATTR_NAME_POSIX_ACL_DEFAULT XATTR_SYSTEM_PREFIX XATTR_POSIX_ACL_DEFAULT
+ 
++/* User namespace */
++#define XATTR_PAX_PREFIX XATTR_USER_PREFIX "pax."
++#define XATTR_PAX_FLAGS_SUFFIX "flags"
++#define XATTR_NAME_PAX_FLAGS XATTR_PAX_PREFIX XATTR_PAX_FLAGS_SUFFIX
+ 
+ #endif /* _UAPI_LINUX_XATTR_H */
+diff --git a/mm/shmem.c b/mm/shmem.c
+index 440e2a7..c377172 100644
+--- a/mm/shmem.c
++++ b/mm/shmem.c
+@@ -2667,6 +2667,14 @@ static int shmem_xattr_handler_set(const struct xattr_handler *handler,
+ 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
+ 
+ 	name = xattr_full_name(handler, name);
++
++	if (!strncmp(name, XATTR_USER_PREFIX, XATTR_USER_PREFIX_LEN)) {
++		if (strcmp(name, XATTR_NAME_PAX_FLAGS))
++			return -EOPNOTSUPP;
++		if (size > 8)
++			return -EINVAL;
++	}
++
+ 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
+ }
+ 
+@@ -2682,6 +2690,12 @@ static const struct xattr_handler shmem_trusted_xattr_handler = {
+ 	.set = shmem_xattr_handler_set,
+ };
+ 
++static const struct xattr_handler shmem_user_xattr_handler = {
++	.prefix = XATTR_USER_PREFIX,
++	.get = shmem_xattr_handler_get,
++	.set = shmem_xattr_handler_set,
++};
++
+ static const struct xattr_handler *shmem_xattr_handlers[] = {
+ #ifdef CONFIG_TMPFS_POSIX_ACL
+ 	&posix_acl_access_xattr_handler,
+@@ -2689,6 +2703,7 @@ static const struct xattr_handler *shmem_xattr_handlers[] = {
+ #endif
+ 	&shmem_security_xattr_handler,
+ 	&shmem_trusted_xattr_handler,
++	&shmem_user_xattr_handler,
+ 	NULL
+ };
+ 

diff --git a/1510_fs-enable-link-security-restrictions-by-default.patch b/1510_fs-enable-link-security-restrictions-by-default.patch
new file mode 100644
index 0000000..639fb3c
--- /dev/null
+++ b/1510_fs-enable-link-security-restrictions-by-default.patch
@@ -0,0 +1,22 @@
+From: Ben Hutchings <ben@decadent.org.uk>
+Subject: fs: Enable link security restrictions by default
+Date: Fri, 02 Nov 2012 05:32:06 +0000
+Bug-Debian: https://bugs.debian.org/609455
+Forwarded: not-needed
+
+This reverts commit 561ec64ae67ef25cac8d72bb9c4bfc955edfd415
+('VFS: don't do protected {sym,hard}links by default').
+
+--- a/fs/namei.c
++++ b/fs/namei.c
+@@ -651,8 +651,8 @@ static inline void put_link(struct namei
+ 	path_put(link);
+ }
+ 
+-int sysctl_protected_symlinks __read_mostly = 0;
+-int sysctl_protected_hardlinks __read_mostly = 0;
++int sysctl_protected_symlinks __read_mostly = 1;
++int sysctl_protected_hardlinks __read_mostly = 1;
+ 
+ /**
+  * may_follow_link - Check symlink following for unsafe situations

diff --git a/2300_enable-poweroff-on-Mac-Pro-11.patch b/2300_enable-poweroff-on-Mac-Pro-11.patch
new file mode 100644
index 0000000..063f2a1
--- /dev/null
+++ b/2300_enable-poweroff-on-Mac-Pro-11.patch
@@ -0,0 +1,76 @@
+From 5080ff61a438f3dd80b88b423e1a20791d8a774c Mon Sep 17 00:00:00 2001
+From: Chen Yu <yu.c.chen@intel.com>
+Date: Fri, 19 Aug 2016 10:25:57 -0700
+Subject: UBUNTU: SAUCE: PCI: Workaround to enable poweroff on Mac Pro 11
+
+BugLink: http://bugs.launchpad.net/bugs/1587714
+
+People reported that they can not do a poweroff nor a
+suspend to ram on their Mac Pro 11. After some investigations
+it was found that, once the PCI bridge 0000:00:1c.0 reassigns its
+mm windows to ([mem 0x7fa00000-0x7fbfffff] and
+[mem 0x7fc00000-0x7fdfffff 64bit pref]), the region of ACPI
+io resource 0x1804 becomes unaccessible immediately, where the
+ACPI Sleep register is located, as a result neither poweroff(S5)
+nor suspend to ram(S3) works.
+
+As suggested by Bjorn, further testing shows that, there is an
+unreported device may be (using) conflict with above aperture,
+which brings unpredictable result such as the failure of accessing
+the io port, which blocks the poweroff(S5). Besides if we reassign
+the memory aperture to the other place, the poweroff works again.
+
+As we do not find any resource declared in _CRS which contain above
+memory aperture, and Mac OS does not use this pci bridge neither, we
+choose a simple workaround to clear the hotplug flag(suggested by
+Yinghai Lu), thus do not allocate any resource for this pci bridge,
+and thereby no conflict anymore.
+
+Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=103211
+Cc: Bjorn Helgaas <bhelgaas@google.com>
+Cc: Rafael J. Wysocki <rafael@kernel.org>
+Cc: Lukas Wunner <lukas@wunner.de>
+Signed-off-by: Chen Yu <yu.c.chen@intel.com>
+Reference: https://patchwork.kernel.org/patch/9289777/
+Signed-off-by: Kamal Mostafa <kamal@canonical.com>
+Acked-by: Brad Figg <brad.figg@canonical.com>
+Acked-by: Stefan Bader <stefan.bader@canonical.com>
+Signed-off-by: Tim Gardner <tim.gardner@canonical.com>
+---
+ drivers/pci/quirks.c | 20 ++++++++++++++++++++
+ 1 file changed, 20 insertions(+)
+
+diff --git a/drivers/pci/quirks.c b/drivers/pci/quirks.c
+index 48cfaa0..23968b6 100644
+--- a/drivers/pci/quirks.c
++++ b/drivers/pci/quirks.c
+@@ -2750,6 +2750,26 @@ static void quirk_hotplug_bridge(struct pci_dev *dev)
+ DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_HINT, 0x0020, quirk_hotplug_bridge);
+ 
+ /*
++ * Apple: Avoid programming the memory/io aperture of 00:1c.0
++ *
++ * BIOS does not declare any resource for 00:1c.0, but with
++ * hotplug flag set, thus the OS allocates:
++ * [mem 0x7fa00000 - 0x7fbfffff]
++ * [mem 0x7fc00000-0x7fdfffff 64bit pref]
++ * which is conflict with an unreported device, which
++ * causes unpredictable result such as accessing io port.
++ * So clear the hotplug flag to work around it.
++ */
++static void quirk_apple_mbp_poweroff(struct pci_dev *dev)
++{
++   if (dmi_match(DMI_PRODUCT_NAME, "MacBookPro11,4") ||
++       dmi_match(DMI_PRODUCT_NAME, "MacBookPro11,5"))
++       dev->is_hotplug_bridge = 0;
++}
++
++DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x8c10, quirk_apple_mbp_poweroff);
++
++/*
+  * This is a quirk for the Ricoh MMC controller found as a part of
+  * some mulifunction chips.
+ 
+-- 
+cgit v0.11.2
+

diff --git a/2900_dev-root-proc-mount-fix.patch b/2900_dev-root-proc-mount-fix.patch
new file mode 100644
index 0000000..60af1eb
--- /dev/null
+++ b/2900_dev-root-proc-mount-fix.patch
@@ -0,0 +1,38 @@
+--- a/init/do_mounts.c	2015-08-19 10:27:16.753852576 -0400
++++ b/init/do_mounts.c	2015-08-19 10:34:25.473850353 -0400
+@@ -490,7 +490,11 @@ void __init change_floppy(char *fmt, ...
+ 	va_start(args, fmt);
+ 	vsprintf(buf, fmt, args);
+ 	va_end(args);
+-	fd = sys_open("/dev/root", O_RDWR | O_NDELAY, 0);
++	if (saved_root_name[0])
++		fd = sys_open(saved_root_name, O_RDWR | O_NDELAY, 0);
++	else
++		fd = sys_open("/dev/root", O_RDWR | O_NDELAY, 0);
++
+ 	if (fd >= 0) {
+ 		sys_ioctl(fd, FDEJECT, 0);
+ 		sys_close(fd);
+@@ -534,11 +538,17 @@ void __init mount_root(void)
+ #endif
+ #ifdef CONFIG_BLOCK
+ 	{
+-		int err = create_dev("/dev/root", ROOT_DEV);
+-
+-		if (err < 0)
+-			pr_emerg("Failed to create /dev/root: %d\n", err);
+-		mount_block_root("/dev/root", root_mountflags);
++		if (saved_root_name[0] == '/') {
++	       	int err = create_dev(saved_root_name, ROOT_DEV);
++			if (err < 0)
++				pr_emerg("Failed to create %s: %d\n", saved_root_name, err);
++			mount_block_root(saved_root_name, root_mountflags);
++		} else {
++			int err = create_dev("/dev/root", ROOT_DEV);
++			if (err < 0)
++				pr_emerg("Failed to create /dev/root: %d\n", err);
++			mount_block_root("/dev/root", root_mountflags);
++		}
+ 	}
+ #endif
+ }

diff --git a/4200_fbcondecor.patch b/4200_fbcondecor.patch
new file mode 100644
index 0000000..f7d9879
--- /dev/null
+++ b/4200_fbcondecor.patch
@@ -0,0 +1,2095 @@
+diff --git a/Documentation/fb/00-INDEX b/Documentation/fb/00-INDEX
+index fe85e7c..2230930 100644
+--- a/Documentation/fb/00-INDEX
++++ b/Documentation/fb/00-INDEX
+@@ -23,6 +23,8 @@ ep93xx-fb.txt
+ 	- info on the driver for EP93xx LCD controller.
+ fbcon.txt
+ 	- intro to and usage guide for the framebuffer console (fbcon).
++fbcondecor.txt
++	- info on the Framebuffer Console Decoration
+ framebuffer.txt
+ 	- introduction to frame buffer devices.
+ gxfb.txt
+diff --git a/Documentation/fb/fbcondecor.txt b/Documentation/fb/fbcondecor.txt
+new file mode 100644
+index 0000000..637209e
+--- /dev/null
++++ b/Documentation/fb/fbcondecor.txt
+@@ -0,0 +1,207 @@
++What is it?
++-----------
++
++The framebuffer decorations are a kernel feature which allows displaying a
++background picture on selected consoles.
++
++What do I need to get it to work?
++---------------------------------
++
++To get fbcondecor up-and-running you will have to:
++ 1) get a copy of splashutils [1] or a similar program
++ 2) get some fbcondecor themes
++ 3) build the kernel helper program
++ 4) build your kernel with the FB_CON_DECOR option enabled.
++
++To get fbcondecor operational right after fbcon initialization is finished, you
++will have to include a theme and the kernel helper into your initramfs image.
++Please refer to splashutils documentation for instructions on how to do that.
++
++[1] The splashutils package can be downloaded from:
++    http://github.com/alanhaggai/fbsplash
++
++The userspace helper
++--------------------
++
++The userspace fbcondecor helper (by default: /sbin/fbcondecor_helper) is called by the
++kernel whenever an important event occurs and the kernel needs some kind of
++job to be carried out. Important events include console switches and video
++mode switches (the kernel requests background images and configuration
++parameters for the current console). The fbcondecor helper must be accessible at
++all times. If it's not, fbcondecor will be switched off automatically.
++
++It's possible to set path to the fbcondecor helper by writing it to
++/proc/sys/kernel/fbcondecor.
++
++*****************************************************************************
++
++The information below is mostly technical stuff. There's probably no need to
++read it unless you plan to develop a userspace helper.
++
++The fbcondecor protocol
++-----------------------
++
++The fbcondecor protocol defines a communication interface between the kernel and
++the userspace fbcondecor helper.
++
++The kernel side is responsible for:
++
++ * rendering console text, using an image as a background (instead of a
++   standard solid color fbcon uses),
++ * accepting commands from the user via ioctls on the fbcondecor device,
++ * calling the userspace helper to set things up as soon as the fb subsystem
++   is initialized.
++
++The userspace helper is responsible for everything else, including parsing
++configuration files, decompressing the image files whenever the kernel needs
++it, and communicating with the kernel if necessary.
++
++The fbcondecor protocol specifies how communication is done in both ways:
++kernel->userspace and userspace->helper.
++
++Kernel -> Userspace
++-------------------
++
++The kernel communicates with the userspace helper by calling it and specifying
++the task to be done in a series of arguments.
++
++The arguments follow the pattern:
++<fbcondecor protocol version> <command> <parameters>
++
++All commands defined in fbcondecor protocol v2 have the following parameters:
++ virtual console
++ framebuffer number
++ theme
++
++Fbcondecor protocol v1 specified an additional 'fbcondecor mode' after the
++framebuffer number. Fbcondecor protocol v1 is deprecated and should not be used.
++
++Fbcondecor protocol v2 specifies the following commands:
++
++getpic
++------
++ The kernel issues this command to request image data. It's up to the
++ userspace  helper to find a background image appropriate for the specified
++ theme and the current resolution. The userspace helper should respond by
++ issuing the FBIOCONDECOR_SETPIC ioctl.
++
++init
++----
++ The kernel issues this command after the fbcondecor device is created and
++ the fbcondecor interface is initialized. Upon receiving 'init', the userspace
++ helper should parse the kernel command line (/proc/cmdline) or otherwise
++ decide whether fbcondecor is to be activated.
++
++ To activate fbcondecor on the first console the helper should issue the
++ FBIOCONDECOR_SETCFG, FBIOCONDECOR_SETPIC and FBIOCONDECOR_SETSTATE commands,
++ in the above-mentioned order.
++
++ When the userspace helper is called in an early phase of the boot process
++ (right after the initialization of fbcon), no filesystems will be mounted.
++ The helper program should mount sysfs and then create the appropriate
++ framebuffer, fbcondecor and tty0 devices (if they don't already exist) to get
++ current display settings and to be able to communicate with the kernel side.
++ It should probably also mount the procfs to be able to parse the kernel
++ command line parameters.
++
++ Note that the console sem is not held when the kernel calls fbcondecor_helper
++ with the 'init' command. The fbcondecor helper should perform all ioctls with
++ origin set to FBCON_DECOR_IO_ORIG_USER.
++
++modechange
++----------
++ The kernel issues this command on a mode change. The helper's response should
++ be similar to the response to the 'init' command. Note that this time the
++ console sem is held and all ioctls must be performed with origin set to
++ FBCON_DECOR_IO_ORIG_KERNEL.
++
++
++Userspace -> Kernel
++-------------------
++
++Userspace programs can communicate with fbcondecor via ioctls on the
++fbcondecor device. These ioctls are to be used by both the userspace helper
++(called only by the kernel) and userspace configuration tools (run by the users).
++
++The fbcondecor helper should set the origin field to FBCON_DECOR_IO_ORIG_KERNEL
++when doing the appropriate ioctls. All userspace configuration tools should
++use FBCON_DECOR_IO_ORIG_USER. Failure to set the appropriate value in the origin
++field when performing ioctls from the kernel helper will most likely result
++in a console deadlock.
++
++FBCON_DECOR_IO_ORIG_KERNEL instructs fbcondecor not to try to acquire the console
++semaphore. Not surprisingly, FBCON_DECOR_IO_ORIG_USER instructs it to acquire
++the console sem.
++
++The framebuffer console decoration provides the following ioctls (all defined in
++linux/fb.h):
++
++FBIOCONDECOR_SETPIC
++description: loads a background picture for a virtual console
++argument: struct fbcon_decor_iowrapper*; data: struct fb_image*
++notes:
++If called for consoles other than the current foreground one, the picture data
++will be ignored.
++
++If the current virtual console is running in a 8-bpp mode, the cmap substruct
++of fb_image has to be filled appropriately: start should be set to 16 (first
++16 colors are reserved for fbcon), len to a value <= 240 and red, green and
++blue should point to valid cmap data. The transp field is ingored. The fields
++dx, dy, bg_color, fg_color in fb_image are ignored as well.
++
++FBIOCONDECOR_SETCFG
++description: sets the fbcondecor config for a virtual console
++argument: struct fbcon_decor_iowrapper*; data: struct vc_decor*
++notes: The structure has to be filled with valid data.
++
++FBIOCONDECOR_GETCFG
++description: gets the fbcondecor config for a virtual console
++argument: struct fbcon_decor_iowrapper*; data: struct vc_decor*
++
++FBIOCONDECOR_SETSTATE
++description: sets the fbcondecor state for a virtual console
++argument: struct fbcon_decor_iowrapper*; data: unsigned int*
++          values: 0 = disabled, 1 = enabled.
++
++FBIOCONDECOR_GETSTATE
++description: gets the fbcondecor state for a virtual console
++argument: struct fbcon_decor_iowrapper*; data: unsigned int*
++          values: as in FBIOCONDECOR_SETSTATE
++
++Info on used structures:
++
++Definition of struct vc_decor can be found in linux/console_decor.h. It's
++heavily commented. Note that the 'theme' field should point to a string
++no longer than FBCON_DECOR_THEME_LEN. When FBIOCONDECOR_GETCFG call is
++performed, the theme field should point to a char buffer of length
++FBCON_DECOR_THEME_LEN.
++
++Definition of struct fbcon_decor_iowrapper can be found in linux/fb.h.
++The fields in this struct have the following meaning:
++
++vc:
++Virtual console number.
++
++origin:
++Specifies if the ioctl is performed as a response to a kernel request. The
++fbcondecor helper should set this field to FBCON_DECOR_IO_ORIG_KERNEL, userspace
++programs should set it to FBCON_DECOR_IO_ORIG_USER. This field is necessary to
++avoid console semaphore deadlocks.
++
++data:
++Pointer to a data structure appropriate for the performed ioctl. Type of
++the data struct is specified in the ioctls description.
++
++*****************************************************************************
++
++Credit
++------
++
++Original 'bootsplash' project & implementation by:
++  Volker Poplawski <volker@poplawski.de>, Stefan Reinauer <stepan@suse.de>,
++  Steffen Winterfeldt <snwint@suse.de>, Michael Schroeder <mls@suse.de>,
++  Ken Wimer <wimer@suse.de>.
++
++Fbcondecor, fbcondecor protocol design, current implementation & docs by:
++  Michal Januszewski <michalj+fbcondecor@gmail.com>
++
+diff --git a/drivers/Makefile b/drivers/Makefile
+index 53abb4a..1721aee 100644
+--- a/drivers/Makefile
++++ b/drivers/Makefile
+@@ -17,6 +17,10 @@ obj-y				+= pwm/
+ obj-$(CONFIG_PCI)		+= pci/
+ obj-$(CONFIG_PARISC)		+= parisc/
+ obj-$(CONFIG_RAPIDIO)		+= rapidio/
++# tty/ comes before char/ so that the VT console is the boot-time
++# default.
++obj-y				+= tty/
++obj-y				+= char/
+ obj-y				+= video/
+ obj-y				+= idle/
+ 
+@@ -45,11 +49,6 @@ obj-$(CONFIG_REGULATOR)		+= regulator/
+ # reset controllers early, since gpu drivers might rely on them to initialize
+ obj-$(CONFIG_RESET_CONTROLLER)	+= reset/
+ 
+-# tty/ comes before char/ so that the VT console is the boot-time
+-# default.
+-obj-y				+= tty/
+-obj-y				+= char/
+-
+ # iommu/ comes before gpu as gpu are using iommu controllers
+ obj-$(CONFIG_IOMMU_SUPPORT)	+= iommu/
+ 
+diff --git a/drivers/video/console/Kconfig b/drivers/video/console/Kconfig
+index 38da6e2..fe58152 100644
+--- a/drivers/video/console/Kconfig
++++ b/drivers/video/console/Kconfig
+@@ -130,6 +130,19 @@ config FRAMEBUFFER_CONSOLE_ROTATION
+          such that other users of the framebuffer will remain normally
+          oriented.
+ 
++config FB_CON_DECOR
++	bool "Support for the Framebuffer Console Decorations"
++	depends on FRAMEBUFFER_CONSOLE=y && !FB_TILEBLITTING
++	default n
++	---help---
++	  This option enables support for framebuffer console decorations which
++	  makes it possible to display images in the background of the system
++	  consoles.  Note that userspace utilities are necessary in order to take
++	  advantage of these features. Refer to Documentation/fb/fbcondecor.txt
++	  for more information.
++
++	  If unsure, say N.
++
+ config STI_CONSOLE
+         bool "STI text console"
+         depends on PARISC
+diff --git a/drivers/video/console/Makefile b/drivers/video/console/Makefile
+index 43bfa48..cc104b6 100644
+--- a/drivers/video/console/Makefile
++++ b/drivers/video/console/Makefile
+@@ -16,4 +16,5 @@ obj-$(CONFIG_FRAMEBUFFER_CONSOLE)     += fbcon_rotate.o fbcon_cw.o fbcon_ud.o \
+                                          fbcon_ccw.o
+ endif
+ 
++obj-$(CONFIG_FB_CON_DECOR)     	  += fbcondecor.o cfbcondecor.o
+ obj-$(CONFIG_FB_STI)              += sticore.o
+diff --git a/drivers/video/console/bitblit.c b/drivers/video/console/bitblit.c
+index dbfe4ee..14da307 100644
+--- a/drivers/video/console/bitblit.c
++++ b/drivers/video/console/bitblit.c
+@@ -18,6 +18,7 @@
+ #include <linux/console.h>
+ #include <asm/types.h>
+ #include "fbcon.h"
++#include "fbcondecor.h"
+ 
+ /*
+  * Accelerated handlers.
+@@ -55,6 +56,13 @@ static void bit_bmove(struct vc_data *vc, struct fb_info *info, int sy,
+ 	area.height = height * vc->vc_font.height;
+ 	area.width = width * vc->vc_font.width;
+ 
++	if (fbcon_decor_active(info, vc)) {
++		area.sx += vc->vc_decor.tx;
++		area.sy += vc->vc_decor.ty;
++		area.dx += vc->vc_decor.tx;
++		area.dy += vc->vc_decor.ty;
++	}
++
+ 	info->fbops->fb_copyarea(info, &area);
+ }
+ 
+@@ -379,11 +387,15 @@ static void bit_cursor(struct vc_data *vc, struct fb_info *info, int mode,
+ 	cursor.image.depth = 1;
+ 	cursor.rop = ROP_XOR;
+ 
+-	if (info->fbops->fb_cursor)
+-		err = info->fbops->fb_cursor(info, &cursor);
++	if (fbcon_decor_active(info, vc)) {
++		fbcon_decor_cursor(info, &cursor);
++	} else {
++		if (info->fbops->fb_cursor)
++			err = info->fbops->fb_cursor(info, &cursor);
+ 
+-	if (err)
+-		soft_cursor(info, &cursor);
++		if (err)
++			soft_cursor(info, &cursor);
++	}
+ 
+ 	ops->cursor_reset = 0;
+ }
+diff --git a/drivers/video/console/cfbcondecor.c b/drivers/video/console/cfbcondecor.c
+new file mode 100644
+index 0000000..c262540
+--- /dev/null
++++ b/drivers/video/console/cfbcondecor.c
+@@ -0,0 +1,473 @@
++/*
++ *  linux/drivers/video/cfbcon_decor.c -- Framebuffer decor render functions
++ *
++ *  Copyright (C) 2004 Michal Januszewski <michalj+fbcondecor@gmail.com>
++ *
++ *  Code based upon "Bootdecor" (C) 2001-2003
++ *       Volker Poplawski <volker@poplawski.de>,
++ *       Stefan Reinauer <stepan@suse.de>,
++ *       Steffen Winterfeldt <snwint@suse.de>,
++ *       Michael Schroeder <mls@suse.de>,
++ *       Ken Wimer <wimer@suse.de>.
++ *
++ *  This file is subject to the terms and conditions of the GNU General Public
++ *  License.  See the file COPYING in the main directory of this archive for
++ *  more details.
++ */
++#include <linux/module.h>
++#include <linux/types.h>
++#include <linux/fb.h>
++#include <linux/selection.h>
++#include <linux/slab.h>
++#include <linux/vt_kern.h>
++#include <asm/irq.h>
++
++#include "fbcon.h"
++#include "fbcondecor.h"
++
++#define parse_pixel(shift, bpp, type)						\
++	do {									\
++		if (d & (0x80 >> (shift)))					\
++			dd2[(shift)] = fgx;					\
++		else								\
++			dd2[(shift)] = transparent ? *(type *)decor_src : bgx;	\
++		decor_src += (bpp);						\
++	} while (0)								\
++
++extern int get_color(struct vc_data *vc, struct fb_info *info,
++		     u16 c, int is_fg);
++
++void fbcon_decor_fix_pseudo_pal(struct fb_info *info, struct vc_data *vc)
++{
++	int i, j, k;
++	int minlen = min(min(info->var.red.length, info->var.green.length),
++			     info->var.blue.length);
++	u32 col;
++
++	for (j = i = 0; i < 16; i++) {
++		k = color_table[i];
++
++		col = ((vc->vc_palette[j++]  >> (8-minlen))
++			<< info->var.red.offset);
++		col |= ((vc->vc_palette[j++] >> (8-minlen))
++			<< info->var.green.offset);
++		col |= ((vc->vc_palette[j++] >> (8-minlen))
++			<< info->var.blue.offset);
++			((u32 *)info->pseudo_palette)[k] = col;
++	}
++}
++
++void fbcon_decor_renderc(struct fb_info *info, int ypos, int xpos, int height,
++		      int width, u8 *src, u32 fgx, u32 bgx, u8 transparent)
++{
++	unsigned int x, y;
++	u32 dd;
++	int bytespp = ((info->var.bits_per_pixel + 7) >> 3);
++	unsigned int d = ypos * info->fix.line_length + xpos * bytespp;
++	unsigned int ds = (ypos * info->var.xres + xpos) * bytespp;
++	u16 dd2[4];
++
++	u8 *decor_src = (u8 *)(info->bgdecor.data + ds);
++	u8 *dst = (u8 *)(info->screen_base + d);
++
++	if ((ypos + height) > info->var.yres || (xpos + width) > info->var.xres)
++		return;
++
++	for (y = 0; y < height; y++) {
++		switch (info->var.bits_per_pixel) {
++
++		case 32:
++			for (x = 0; x < width; x++) {
++
++				if ((x & 7) == 0)
++					d = *src++;
++				if (d & 0x80)
++					dd = fgx;
++				else
++					dd = transparent ?
++					     *(u32 *)decor_src : bgx;
++
++				d <<= 1;
++				decor_src += 4;
++				fb_writel(dd, dst);
++				dst += 4;
++			}
++			break;
++		case 24:
++			for (x = 0; x < width; x++) {
++
++				if ((x & 7) == 0)
++					d = *src++;
++				if (d & 0x80)
++					dd = fgx;
++				else
++					dd = transparent ?
++					     (*(u32 *)decor_src & 0xffffff) : bgx;
++
++				d <<= 1;
++				decor_src += 3;
++#ifdef __LITTLE_ENDIAN
++				fb_writew(dd & 0xffff, dst);
++				dst += 2;
++				fb_writeb((dd >> 16), dst);
++#else
++				fb_writew(dd >> 8, dst);
++				dst += 2;
++				fb_writeb(dd & 0xff, dst);
++#endif
++				dst++;
++			}
++			break;
++		case 16:
++			for (x = 0; x < width; x += 2) {
++				if ((x & 7) == 0)
++					d = *src++;
++
++				parse_pixel(0, 2, u16);
++				parse_pixel(1, 2, u16);
++#ifdef __LITTLE_ENDIAN
++				dd = dd2[0] | (dd2[1] << 16);
++#else
++				dd = dd2[1] | (dd2[0] << 16);
++#endif
++				d <<= 2;
++				fb_writel(dd, dst);
++				dst += 4;
++			}
++			break;
++
++		case 8:
++			for (x = 0; x < width; x += 4) {
++				if ((x & 7) == 0)
++					d = *src++;
++
++				parse_pixel(0, 1, u8);
++				parse_pixel(1, 1, u8);
++				parse_pixel(2, 1, u8);
++				parse_pixel(3, 1, u8);
++
++#ifdef __LITTLE_ENDIAN
++				dd = dd2[0] | (dd2[1] << 8) | (dd2[2] << 16) | (dd2[3] << 24);
++#else
++				dd = dd2[3] | (dd2[2] << 8) | (dd2[1] << 16) | (dd2[0] << 24);
++#endif
++				d <<= 4;
++				fb_writel(dd, dst);
++				dst += 4;
++			}
++		}
++
++		dst += info->fix.line_length - width * bytespp;
++		decor_src += (info->var.xres - width) * bytespp;
++	}
++}
++
++#define cc2cx(a)						\
++	((info->fix.visual == FB_VISUAL_TRUECOLOR ||		\
++		info->fix.visual == FB_VISUAL_DIRECTCOLOR) ?	\
++			((u32 *)info->pseudo_palette)[a] : a)
++
++void fbcon_decor_putcs(struct vc_data *vc, struct fb_info *info,
++		   const unsigned short *s, int count, int yy, int xx)
++{
++	unsigned short charmask = vc->vc_hi_font_mask ? 0x1ff : 0xff;
++	struct fbcon_ops *ops = info->fbcon_par;
++	int fg_color, bg_color, transparent;
++	u8 *src;
++	u32 bgx, fgx;
++	u16 c = scr_readw(s);
++
++	fg_color = get_color(vc, info, c, 1);
++	bg_color = get_color(vc, info, c, 0);
++
++	/* Don't paint the background image if console is blanked */
++	transparent = ops->blank_state ? 0 :
++		(vc->vc_decor.bg_color == bg_color);
++
++	xx = xx * vc->vc_font.width + vc->vc_decor.tx;
++	yy = yy * vc->vc_font.height + vc->vc_decor.ty;
++
++	fgx = cc2cx(fg_color);
++	bgx = cc2cx(bg_color);
++
++	while (count--) {
++		c = scr_readw(s++);
++		src = vc->vc_font.data + (c & charmask) * vc->vc_font.height *
++		      ((vc->vc_font.width + 7) >> 3);
++
++		fbcon_decor_renderc(info, yy, xx, vc->vc_font.height,
++			       vc->vc_font.width, src, fgx, bgx, transparent);
++		xx += vc->vc_font.width;
++	}
++}
++
++void fbcon_decor_cursor(struct fb_info *info, struct fb_cursor *cursor)
++{
++	int i;
++	unsigned int dsize, s_pitch;
++	struct fbcon_ops *ops = info->fbcon_par;
++	struct vc_data *vc;
++	u8 *src;
++
++	/* we really don't need any cursors while the console is blanked */
++	if (info->state != FBINFO_STATE_RUNNING || ops->blank_state)
++		return;
++
++	vc = vc_cons[ops->currcon].d;
++
++	src = kmalloc(64 + sizeof(struct fb_image), GFP_ATOMIC);
++	if (!src)
++		return;
++
++	s_pitch = (cursor->image.width + 7) >> 3;
++	dsize = s_pitch * cursor->image.height;
++	if (cursor->enable) {
++		switch (cursor->rop) {
++		case ROP_XOR:
++			for (i = 0; i < dsize; i++)
++				src[i] = cursor->image.data[i] ^ cursor->mask[i];
++			break;
++		case ROP_COPY:
++		default:
++			for (i = 0; i < dsize; i++)
++				src[i] = cursor->image.data[i] & cursor->mask[i];
++			break;
++		}
++	} else
++		memcpy(src, cursor->image.data, dsize);
++
++	fbcon_decor_renderc(info,
++			cursor->image.dy + vc->vc_decor.ty,
++			cursor->image.dx + vc->vc_decor.tx,
++			cursor->image.height,
++			cursor->image.width,
++			(u8 *)src,
++			cc2cx(cursor->image.fg_color),
++			cc2cx(cursor->image.bg_color),
++			cursor->image.bg_color == vc->vc_decor.bg_color);
++
++	kfree(src);
++}
++
++static void decorset(u8 *dst, int height, int width, int dstbytes,
++				u32 bgx, int bpp)
++{
++	int i;
++
++	if (bpp == 8)
++		bgx |= bgx << 8;
++	if (bpp == 16 || bpp == 8)
++		bgx |= bgx << 16;
++
++	while (height-- > 0) {
++		u8 *p = dst;
++
++		switch (bpp) {
++
++		case 32:
++			for (i = 0; i < width; i++) {
++				fb_writel(bgx, p); p += 4;
++			}
++			break;
++		case 24:
++			for (i = 0; i < width; i++) {
++#ifdef __LITTLE_ENDIAN
++				fb_writew((bgx & 0xffff), (u16 *)p); p += 2;
++				fb_writeb((bgx >> 16), p++);
++#else
++				fb_writew((bgx >> 8), (u16 *)p); p += 2;
++				fb_writeb((bgx & 0xff), p++);
++#endif
++			}
++			break;
++		case 16:
++			for (i = 0; i < width/4; i++) {
++				fb_writel(bgx, p); p += 4;
++				fb_writel(bgx, p); p += 4;
++			}
++			if (width & 2) {
++				fb_writel(bgx, p); p += 4;
++			}
++			if (width & 1)
++				fb_writew(bgx, (u16 *)p);
++			break;
++		case 8:
++			for (i = 0; i < width/4; i++) {
++				fb_writel(bgx, p); p += 4;
++			}
++
++			if (width & 2) {
++				fb_writew(bgx, p); p += 2;
++			}
++			if (width & 1)
++				fb_writeb(bgx, (u8 *)p);
++			break;
++
++		}
++		dst += dstbytes;
++	}
++}
++
++void fbcon_decor_copy(u8 *dst, u8 *src, int height, int width, int linebytes,
++		   int srclinebytes, int bpp)
++{
++	int i;
++
++	while (height-- > 0) {
++		u32 *p = (u32 *)dst;
++		u32 *q = (u32 *)src;
++
++		switch (bpp) {
++
++		case 32:
++			for (i = 0; i < width; i++)
++				fb_writel(*q++, p++);
++			break;
++		case 24:
++			for (i = 0; i < (width * 3 / 4); i++)
++				fb_writel(*q++, p++);
++			if ((width * 3) % 4) {
++				if (width & 2) {
++					fb_writeb(*(u8 *)q, (u8 *)p);
++				} else if (width & 1) {
++					fb_writew(*(u16 *)q, (u16 *)p);
++					fb_writeb(*(u8 *)((u16 *)q + 1),
++							(u8 *)((u16 *)p + 2));
++				}
++			}
++			break;
++		case 16:
++			for (i = 0; i < width/4; i++) {
++				fb_writel(*q++, p++);
++				fb_writel(*q++, p++);
++			}
++			if (width & 2)
++				fb_writel(*q++, p++);
++			if (width & 1)
++				fb_writew(*(u16 *)q, (u16 *)p);
++			break;
++		case 8:
++			for (i = 0; i < width/4; i++)
++				fb_writel(*q++, p++);
++
++			if (width & 2) {
++				fb_writew(*(u16 *)q, (u16 *)p);
++				q = (u32 *) ((u16 *)q + 1);
++				p = (u32 *) ((u16 *)p + 1);
++			}
++			if (width & 1)
++				fb_writeb(*(u8 *)q, (u8 *)p);
++			break;
++		}
++
++		dst += linebytes;
++		src += srclinebytes;
++	}
++}
++
++static void decorfill(struct fb_info *info, int sy, int sx, int height,
++		       int width)
++{
++	int bytespp = ((info->var.bits_per_pixel + 7) >> 3);
++	int d  = sy * info->fix.line_length + sx * bytespp;
++	int ds = (sy * info->var.xres + sx) * bytespp;
++
++	fbcon_decor_copy((u8 *)(info->screen_base + d), (u8 *)(info->bgdecor.data + ds),
++		    height, width, info->fix.line_length, info->var.xres * bytespp,
++		    info->var.bits_per_pixel);
++}
++
++void fbcon_decor_clear(struct vc_data *vc, struct fb_info *info, int sy, int sx,
++		    int height, int width)
++{
++	int bgshift = (vc->vc_hi_font_mask) ? 13 : 12;
++	struct fbcon_ops *ops = info->fbcon_par;
++	u8 *dst;
++	int transparent, bg_color = attr_bgcol_ec(bgshift, vc, info);
++
++	transparent = (vc->vc_decor.bg_color == bg_color);
++	sy = sy * vc->vc_font.height + vc->vc_decor.ty;
++	sx = sx * vc->vc_font.width + vc->vc_decor.tx;
++	height *= vc->vc_font.height;
++	width *= vc->vc_font.width;
++
++	/* Don't paint the background image if console is blanked */
++	if (transparent && !ops->blank_state) {
++		decorfill(info, sy, sx, height, width);
++	} else {
++		dst = (u8 *)(info->screen_base + sy * info->fix.line_length +
++			     sx * ((info->var.bits_per_pixel + 7) >> 3));
++		decorset(dst, height, width, info->fix.line_length, cc2cx(bg_color),
++			  info->var.bits_per_pixel);
++	}
++}
++
++void fbcon_decor_clear_margins(struct vc_data *vc, struct fb_info *info,
++			    int bottom_only)
++{
++	unsigned int tw = vc->vc_cols*vc->vc_font.width;
++	unsigned int th = vc->vc_rows*vc->vc_font.height;
++
++	if (!bottom_only) {
++		/* top margin */
++		decorfill(info, 0, 0, vc->vc_decor.ty, info->var.xres);
++		/* left margin */
++		decorfill(info, vc->vc_decor.ty, 0, th, vc->vc_decor.tx);
++		/* right margin */
++		decorfill(info, vc->vc_decor.ty, vc->vc_decor.tx + tw, th,
++			   info->var.xres - vc->vc_decor.tx - tw);
++	}
++	decorfill(info, vc->vc_decor.ty + th, 0,
++		   info->var.yres - vc->vc_decor.ty - th, info->var.xres);
++}
++
++void fbcon_decor_bmove_redraw(struct vc_data *vc, struct fb_info *info, int y,
++			   int sx, int dx, int width)
++{
++	u16 *d = (u16 *) (vc->vc_origin + vc->vc_size_row * y + dx * 2);
++	u16 *s = d + (dx - sx);
++	u16 *start = d;
++	u16 *ls = d;
++	u16 *le = d + width;
++	u16 c;
++	int x = dx;
++	u16 attr = 1;
++
++	do {
++		c = scr_readw(d);
++		if (attr != (c & 0xff00)) {
++			attr = c & 0xff00;
++			if (d > start) {
++				fbcon_decor_putcs(vc, info, start, d - start, y, x);
++				x += d - start;
++				start = d;
++			}
++		}
++		if (s >= ls && s < le && c == scr_readw(s)) {
++			if (d > start) {
++				fbcon_decor_putcs(vc, info, start, d - start, y, x);
++				x += d - start + 1;
++				start = d + 1;
++			} else {
++				x++;
++				start++;
++			}
++		}
++		s++;
++		d++;
++	} while (d < le);
++	if (d > start)
++		fbcon_decor_putcs(vc, info, start, d - start, y, x);
++}
++
++void fbcon_decor_blank(struct vc_data *vc, struct fb_info *info, int blank)
++{
++	if (blank) {
++		decorset((u8 *)info->screen_base, info->var.yres, info->var.xres,
++			  info->fix.line_length, 0, info->var.bits_per_pixel);
++	} else {
++		update_screen(vc);
++		fbcon_decor_clear_margins(vc, info, 0);
++	}
++}
++
+diff --git a/drivers/video/console/fbcon.c b/drivers/video/console/fbcon.c
+index b87f5cf..ce44538 100644
+--- a/drivers/video/console/fbcon.c
++++ b/drivers/video/console/fbcon.c
+@@ -79,6 +79,7 @@
+ #include <asm/irq.h>
+ 
+ #include "fbcon.h"
++#include "../console/fbcondecor.h"
+ 
+ #ifdef FBCONDEBUG
+ #  define DPRINTK(fmt, args...) printk(KERN_DEBUG "%s: " fmt, __func__ , ## args)
+@@ -94,7 +95,7 @@ enum {
+ 
+ static struct display fb_display[MAX_NR_CONSOLES];
+ 
+-static signed char con2fb_map[MAX_NR_CONSOLES];
++signed char con2fb_map[MAX_NR_CONSOLES];
+ static signed char con2fb_map_boot[MAX_NR_CONSOLES];
+ 
+ static int logo_lines;
+@@ -282,7 +283,7 @@ static inline int fbcon_is_inactive(struct vc_data *vc, struct fb_info *info)
+ 		!vt_force_oops_output(vc);
+ }
+ 
+-static int get_color(struct vc_data *vc, struct fb_info *info,
++int get_color(struct vc_data *vc, struct fb_info *info,
+ 	      u16 c, int is_fg)
+ {
+ 	int depth = fb_get_color_depth(&info->var, &info->fix);
+@@ -546,6 +547,9 @@ static int do_fbcon_takeover(int show_logo)
+ 		info_idx = -1;
+ 	} else {
+ 		fbcon_has_console_bind = 1;
++#ifdef CONFIG_FB_CON_DECOR
++		fbcon_decor_init();
++#endif
+ 	}
+ 
+ 	return err;
+@@ -1005,6 +1009,12 @@ static const char *fbcon_startup(void)
+ 	rows = FBCON_SWAP(ops->rotate, info->var.yres, info->var.xres);
+ 	cols /= vc->vc_font.width;
+ 	rows /= vc->vc_font.height;
++
++	if (fbcon_decor_active(info, vc)) {
++		cols = vc->vc_decor.twidth / vc->vc_font.width;
++		rows = vc->vc_decor.theight / vc->vc_font.height;
++	}
++
+ 	vc_resize(vc, cols, rows);
+ 
+ 	DPRINTK("mode:   %s\n", info->fix.id);
+@@ -1034,7 +1044,7 @@ static void fbcon_init(struct vc_data *vc, int init)
+ 	cap = info->flags;
+ 
+ 	if (vc != svc || logo_shown == FBCON_LOGO_DONTSHOW ||
+-	    (info->fix.type == FB_TYPE_TEXT))
++	    (info->fix.type == FB_TYPE_TEXT) || fbcon_decor_active(info, vc))
+ 		logo = 0;
+ 
+ 	if (var_to_display(p, &info->var, info))
+@@ -1259,6 +1269,11 @@ static void fbcon_clear(struct vc_data *vc, int sy, int sx, int height,
+ 		fbcon_clear_margins(vc, 0);
+ 	}
+ 
++	if (fbcon_decor_active(info, vc)) {
++		fbcon_decor_clear(vc, info, sy, sx, height, width);
++		return;
++	}
++
+ 	/* Split blits that cross physical y_wrap boundary */
+ 
+ 	y_break = p->vrows - p->yscroll;
+@@ -1278,10 +1293,15 @@ static void fbcon_putcs(struct vc_data *vc, const unsigned short *s,
+ 	struct display *p = &fb_display[vc->vc_num];
+ 	struct fbcon_ops *ops = info->fbcon_par;
+ 
+-	if (!fbcon_is_inactive(vc, info))
+-		ops->putcs(vc, info, s, count, real_y(p, ypos), xpos,
+-			   get_color(vc, info, scr_readw(s), 1),
+-			   get_color(vc, info, scr_readw(s), 0));
++	if (!fbcon_is_inactive(vc, info)) {
++
++		if (fbcon_decor_active(info, vc))
++			fbcon_decor_putcs(vc, info, s, count, ypos, xpos);
++		else
++			ops->putcs(vc, info, s, count, real_y(p, ypos), xpos,
++				   get_color(vc, info, scr_readw(s), 1),
++				   get_color(vc, info, scr_readw(s), 0));
++	}
+ }
+ 
+ static void fbcon_putc(struct vc_data *vc, int c, int ypos, int xpos)
+@@ -1297,8 +1317,12 @@ static void fbcon_clear_margins(struct vc_data *vc, int bottom_only)
+ 	struct fb_info *info = registered_fb[con2fb_map[vc->vc_num]];
+ 	struct fbcon_ops *ops = info->fbcon_par;
+ 
+-	if (!fbcon_is_inactive(vc, info))
+-		ops->clear_margins(vc, info, bottom_only);
++	if (!fbcon_is_inactive(vc, info)) {
++		if (fbcon_decor_active(info, vc))
++			fbcon_decor_clear_margins(vc, info, bottom_only);
++		else
++			ops->clear_margins(vc, info, bottom_only);
++	}
+ }
+ 
+ static void fbcon_cursor(struct vc_data *vc, int mode)
+@@ -1819,7 +1843,7 @@ static int fbcon_scroll(struct vc_data *vc, int t, int b, int dir,
+ 			count = vc->vc_rows;
+ 		if (softback_top)
+ 			fbcon_softback_note(vc, t, count);
+-		if (logo_shown >= 0)
++		if (logo_shown >= 0 || fbcon_decor_active(info, vc))
+ 			goto redraw_up;
+ 		switch (p->scrollmode) {
+ 		case SCROLL_MOVE:
+@@ -1912,6 +1936,8 @@ static int fbcon_scroll(struct vc_data *vc, int t, int b, int dir,
+ 			count = vc->vc_rows;
+ 		if (logo_shown >= 0)
+ 			goto redraw_down;
++		if (fbcon_decor_active(info, vc))
++			goto redraw_down;
+ 		switch (p->scrollmode) {
+ 		case SCROLL_MOVE:
+ 			fbcon_redraw_blit(vc, info, p, b - 1, b - t - count,
+@@ -2060,6 +2086,13 @@ static void fbcon_bmove_rec(struct vc_data *vc, struct display *p, int sy, int s
+ 		}
+ 		return;
+ 	}
++
++	if (fbcon_decor_active(info, vc) && sy == dy && height == 1) {
++		/* must use slower redraw bmove to keep background pic intact */
++		fbcon_decor_bmove_redraw(vc, info, sy, sx, dx, width);
++		return;
++	}
++
+ 	ops->bmove(vc, info, real_y(p, sy), sx, real_y(p, dy), dx,
+ 		   height, width);
+ }
+@@ -2130,8 +2163,8 @@ static int fbcon_resize(struct vc_data *vc, unsigned int width,
+ 	var.yres = virt_h * virt_fh;
+ 	x_diff = info->var.xres - var.xres;
+ 	y_diff = info->var.yres - var.yres;
+-	if (x_diff < 0 || x_diff > virt_fw ||
+-	    y_diff < 0 || y_diff > virt_fh) {
++	if ((x_diff < 0 || x_diff > virt_fw ||
++		y_diff < 0 || y_diff > virt_fh) && !vc->vc_decor.state) {
+ 		const struct fb_videomode *mode;
+ 
+ 		DPRINTK("attempting resize %ix%i\n", var.xres, var.yres);
+@@ -2167,6 +2200,22 @@ static int fbcon_switch(struct vc_data *vc)
+ 
+ 	info = registered_fb[con2fb_map[vc->vc_num]];
+ 	ops = info->fbcon_par;
++	prev_console = ops->currcon;
++	if (prev_console != -1)
++		old_info = registered_fb[con2fb_map[prev_console]];
++
++#ifdef CONFIG_FB_CON_DECOR
++	if (!fbcon_decor_active_vc(vc) && info->fix.visual == FB_VISUAL_DIRECTCOLOR) {
++		struct vc_data *vc_curr = vc_cons[prev_console].d;
++
++		if (vc_curr && fbcon_decor_active_vc(vc_curr)) {
++			// Clear the screen to avoid displaying funky colors
++			// during palette updates.
++			memset((u8 *)info->screen_base + info->fix.line_length * info->var.yoffset,
++			       0, info->var.yres * info->fix.line_length);
++		}
++	}
++#endif
+ 
+ 	if (softback_top) {
+ 		if (softback_lines)
+@@ -2185,9 +2234,6 @@ static int fbcon_switch(struct vc_data *vc)
+ 		logo_shown = FBCON_LOGO_CANSHOW;
+ 	}
+ 
+-	prev_console = ops->currcon;
+-	if (prev_console != -1)
+-		old_info = registered_fb[con2fb_map[prev_console]];
+ 	/*
+ 	 * FIXME: If we have multiple fbdev's loaded, we need to
+ 	 * update all info->currcon.  Perhaps, we can place this
+@@ -2231,6 +2277,18 @@ static int fbcon_switch(struct vc_data *vc)
+ 			fbcon_del_cursor_timer(old_info);
+ 	}
+ 
++	if (fbcon_decor_active_vc(vc)) {
++		struct vc_data *vc_curr = vc_cons[prev_console].d;
++
++		if (!vc_curr->vc_decor.theme ||
++			strcmp(vc->vc_decor.theme, vc_curr->vc_decor.theme) ||
++			(fbcon_decor_active_nores(info, vc_curr) &&
++			 !fbcon_decor_active(info, vc_curr))) {
++			fbcon_decor_disable(vc, 0);
++			fbcon_decor_call_helper("modechange", vc->vc_num);
++		}
++	}
++
+ 	if (fbcon_is_inactive(vc, info) ||
+ 	    ops->blank_state != FB_BLANK_UNBLANK)
+ 		fbcon_del_cursor_timer(info);
+@@ -2339,15 +2397,20 @@ static int fbcon_blank(struct vc_data *vc, int blank, int mode_switch)
+ 		}
+ 	}
+ 
+- 	if (!fbcon_is_inactive(vc, info)) {
++	if (!fbcon_is_inactive(vc, info)) {
+ 		if (ops->blank_state != blank) {
+ 			ops->blank_state = blank;
+ 			fbcon_cursor(vc, blank ? CM_ERASE : CM_DRAW);
+ 			ops->cursor_flash = (!blank);
+ 
+-			if (!(info->flags & FBINFO_MISC_USEREVENT))
+-				if (fb_blank(info, blank))
+-					fbcon_generic_blank(vc, info, blank);
++			if (!(info->flags & FBINFO_MISC_USEREVENT)) {
++				if (fb_blank(info, blank)) {
++					if (fbcon_decor_active(info, vc))
++						fbcon_decor_blank(vc, info, blank);
++					else
++						fbcon_generic_blank(vc, info, blank);
++				}
++			}
+ 		}
+ 
+ 		if (!blank)
+@@ -2522,13 +2585,22 @@ static int fbcon_do_set_font(struct vc_data *vc, int w, int h,
+ 	}
+ 
+ 	if (resize) {
++		/* reset wrap/pan */
+ 		int cols, rows;
+ 
+ 		cols = FBCON_SWAP(ops->rotate, info->var.xres, info->var.yres);
+ 		rows = FBCON_SWAP(ops->rotate, info->var.yres, info->var.xres);
++
++		if (fbcon_decor_active(info, vc)) {
++			info->var.xoffset = info->var.yoffset = p->yscroll = 0;
++			cols = vc->vc_decor.twidth;
++			rows = vc->vc_decor.theight;
++		}
+ 		cols /= w;
+ 		rows /= h;
++
+ 		vc_resize(vc, cols, rows);
++
+ 		if (con_is_visible(vc) && softback_buf)
+ 			fbcon_update_softback(vc);
+ 	} else if (con_is_visible(vc)
+@@ -2657,7 +2729,11 @@ static void fbcon_set_palette(struct vc_data *vc, const unsigned char *table)
+ 	int i, j, k, depth;
+ 	u8 val;
+ 
+-	if (fbcon_is_inactive(vc, info))
++	if (fbcon_is_inactive(vc, info)
++#ifdef CONFIG_FB_CON_DECOR
++			|| vc->vc_num != fg_console
++#endif
++		)
+ 		return;
+ 
+ 	if (!con_is_visible(vc))
+@@ -2683,7 +2759,47 @@ static void fbcon_set_palette(struct vc_data *vc, const unsigned char *table)
+ 	} else
+ 		fb_copy_cmap(fb_default_cmap(1 << depth), &palette_cmap);
+ 
+-	fb_set_cmap(&palette_cmap, info);
++	if (fbcon_decor_active(info, vc_cons[fg_console].d) &&
++	    info->fix.visual == FB_VISUAL_DIRECTCOLOR) {
++
++		u16 *red, *green, *blue;
++		int minlen = min(min(info->var.red.length, info->var.green.length),
++				     info->var.blue.length);
++
++		struct fb_cmap cmap = {
++			.start = 0,
++			.len = (1 << minlen),
++			.red = NULL,
++			.green = NULL,
++			.blue = NULL,
++			.transp = NULL
++		};
++
++		red = kmalloc(256 * sizeof(u16) * 3, GFP_KERNEL);
++
++		if (!red)
++			goto out;
++
++		green = red + 256;
++		blue = green + 256;
++		cmap.red = red;
++		cmap.green = green;
++		cmap.blue = blue;
++
++		for (i = 0; i < cmap.len; i++)
++			red[i] = green[i] = blue[i] = (0xffff * i)/(cmap.len-1);
++
++		fb_set_cmap(&cmap, info);
++		fbcon_decor_fix_pseudo_pal(info, vc_cons[fg_console].d);
++		kfree(red);
++
++		return;
++
++	} else if (fbcon_decor_active(info, vc_cons[fg_console].d) &&
++		   info->var.bits_per_pixel == 8 && info->bgdecor.cmap.red != NULL)
++		fb_set_cmap(&info->bgdecor.cmap, info);
++
++out:	fb_set_cmap(&palette_cmap, info);
+ }
+ 
+ static u16 *fbcon_screen_pos(struct vc_data *vc, int offset)
+@@ -2908,7 +3024,14 @@ static void fbcon_modechanged(struct fb_info *info)
+ 		rows = FBCON_SWAP(ops->rotate, info->var.yres, info->var.xres);
+ 		cols /= vc->vc_font.width;
+ 		rows /= vc->vc_font.height;
+-		vc_resize(vc, cols, rows);
++
++		if (!fbcon_decor_active_nores(info, vc)) {
++			vc_resize(vc, cols, rows);
++		} else {
++			fbcon_decor_disable(vc, 0);
++			fbcon_decor_call_helper("modechange", vc->vc_num);
++		}
++
+ 		updatescrollmode(p, info, vc);
+ 		scrollback_max = 0;
+ 		scrollback_current = 0;
+@@ -2953,7 +3076,8 @@ static void fbcon_set_all_vcs(struct fb_info *info)
+ 		rows = FBCON_SWAP(ops->rotate, info->var.yres, info->var.xres);
+ 		cols /= vc->vc_font.width;
+ 		rows /= vc->vc_font.height;
+-		vc_resize(vc, cols, rows);
++		if (!fbcon_decor_active_nores(info, vc))
++			vc_resize(vc, cols, rows);
+ 	}
+ 
+ 	if (fg != -1)
+@@ -3594,6 +3718,7 @@ static void fbcon_exit(void)
+ 		}
+ 	}
+ 
++	fbcon_decor_exit();
+ 	fbcon_has_exited = 1;
+ }
+ 
+diff --git a/drivers/video/console/fbcondecor.c b/drivers/video/console/fbcondecor.c
+new file mode 100644
+index 0000000..65cc0d3
+--- /dev/null
++++ b/drivers/video/console/fbcondecor.c
+@@ -0,0 +1,549 @@
++/*
++ *  linux/drivers/video/console/fbcondecor.c -- Framebuffer console decorations
++ *
++ *  Copyright (C) 2004-2009 Michal Januszewski <michalj+fbcondecor@gmail.com>
++ *
++ *  Code based upon "Bootsplash" (C) 2001-2003
++ *       Volker Poplawski <volker@poplawski.de>,
++ *       Stefan Reinauer <stepan@suse.de>,
++ *       Steffen Winterfeldt <snwint@suse.de>,
++ *       Michael Schroeder <mls@suse.de>,
++ *       Ken Wimer <wimer@suse.de>.
++ *
++ *  Compat ioctl support by Thorsten Klein <TK@Thorsten-Klein.de>.
++ *
++ *  This file is subject to the terms and conditions of the GNU General Public
++ *  License.  See the file COPYING in the main directory of this archive for
++ *  more details.
++ *
++ */
++#include <linux/module.h>
++#include <linux/kernel.h>
++#include <linux/string.h>
++#include <linux/types.h>
++#include <linux/fb.h>
++#include <linux/vt_kern.h>
++#include <linux/vmalloc.h>
++#include <linux/unistd.h>
++#include <linux/syscalls.h>
++#include <linux/init.h>
++#include <linux/proc_fs.h>
++#include <linux/workqueue.h>
++#include <linux/kmod.h>
++#include <linux/miscdevice.h>
++#include <linux/device.h>
++#include <linux/fs.h>
++#include <linux/compat.h>
++#include <linux/console.h>
++
++#include <linux/uaccess.h>
++#include <asm/irq.h>
++
++#include "fbcon.h"
++#include "fbcondecor.h"
++
++extern signed char con2fb_map[];
++static int fbcon_decor_enable(struct vc_data *vc);
++
++static int initialized;
++
++char fbcon_decor_path[KMOD_PATH_LEN] = "/sbin/fbcondecor_helper";
++EXPORT_SYMBOL(fbcon_decor_path);
++
++int fbcon_decor_call_helper(char *cmd, unsigned short vc)
++{
++	char *envp[] = {
++		"HOME=/",
++		"PATH=/sbin:/bin",
++		NULL
++	};
++
++	char tfb[5];
++	char tcons[5];
++	unsigned char fb = (int) con2fb_map[vc];
++
++	char *argv[] = {
++		fbcon_decor_path,
++		"2",
++		cmd,
++		tcons,
++		tfb,
++		vc_cons[vc].d->vc_decor.theme,
++		NULL
++	};
++
++	snprintf(tfb, 5, "%d", fb);
++	snprintf(tcons, 5, "%d", vc);
++
++	return call_usermodehelper(fbcon_decor_path, argv, envp, UMH_WAIT_EXEC);
++}
++
++/* Disables fbcondecor on a virtual console; called with console sem held. */
++int fbcon_decor_disable(struct vc_data *vc, unsigned char redraw)
++{
++	struct fb_info *info;
++
++	if (!vc->vc_decor.state)
++		return -EINVAL;
++
++	info = registered_fb[(int) con2fb_map[vc->vc_num]];
++
++	if (info == NULL)
++		return -EINVAL;
++
++	vc->vc_decor.state = 0;
++	vc_resize(vc, info->var.xres / vc->vc_font.width,
++		  info->var.yres / vc->vc_font.height);
++
++	if (fg_console == vc->vc_num && redraw) {
++		redraw_screen(vc, 0);
++		update_region(vc, vc->vc_origin +
++			      vc->vc_size_row * vc->vc_top,
++			      vc->vc_size_row * (vc->vc_bottom - vc->vc_top) / 2);
++	}
++
++	printk(KERN_INFO "fbcondecor: switched decor state to 'off' on console %d\n",
++			 vc->vc_num);
++
++	return 0;
++}
++
++/* Enables fbcondecor on a virtual console; called with console sem held. */
++static int fbcon_decor_enable(struct vc_data *vc)
++{
++	struct fb_info *info;
++
++	info = registered_fb[(int) con2fb_map[vc->vc_num]];
++
++	if (vc->vc_decor.twidth == 0 || vc->vc_decor.theight == 0 ||
++	    info == NULL || vc->vc_decor.state || (!info->bgdecor.data &&
++	    vc->vc_num == fg_console))
++		return -EINVAL;
++
++	vc->vc_decor.state = 1;
++	vc_resize(vc, vc->vc_decor.twidth / vc->vc_font.width,
++		  vc->vc_decor.theight / vc->vc_font.height);
++
++	if (fg_console == vc->vc_num) {
++		redraw_screen(vc, 0);
++		update_region(vc, vc->vc_origin +
++			      vc->vc_size_row * vc->vc_top,
++			      vc->vc_size_row * (vc->vc_bottom - vc->vc_top) / 2);
++		fbcon_decor_clear_margins(vc, info, 0);
++	}
++
++	printk(KERN_INFO "fbcondecor: switched decor state to 'on' on console %d\n",
++			 vc->vc_num);
++
++	return 0;
++}
++
++static inline int fbcon_decor_ioctl_dosetstate(struct vc_data *vc, unsigned int state, unsigned char origin)
++{
++	int ret;
++
++	console_lock();
++	if (!state)
++		ret = fbcon_decor_disable(vc, 1);
++	else
++		ret = fbcon_decor_enable(vc);
++	console_unlock();
++
++	return ret;
++}
++
++static inline void fbcon_decor_ioctl_dogetstate(struct vc_data *vc, unsigned int *state)
++{
++	*state = vc->vc_decor.state;
++}
++
++static int fbcon_decor_ioctl_dosetcfg(struct vc_data *vc, struct vc_decor *cfg, unsigned char origin)
++{
++	struct fb_info *info;
++	int len;
++	char *tmp;
++
++	info = registered_fb[(int) con2fb_map[vc->vc_num]];
++
++	if (info == NULL || !cfg->twidth || !cfg->theight ||
++	    cfg->tx + cfg->twidth  > info->var.xres ||
++	    cfg->ty + cfg->theight > info->var.yres)
++		return -EINVAL;
++
++	len = strlen_user(cfg->theme);
++	if (!len || len > FBCON_DECOR_THEME_LEN)
++		return -EINVAL;
++	tmp = kmalloc(len, GFP_KERNEL);
++	if (!tmp)
++		return -ENOMEM;
++	if (copy_from_user(tmp, (void __user *)cfg->theme, len))
++		return -EFAULT;
++	cfg->theme = tmp;
++	cfg->state = 0;
++
++	console_lock();
++	if (vc->vc_decor.state)
++		fbcon_decor_disable(vc, 1);
++	kfree(vc->vc_decor.theme);
++	vc->vc_decor = *cfg;
++	console_unlock();
++
++	printk(KERN_INFO "fbcondecor: console %d using theme '%s'\n",
++			 vc->vc_num, vc->vc_decor.theme);
++	return 0;
++}
++
++static int fbcon_decor_ioctl_dogetcfg(struct vc_data *vc,
++					struct vc_decor *decor)
++{
++	char __user *tmp;
++
++	tmp = decor->theme;
++	*decor = vc->vc_decor;
++	decor->theme = tmp;
++
++	if (vc->vc_decor.theme) {
++		if (copy_to_user(tmp, vc->vc_decor.theme,
++					strlen(vc->vc_decor.theme) + 1))
++			return -EFAULT;
++	} else
++		if (put_user(0, tmp))
++			return -EFAULT;
++
++	return 0;
++}
++
++static int fbcon_decor_ioctl_dosetpic(struct vc_data *vc, struct fb_image *img,
++						unsigned char origin)
++{
++	struct fb_info *info;
++	int len;
++	u8 *tmp;
++
++	if (vc->vc_num != fg_console)
++		return -EINVAL;
++
++	info = registered_fb[(int) con2fb_map[vc->vc_num]];
++
++	if (info == NULL)
++		return -EINVAL;
++
++	if (img->width != info->var.xres || img->height != info->var.yres) {
++		printk(KERN_ERR "fbcondecor: picture dimensions mismatch\n");
++		printk(KERN_ERR "%dx%d vs %dx%d\n", img->width, img->height,
++				info->var.xres, info->var.yres);
++		return -EINVAL;
++	}
++
++	if (img->depth != info->var.bits_per_pixel) {
++		printk(KERN_ERR "fbcondecor: picture depth mismatch\n");
++		return -EINVAL;
++	}
++
++	if (img->depth == 8) {
++		if (!img->cmap.len || !img->cmap.red || !img->cmap.green ||
++		    !img->cmap.blue)
++			return -EINVAL;
++
++		tmp = vmalloc(img->cmap.len * 3 * 2);
++		if (!tmp)
++			return -ENOMEM;
++
++		if (copy_from_user(tmp,
++				(void __user *)img->cmap.red,
++						(img->cmap.len << 1)) ||
++			copy_from_user(tmp + (img->cmap.len << 1),
++				(void __user *)img->cmap.green,
++						(img->cmap.len << 1)) ||
++			copy_from_user(tmp + (img->cmap.len << 2),
++				(void __user *)img->cmap.blue,
++						(img->cmap.len << 1))) {
++			vfree(tmp);
++			return -EFAULT;
++		}
++
++		img->cmap.transp = NULL;
++		img->cmap.red = (u16 *)tmp;
++		img->cmap.green = img->cmap.red + img->cmap.len;
++		img->cmap.blue = img->cmap.green + img->cmap.len;
++	} else {
++		img->cmap.red = NULL;
++	}
++
++	len = ((img->depth + 7) >> 3) * img->width * img->height;
++
++	/*
++	 * Allocate an additional byte so that we never go outside of the
++	 * buffer boundaries in the rendering functions in a 24 bpp mode.
++	 */
++	tmp = vmalloc(len + 1);
++
++	if (!tmp)
++		goto out;
++
++	if (copy_from_user(tmp, (void __user *)img->data, len))
++		goto out;
++
++	img->data = tmp;
++
++	console_lock();
++
++	if (info->bgdecor.data)
++		vfree((u8 *)info->bgdecor.data);
++	if (info->bgdecor.cmap.red)
++		vfree(info->bgdecor.cmap.red);
++
++	info->bgdecor = *img;
++
++	if (fbcon_decor_active_vc(vc) && fg_console == vc->vc_num) {
++		redraw_screen(vc, 0);
++		update_region(vc, vc->vc_origin +
++			      vc->vc_size_row * vc->vc_top,
++			      vc->vc_size_row * (vc->vc_bottom - vc->vc_top) / 2);
++		fbcon_decor_clear_margins(vc, info, 0);
++	}
++
++	console_unlock();
++
++	return 0;
++
++out:
++	if (img->cmap.red)
++		vfree(img->cmap.red);
++
++	if (tmp)
++		vfree(tmp);
++	return -ENOMEM;
++}
++
++static long fbcon_decor_ioctl(struct file *filp, u_int cmd, u_long arg)
++{
++	struct fbcon_decor_iowrapper __user *wrapper = (void __user *) arg;
++	struct vc_data *vc = NULL;
++	unsigned short vc_num = 0;
++	unsigned char origin = 0;
++	void __user *data = NULL;
++
++	if (!access_ok(VERIFY_READ, wrapper,
++			sizeof(struct fbcon_decor_iowrapper)))
++		return -EFAULT;
++
++	__get_user(vc_num, &wrapper->vc);
++	__get_user(origin, &wrapper->origin);
++	__get_user(data, &wrapper->data);
++
++	if (!vc_cons_allocated(vc_num))
++		return -EINVAL;
++
++	vc = vc_cons[vc_num].d;
++
++	switch (cmd) {
++	case FBIOCONDECOR_SETPIC:
++	{
++		struct fb_image img;
++
++		if (copy_from_user(&img, (struct fb_image __user *)data, sizeof(struct fb_image)))
++			return -EFAULT;
++
++		return fbcon_decor_ioctl_dosetpic(vc, &img, origin);
++	}
++	case FBIOCONDECOR_SETCFG:
++	{
++		struct vc_decor cfg;
++
++		if (copy_from_user(&cfg, (struct vc_decor __user *)data, sizeof(struct vc_decor)))
++			return -EFAULT;
++
++		return fbcon_decor_ioctl_dosetcfg(vc, &cfg, origin);
++	}
++	case FBIOCONDECOR_GETCFG:
++	{
++		int rval;
++		struct vc_decor cfg;
++
++		if (copy_from_user(&cfg, (struct vc_decor __user *)data, sizeof(struct vc_decor)))
++			return -EFAULT;
++
++		rval = fbcon_decor_ioctl_dogetcfg(vc, &cfg);
++
++		if (copy_to_user(data, &cfg, sizeof(struct vc_decor)))
++			return -EFAULT;
++		return rval;
++	}
++	case FBIOCONDECOR_SETSTATE:
++	{
++		unsigned int state = 0;
++
++		if (get_user(state, (unsigned int __user *)data))
++			return -EFAULT;
++		return fbcon_decor_ioctl_dosetstate(vc, state, origin);
++	}
++	case FBIOCONDECOR_GETSTATE:
++	{
++		unsigned int state = 0;
++
++		fbcon_decor_ioctl_dogetstate(vc, &state);
++		return put_user(state, (unsigned int __user *)data);
++	}
++
++	default:
++		return -ENOIOCTLCMD;
++	}
++}
++
++#ifdef CONFIG_COMPAT
++
++static long fbcon_decor_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
++{
++	struct fbcon_decor_iowrapper32 __user *wrapper = (void __user *)arg;
++	struct vc_data *vc = NULL;
++	unsigned short vc_num = 0;
++	unsigned char origin = 0;
++	compat_uptr_t data_compat = 0;
++	void __user *data = NULL;
++
++	if (!access_ok(VERIFY_READ, wrapper,
++			sizeof(struct fbcon_decor_iowrapper32)))
++		return -EFAULT;
++
++	__get_user(vc_num, &wrapper->vc);
++	__get_user(origin, &wrapper->origin);
++	__get_user(data_compat, &wrapper->data);
++	data = compat_ptr(data_compat);
++
++	if (!vc_cons_allocated(vc_num))
++		return -EINVAL;
++
++	vc = vc_cons[vc_num].d;
++
++	switch (cmd) {
++	case FBIOCONDECOR_SETPIC32:
++	{
++		struct fb_image32 img_compat;
++		struct fb_image img;
++
++		if (copy_from_user(&img_compat, (struct fb_image32 __user *)data, sizeof(struct fb_image32)))
++			return -EFAULT;
++
++		fb_image_from_compat(img, img_compat);
++
++		return fbcon_decor_ioctl_dosetpic(vc, &img, origin);
++	}
++
++	case FBIOCONDECOR_SETCFG32:
++	{
++		struct vc_decor32 cfg_compat;
++		struct vc_decor cfg;
++
++		if (copy_from_user(&cfg_compat, (struct vc_decor32 __user *)data, sizeof(struct vc_decor32)))
++			return -EFAULT;
++
++		vc_decor_from_compat(cfg, cfg_compat);
++
++		return fbcon_decor_ioctl_dosetcfg(vc, &cfg, origin);
++	}
++
++	case FBIOCONDECOR_GETCFG32:
++	{
++		int rval;
++		struct vc_decor32 cfg_compat;
++		struct vc_decor cfg;
++
++		if (copy_from_user(&cfg_compat, (struct vc_decor32 __user *)data, sizeof(struct vc_decor32)))
++			return -EFAULT;
++		cfg.theme = compat_ptr(cfg_compat.theme);
++
++		rval = fbcon_decor_ioctl_dogetcfg(vc, &cfg);
++
++		vc_decor_to_compat(cfg_compat, cfg);
++
++		if (copy_to_user((struct vc_decor32 __user *)data, &cfg_compat, sizeof(struct vc_decor32)))
++			return -EFAULT;
++		return rval;
++	}
++
++	case FBIOCONDECOR_SETSTATE32:
++	{
++		compat_uint_t state_compat = 0;
++		unsigned int state = 0;
++
++		if (get_user(state_compat, (compat_uint_t __user *)data))
++			return -EFAULT;
++
++		state = (unsigned int)state_compat;
++
++		return fbcon_decor_ioctl_dosetstate(vc, state, origin);
++	}
++
++	case FBIOCONDECOR_GETSTATE32:
++	{
++		compat_uint_t state_compat = 0;
++		unsigned int state = 0;
++
++		fbcon_decor_ioctl_dogetstate(vc, &state);
++		state_compat = (compat_uint_t)state;
++
++		return put_user(state_compat, (compat_uint_t __user *)data);
++	}
++
++	default:
++		return -ENOIOCTLCMD;
++	}
++}
++#else
++  #define fbcon_decor_compat_ioctl NULL
++#endif
++
++static struct file_operations fbcon_decor_ops = {
++	.owner = THIS_MODULE,
++	.unlocked_ioctl = fbcon_decor_ioctl,
++	.compat_ioctl = fbcon_decor_compat_ioctl
++};
++
++static struct miscdevice fbcon_decor_dev = {
++	.minor = MISC_DYNAMIC_MINOR,
++	.name = "fbcondecor",
++	.fops = &fbcon_decor_ops
++};
++
++void fbcon_decor_reset(void)
++{
++	int i;
++
++	for (i = 0; i < num_registered_fb; i++) {
++		registered_fb[i]->bgdecor.data = NULL;
++		registered_fb[i]->bgdecor.cmap.red = NULL;
++	}
++
++	for (i = 0; i < MAX_NR_CONSOLES && vc_cons[i].d; i++) {
++		vc_cons[i].d->vc_decor.state = vc_cons[i].d->vc_decor.twidth =
++						vc_cons[i].d->vc_decor.theight = 0;
++		vc_cons[i].d->vc_decor.theme = NULL;
++	}
++}
++
++int fbcon_decor_init(void)
++{
++	int i;
++
++	fbcon_decor_reset();
++
++	if (initialized)
++		return 0;
++
++	i = misc_register(&fbcon_decor_dev);
++	if (i) {
++		printk(KERN_ERR "fbcondecor: failed to register device\n");
++		return i;
++	}
++
++	fbcon_decor_call_helper("init", 0);
++	initialized = 1;
++	return 0;
++}
++
++int fbcon_decor_exit(void)
++{
++	fbcon_decor_reset();
++	return 0;
++}
+diff --git a/drivers/video/console/fbcondecor.h b/drivers/video/console/fbcondecor.h
+new file mode 100644
+index 0000000..c49386c
+--- /dev/null
++++ b/drivers/video/console/fbcondecor.h
+@@ -0,0 +1,77 @@
++/*
++ *  linux/drivers/video/console/fbcondecor.h -- Framebuffer Console Decoration headers
++ *
++ *  Copyright (C) 2004 Michal Januszewski <michalj+fbcondecor@gmail.com>
++ *
++ */
++
++#ifndef __FBCON_DECOR_H
++#define __FBCON_DECOR_H
++
++#ifndef _LINUX_FB_H
++#include <linux/fb.h>
++#endif
++
++/* This is needed for vc_cons in fbcmap.c */
++#include <linux/vt_kern.h>
++
++struct fb_cursor;
++struct fb_info;
++struct vc_data;
++
++#ifdef CONFIG_FB_CON_DECOR
++/* fbcondecor.c */
++int fbcon_decor_init(void);
++int fbcon_decor_exit(void);
++int fbcon_decor_call_helper(char *cmd, unsigned short cons);
++int fbcon_decor_disable(struct vc_data *vc, unsigned char redraw);
++
++/* cfbcondecor.c */
++void fbcon_decor_putcs(struct vc_data *vc, struct fb_info *info, const unsigned short *s, int count, int yy, int xx);
++void fbcon_decor_cursor(struct fb_info *info, struct fb_cursor *cursor);
++void fbcon_decor_clear(struct vc_data *vc, struct fb_info *info, int sy, int sx, int height, int width);
++void fbcon_decor_clear_margins(struct vc_data *vc, struct fb_info *info, int bottom_only);
++void fbcon_decor_blank(struct vc_data *vc, struct fb_info *info, int blank);
++void fbcon_decor_bmove_redraw(struct vc_data *vc, struct fb_info *info, int y, int sx, int dx, int width);
++void fbcon_decor_copy(u8 *dst, u8 *src, int height, int width, int linebytes, int srclinesbytes, int bpp);
++void fbcon_decor_fix_pseudo_pal(struct fb_info *info, struct vc_data *vc);
++
++/* vt.c */
++void acquire_console_sem(void);
++void release_console_sem(void);
++void do_unblank_screen(int entering_gfx);
++
++/* struct vc_data *y */
++#define fbcon_decor_active_vc(y) (y->vc_decor.state && y->vc_decor.theme)
++
++/* struct fb_info *x, struct vc_data *y */
++#define fbcon_decor_active_nores(x, y) (x->bgdecor.data && fbcon_decor_active_vc(y))
++
++/* struct fb_info *x, struct vc_data *y */
++#define fbcon_decor_active(x, y) (fbcon_decor_active_nores(x, y) &&	\
++				x->bgdecor.width == x->var.xres &&	\
++				x->bgdecor.height == x->var.yres &&	\
++				x->bgdecor.depth == x->var.bits_per_pixel)
++
++#else /* CONFIG_FB_CON_DECOR */
++
++static inline void fbcon_decor_putcs(struct vc_data *vc, struct fb_info *info, const unsigned short *s, int count, int yy, int xx) {}
++static inline void fbcon_decor_putc(struct vc_data *vc, struct fb_info *info, int c, int ypos, int xpos) {}
++static inline void fbcon_decor_cursor(struct fb_info *info, struct fb_cursor *cursor) {}
++static inline void fbcon_decor_clear(struct vc_data *vc, struct fb_info *info, int sy, int sx, int height, int width) {}
++static inline void fbcon_decor_clear_margins(struct vc_data *vc, struct fb_info *info, int bottom_only) {}
++static inline void fbcon_decor_blank(struct vc_data *vc, struct fb_info *info, int blank) {}
++static inline void fbcon_decor_bmove_redraw(struct vc_data *vc, struct fb_info *info, int y, int sx, int dx, int width) {}
++static inline void fbcon_decor_fix_pseudo_pal(struct fb_info *info, struct vc_data *vc) {}
++static inline int fbcon_decor_call_helper(char *cmd, unsigned short cons) { return 0; }
++static inline int fbcon_decor_init(void) { return 0; }
++static inline int fbcon_decor_exit(void) { return 0; }
++static inline int fbcon_decor_disable(struct vc_data *vc, unsigned char redraw) { return 0; }
++
++#define fbcon_decor_active_vc(y) (0)
++#define fbcon_decor_active_nores(x, y) (0)
++#define fbcon_decor_active(x, y) (0)
++
++#endif /* CONFIG_FB_CON_DECOR */
++
++#endif /* __FBCON_DECOR_H */
+diff --git a/drivers/video/fbdev/Kconfig b/drivers/video/fbdev/Kconfig
+index 88b008f..c84113d 100644
+--- a/drivers/video/fbdev/Kconfig
++++ b/drivers/video/fbdev/Kconfig
+@@ -1216,7 +1216,6 @@ config FB_MATROX
+ 	select FB_CFB_FILLRECT
+ 	select FB_CFB_COPYAREA
+ 	select FB_CFB_IMAGEBLIT
+-	select FB_TILEBLITTING
+ 	select FB_MACMODES if PPC_PMAC
+ 	---help---
+ 	  Say Y here if you have a Matrox Millennium, Matrox Millennium II,
+diff --git a/drivers/video/fbdev/core/fbcmap.c b/drivers/video/fbdev/core/fbcmap.c
+index f89245b..c2c12ce 100644
+--- a/drivers/video/fbdev/core/fbcmap.c
++++ b/drivers/video/fbdev/core/fbcmap.c
+@@ -17,6 +17,8 @@
+ #include <linux/slab.h>
+ #include <linux/uaccess.h>
+ 
++#include "../../console/fbcondecor.h"
++
+ static u16 red2[] __read_mostly = {
+     0x0000, 0xaaaa
+ };
+@@ -254,9 +256,12 @@ int fb_set_cmap(struct fb_cmap *cmap, struct fb_info *info)
+ 				break;
+ 		}
+ 	}
+-	if (rc == 0)
++	if (rc == 0) {
+ 		fb_copy_cmap(cmap, &info->cmap);
+-
++		if (fbcon_decor_active(info, vc_cons[fg_console].d) &&
++		    info->fix.visual == FB_VISUAL_DIRECTCOLOR)
++			fbcon_decor_fix_pseudo_pal(info, vc_cons[fg_console].d);
++	}
+ 	return rc;
+ }
+ 
+diff --git a/drivers/video/fbdev/core/fbmem.c b/drivers/video/fbdev/core/fbmem.c
+index 76c1ad9..fafc0af 100644
+--- a/drivers/video/fbdev/core/fbmem.c
++++ b/drivers/video/fbdev/core/fbmem.c
+@@ -1251,15 +1251,6 @@ struct fb_fix_screeninfo32 {
+ 	u16			reserved[3];
+ };
+ 
+-struct fb_cmap32 {
+-	u32			start;
+-	u32			len;
+-	compat_caddr_t	red;
+-	compat_caddr_t	green;
+-	compat_caddr_t	blue;
+-	compat_caddr_t	transp;
+-};
+-
+ static int fb_getput_cmap(struct fb_info *info, unsigned int cmd,
+ 			  unsigned long arg)
+ {
+diff --git a/include/linux/console_decor.h b/include/linux/console_decor.h
+new file mode 100644
+index 0000000..1514355
+--- /dev/null
++++ b/include/linux/console_decor.h
+@@ -0,0 +1,46 @@
++#ifndef _LINUX_CONSOLE_DECOR_H_
++#define _LINUX_CONSOLE_DECOR_H_ 1
++
++/* A structure used by the framebuffer console decorations (drivers/video/console/fbcondecor.c) */
++struct vc_decor {
++	__u8 bg_color;				/* The color that is to be treated as transparent */
++	__u8 state;				/* Current decor state: 0 = off, 1 = on */
++	__u16 tx, ty;				/* Top left corner coordinates of the text field */
++	__u16 twidth, theight;			/* Width and height of the text field */
++	char *theme;
++};
++
++#ifdef __KERNEL__
++#ifdef CONFIG_COMPAT
++#include <linux/compat.h>
++
++struct vc_decor32 {
++	__u8 bg_color;				/* The color that is to be treated as transparent */
++	__u8 state;				/* Current decor state: 0 = off, 1 = on */
++	__u16 tx, ty;				/* Top left corner coordinates of the text field */
++	__u16 twidth, theight;			/* Width and height of the text field */
++	compat_uptr_t theme;
++};
++
++#define vc_decor_from_compat(to, from) \
++	(to).bg_color = (from).bg_color; \
++	(to).state    = (from).state; \
++	(to).tx       = (from).tx; \
++	(to).ty       = (from).ty; \
++	(to).twidth   = (from).twidth; \
++	(to).theight  = (from).theight; \
++	(to).theme    = compat_ptr((from).theme)
++
++#define vc_decor_to_compat(to, from) \
++	(to).bg_color = (from).bg_color; \
++	(to).state    = (from).state; \
++	(to).tx       = (from).tx; \
++	(to).ty       = (from).ty; \
++	(to).twidth   = (from).twidth; \
++	(to).theight  = (from).theight; \
++	(to).theme    = ptr_to_compat((from).theme)
++
++#endif /* CONFIG_COMPAT */
++#endif /* __KERNEL__ */
++
++#endif
+diff --git a/include/linux/console_struct.h b/include/linux/console_struct.h
+index 6fd3c90..c649555 100644
+--- a/include/linux/console_struct.h
++++ b/include/linux/console_struct.h
+@@ -20,6 +20,7 @@ struct vt_struct;
+ struct uni_pagedir;
+ 
+ #define NPAR 16
++#include <linux/console_decor.h>
+ 
+ /*
+  * Example: vc_data of a console that was scrolled 3 lines down.
+@@ -140,6 +141,8 @@ struct vc_data {
+ 	struct uni_pagedir *vc_uni_pagedir;
+ 	struct uni_pagedir **vc_uni_pagedir_loc; /* [!] Location of uni_pagedir variable for this console */
+ 	bool vc_panic_force_write; /* when oops/panic this VC can accept forced output/blanking */
++
++	struct vc_decor vc_decor;
+ 	/* additional information is in vt_kern.h */
+ };
+ 
+diff --git a/include/linux/fb.h b/include/linux/fb.h
+index a964d07..672cc64 100644
+--- a/include/linux/fb.h
++++ b/include/linux/fb.h
+@@ -238,6 +238,34 @@ struct fb_deferred_io {
+ };
+ #endif
+ 
++#ifdef __KERNEL__
++#ifdef CONFIG_COMPAT
++struct fb_image32 {
++	__u32 dx;			/* Where to place image */
++	__u32 dy;
++	__u32 width;			/* Size of image */
++	__u32 height;
++	__u32 fg_color;			/* Only used when a mono bitmap */
++	__u32 bg_color;
++	__u8  depth;			/* Depth of the image */
++	const compat_uptr_t data;	/* Pointer to image data */
++	struct fb_cmap32 cmap;		/* color map info */
++};
++
++#define fb_image_from_compat(to, from) \
++	(to).dx       = (from).dx; \
++	(to).dy       = (from).dy; \
++	(to).width    = (from).width; \
++	(to).height   = (from).height; \
++	(to).fg_color = (from).fg_color; \
++	(to).bg_color = (from).bg_color; \
++	(to).depth    = (from).depth; \
++	(to).data     = compat_ptr((from).data); \
++	fb_cmap_from_compat((to).cmap, (from).cmap)
++
++#endif /* CONFIG_COMPAT */
++#endif /* __KERNEL__ */
++
+ /*
+  * Frame buffer operations
+  *
+@@ -508,6 +536,9 @@ struct fb_info {
+ #define FBINFO_STATE_SUSPENDED	1
+ 	u32 state;			/* Hardware state i.e suspend */
+ 	void *fbcon_par;                /* fbcon use-only private area */
++
++	struct fb_image bgdecor;
++
+ 	/* From here on everything is device dependent */
+ 	void *par;
+ 	/* we need the PCI or similar aperture base/size not
+diff --git a/include/uapi/linux/fb.h b/include/uapi/linux/fb.h
+index fb795c3..4b57c67 100644
+--- a/include/uapi/linux/fb.h
++++ b/include/uapi/linux/fb.h
+@@ -8,6 +8,23 @@
+ 
+ #define FB_MAX			32	/* sufficient for now */
+ 
++struct fbcon_decor_iowrapper {
++	unsigned short vc;		/* Virtual console */
++	unsigned char origin;		/* Point of origin of the request */
++	void *data;
++};
++
++#ifdef __KERNEL__
++#ifdef CONFIG_COMPAT
++#include <linux/compat.h>
++struct fbcon_decor_iowrapper32 {
++	unsigned short vc;		/* Virtual console */
++	unsigned char origin;		/* Point of origin of the request */
++	compat_uptr_t data;
++};
++#endif /* CONFIG_COMPAT */
++#endif /* __KERNEL__ */
++
+ /* ioctls
+    0x46 is 'F'								*/
+ #define FBIOGET_VSCREENINFO	0x4600
+@@ -35,6 +52,25 @@
+ #define FBIOGET_DISPINFO        0x4618
+ #define FBIO_WAITFORVSYNC	_IOW('F', 0x20, __u32)
+ 
++#define FBIOCONDECOR_SETCFG	_IOWR('F', 0x19, struct fbcon_decor_iowrapper)
++#define FBIOCONDECOR_GETCFG	_IOR('F', 0x1A, struct fbcon_decor_iowrapper)
++#define FBIOCONDECOR_SETSTATE	_IOWR('F', 0x1B, struct fbcon_decor_iowrapper)
++#define FBIOCONDECOR_GETSTATE	_IOR('F', 0x1C, struct fbcon_decor_iowrapper)
++#define FBIOCONDECOR_SETPIC	_IOWR('F', 0x1D, struct fbcon_decor_iowrapper)
++#ifdef __KERNEL__
++#ifdef CONFIG_COMPAT
++#define FBIOCONDECOR_SETCFG32	_IOWR('F', 0x19, struct fbcon_decor_iowrapper32)
++#define FBIOCONDECOR_GETCFG32	_IOR('F', 0x1A, struct fbcon_decor_iowrapper32)
++#define FBIOCONDECOR_SETSTATE32	_IOWR('F', 0x1B, struct fbcon_decor_iowrapper32)
++#define FBIOCONDECOR_GETSTATE32	_IOR('F', 0x1C, struct fbcon_decor_iowrapper32)
++#define FBIOCONDECOR_SETPIC32	_IOWR('F', 0x1D, struct fbcon_decor_iowrapper32)
++#endif /* CONFIG_COMPAT */
++#endif /* __KERNEL__ */
++
++#define FBCON_DECOR_THEME_LEN		128	/* Maximum length of a theme name */
++#define FBCON_DECOR_IO_ORIG_KERNEL	0	/* Kernel ioctl origin */
++#define FBCON_DECOR_IO_ORIG_USER	1	/* User ioctl origin */
++
+ #define FB_TYPE_PACKED_PIXELS		0	/* Packed Pixels	*/
+ #define FB_TYPE_PLANES			1	/* Non interleaved planes */
+ #define FB_TYPE_INTERLEAVED_PLANES	2	/* Interleaved planes	*/
+@@ -277,6 +313,29 @@ struct fb_var_screeninfo {
+ 	__u32 reserved[4];		/* Reserved for future compatibility */
+ };
+ 
++#ifdef __KERNEL__
++#ifdef CONFIG_COMPAT
++struct fb_cmap32 {
++	__u32 start;
++	__u32 len;			/* Number of entries */
++	compat_uptr_t red;		/* Red values	*/
++	compat_uptr_t green;
++	compat_uptr_t blue;
++	compat_uptr_t transp;		/* transparency, can be NULL */
++};
++
++#define fb_cmap_from_compat(to, from) \
++	(to).start  = (from).start; \
++	(to).len    = (from).len; \
++	(to).red    = compat_ptr((from).red); \
++	(to).green  = compat_ptr((from).green); \
++	(to).blue   = compat_ptr((from).blue); \
++	(to).transp = compat_ptr((from).transp)
++
++#endif /* CONFIG_COMPAT */
++#endif /* __KERNEL__ */
++
++
+ struct fb_cmap {
+ 	__u32 start;			/* First entry	*/
+ 	__u32 len;			/* Number of entries */
+diff --git a/kernel/sysctl.c b/kernel/sysctl.c
+index 6ee416e..d2c2425 100644
+--- a/kernel/sysctl.c
++++ b/kernel/sysctl.c
+@@ -149,6 +149,10 @@ static const int cap_last_cap = CAP_LAST_CAP;
+ static unsigned long hung_task_timeout_max = (LONG_MAX/HZ);
+ #endif
+ 
++#ifdef CONFIG_FB_CON_DECOR
++extern char fbcon_decor_path[];
++#endif
++
+ #ifdef CONFIG_INOTIFY_USER
+ #include <linux/inotify.h>
+ #endif
+@@ -266,6 +270,15 @@ static struct ctl_table sysctl_base_table[] = {
+ 		.mode		= 0555,
+ 		.child		= dev_table,
+ 	},
++#ifdef CONFIG_FB_CON_DECOR
++	{
++		.procname	= "fbcondecor",
++		.data		= &fbcon_decor_path,
++		.maxlen		= KMOD_PATH_LEN,
++		.mode		= 0644,
++		.proc_handler	= &proc_dostring,
++	},
++#endif
+ 	{ }
+ };
+ 

diff --git a/4400_alpha-sysctl-uac.patch b/4400_alpha-sysctl-uac.patch
new file mode 100644
index 0000000..d42b4ed
--- /dev/null
+++ b/4400_alpha-sysctl-uac.patch
@@ -0,0 +1,142 @@
+diff --git a/arch/alpha/Kconfig b/arch/alpha/Kconfig
+index 7f312d8..1eb686b 100644
+--- a/arch/alpha/Kconfig
++++ b/arch/alpha/Kconfig
+@@ -697,6 +697,33 @@ config HZ
+ 	default 1200 if HZ_1200
+ 	default 1024
+
++config ALPHA_UAC_SYSCTL
++       bool "Configure UAC policy via sysctl"
++       depends on SYSCTL
++       default y
++       ---help---
++         Configuring the UAC (unaligned access control) policy on a Linux
++         system usually involves setting a compile time define. If you say
++         Y here, you will be able to modify the UAC policy at runtime using
++         the /proc interface.
++
++         The UAC policy defines the action Linux should take when an
++         unaligned memory access occurs. The action can include printing a
++         warning message (NOPRINT), sending a signal to the offending
++         program to help developers debug their applications (SIGBUS), or
++         disabling the transparent fixing (NOFIX).
++
++         The sysctls will be initialized to the compile-time defined UAC
++         policy. You can change these manually, or with the sysctl(8)
++         userspace utility.
++
++         To disable the warning messages at runtime, you would use
++
++           echo 1 > /proc/sys/kernel/uac/noprint
++
++         This is pretty harmless. Say Y if you're not sure.
++
++
+ source "drivers/pci/Kconfig"
+ source "drivers/eisa/Kconfig"
+
+diff --git a/arch/alpha/kernel/traps.c b/arch/alpha/kernel/traps.c
+index 74aceea..cb35d80 100644
+--- a/arch/alpha/kernel/traps.c
++++ b/arch/alpha/kernel/traps.c
+@@ -103,6 +103,49 @@ static char * ireg_name[] = {"v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
+ 			   "t10", "t11", "ra", "pv", "at", "gp", "sp", "zero"};
+ #endif
+
++#ifdef CONFIG_ALPHA_UAC_SYSCTL
++
++#include <linux/sysctl.h>
++
++static int enabled_noprint = 0;
++static int enabled_sigbus = 0;
++static int enabled_nofix = 0;
++
++struct ctl_table uac_table[] = {
++       {
++               .procname       = "noprint",
++               .data           = &enabled_noprint,
++               .maxlen         = sizeof (int),
++               .mode           = 0644,
++               .proc_handler = &proc_dointvec,
++       },
++       {
++               .procname       = "sigbus",
++               .data           = &enabled_sigbus,
++               .maxlen         = sizeof (int),
++               .mode           = 0644,
++               .proc_handler = &proc_dointvec,
++       },
++       {
++               .procname       = "nofix",
++               .data           = &enabled_nofix,
++               .maxlen         = sizeof (int),
++               .mode           = 0644,
++               .proc_handler = &proc_dointvec,
++       },
++       { }
++};
++
++static int __init init_uac_sysctl(void)
++{
++   /* Initialize sysctls with the #defined UAC policy */
++   enabled_noprint = (test_thread_flag (TS_UAC_NOPRINT)) ? 1 : 0;
++   enabled_sigbus = (test_thread_flag (TS_UAC_SIGBUS)) ? 1 : 0;
++   enabled_nofix = (test_thread_flag (TS_UAC_NOFIX)) ? 1 : 0;
++   return 0;
++}
++#endif
++
+ static void
+ dik_show_code(unsigned int *pc)
+ {
+@@ -785,7 +828,12 @@ do_entUnaUser(void __user * va, unsigned long opcode,
+ 	/* Check the UAC bits to decide what the user wants us to do
+ 	   with the unaliged access.  */
+
++#ifndef CONFIG_ALPHA_UAC_SYSCTL
+ 	if (!(current_thread_info()->status & TS_UAC_NOPRINT)) {
++#else  /* CONFIG_ALPHA_UAC_SYSCTL */
++	if (!(current_thread_info()->status & TS_UAC_NOPRINT) &&
++	    !(enabled_noprint)) {
++#endif /* CONFIG_ALPHA_UAC_SYSCTL */
+ 		if (__ratelimit(&ratelimit)) {
+ 			printk("%s(%d): unaligned trap at %016lx: %p %lx %ld\n",
+ 			       current->comm, task_pid_nr(current),
+@@ -1090,3 +1138,6 @@ trap_init(void)
+ 	wrent(entSys, 5);
+ 	wrent(entDbg, 6);
+ }
++#ifdef CONFIG_ALPHA_UAC_SYSCTL
++       __initcall(init_uac_sysctl);
++#endif
+diff --git a/kernel/sysctl.c b/kernel/sysctl.c
+index 87b2fc3..55021a8 100644
+--- a/kernel/sysctl.c
++++ b/kernel/sysctl.c
+@@ -152,6 +152,11 @@ static unsigned long hung_task_timeout_max = (LONG_MAX/HZ);
+ #ifdef CONFIG_INOTIFY_USER
+ #include <linux/inotify.h>
+ #endif
++
++#ifdef CONFIG_ALPHA_UAC_SYSCTL
++extern struct ctl_table uac_table[];
++#endif
++
+ #ifdef CONFIG_SPARC
+ #endif
+
+@@ -1844,6 +1849,13 @@ static struct ctl_table debug_table[] = {
+ 		.extra2		= &one,
+ 	},
+ #endif
++#ifdef CONFIG_ALPHA_UAC_SYSCTL
++	{
++	        .procname   = "uac",
++		.mode       = 0555,
++	        .child      = uac_table,
++	 },
++#endif /* CONFIG_ALPHA_UAC_SYSCTL */
+ 	{ }
+ };
+

diff --git a/5010_enable-additional-cpu-optimizations-for-gcc.patch b/5010_enable-additional-cpu-optimizations-for-gcc.patch
new file mode 100644
index 0000000..d9729b2
--- /dev/null
+++ b/5010_enable-additional-cpu-optimizations-for-gcc.patch
@@ -0,0 +1,426 @@
+WARNING - this version of the patch works with version 4.9+ of gcc and with
+kernel version 3.15.x+ and should NOT be applied when compiling on older
+versions due to name changes of the flags with the 4.9 release of gcc.
+Use the older version of this patch hosted on the same github for older
+versions of gcc. For example:
+
+corei7 --> nehalem
+corei7-avx --> sandybridge
+core-avx-i --> ivybridge
+core-avx2 --> haswell
+
+For more, see: https://gcc.gnu.org/gcc-4.9/changes.html
+
+It also changes 'atom' to 'bonnell' in accordance with the gcc v4.9 changes.
+Note that upstream is using the deprecated 'match=atom' flags when I believe it
+should use the newer 'march=bonnell' flag for atom processors.
+
+I have made that change to this patch set as well.  See the following kernel
+bug report to see if I'm right: https://bugzilla.kernel.org/show_bug.cgi?id=77461
+
+This patch will expand the number of microarchitectures to include newer
+processors including: AMD K10-family, AMD Family 10h (Barcelona), AMD Family
+14h (Bobcat), AMD Family 15h (Bulldozer), AMD Family 15h (Piledriver), AMD
+Family 15h (Steamroller), Family 16h (Jaguar), Intel 1st Gen Core i3/i5/i7
+(Nehalem), Intel 1.5 Gen Core i3/i5/i7 (Westmere), Intel 2nd Gen Core i3/i5/i7
+(Sandybridge), Intel 3rd Gen Core i3/i5/i7 (Ivybridge), Intel 4th Gen Core
+i3/i5/i7 (Haswell), Intel 5th Gen Core i3/i5/i7 (Broadwell), and the low power
+Silvermont series of Atom processors (Silvermont). It also offers the compiler
+the 'native' flag.
+
+Small but real speed increases are measurable using a make endpoint comparing
+a generic kernel to one built with one of the respective microarchs.
+
+See the following experimental evidence supporting this statement:
+https://github.com/graysky2/kernel_gcc_patch
+
+REQUIREMENTS
+linux version >=3.15
+gcc version >=4.9
+
+--- a/arch/x86/include/asm/module.h	2015-08-30 14:34:09.000000000 -0400
++++ b/arch/x86/include/asm/module.h	2015-11-06 14:18:24.234941036 -0500
+@@ -15,6 +15,24 @@
+ #define MODULE_PROC_FAMILY "586MMX "
+ #elif defined CONFIG_MCORE2
+ #define MODULE_PROC_FAMILY "CORE2 "
++#elif defined CONFIG_MNATIVE
++#define MODULE_PROC_FAMILY "NATIVE "
++#elif defined CONFIG_MNEHALEM
++#define MODULE_PROC_FAMILY "NEHALEM "
++#elif defined CONFIG_MWESTMERE
++#define MODULE_PROC_FAMILY "WESTMERE "
++#elif defined CONFIG_MSILVERMONT
++#define MODULE_PROC_FAMILY "SILVERMONT "
++#elif defined CONFIG_MSANDYBRIDGE
++#define MODULE_PROC_FAMILY "SANDYBRIDGE "
++#elif defined CONFIG_MIVYBRIDGE
++#define MODULE_PROC_FAMILY "IVYBRIDGE "
++#elif defined CONFIG_MHASWELL
++#define MODULE_PROC_FAMILY "HASWELL "
++#elif defined CONFIG_MBROADWELL
++#define MODULE_PROC_FAMILY "BROADWELL "
++#elif defined CONFIG_MSKYLAKE
++#define MODULE_PROC_FAMILY "SKYLAKE "
+ #elif defined CONFIG_MATOM
+ #define MODULE_PROC_FAMILY "ATOM "
+ #elif defined CONFIG_M686
+@@ -33,6 +51,22 @@
+ #define MODULE_PROC_FAMILY "K7 "
+ #elif defined CONFIG_MK8
+ #define MODULE_PROC_FAMILY "K8 "
++#elif defined CONFIG_MK8SSE3
++#define MODULE_PROC_FAMILY "K8SSE3 "
++#elif defined CONFIG_MK10
++#define MODULE_PROC_FAMILY "K10 "
++#elif defined CONFIG_MBARCELONA
++#define MODULE_PROC_FAMILY "BARCELONA "
++#elif defined CONFIG_MBOBCAT
++#define MODULE_PROC_FAMILY "BOBCAT "
++#elif defined CONFIG_MBULLDOZER
++#define MODULE_PROC_FAMILY "BULLDOZER "
++#elif defined CONFIG_MPILEDRIVER
++#define MODULE_PROC_FAMILY "STEAMROLLER "
++#elif defined CONFIG_MSTEAMROLLER
++#define MODULE_PROC_FAMILY "PILEDRIVER "
++#elif defined CONFIG_MJAGUAR
++#define MODULE_PROC_FAMILY "JAGUAR "
+ #elif defined CONFIG_MELAN
+ #define MODULE_PROC_FAMILY "ELAN "
+ #elif defined CONFIG_MCRUSOE
+--- a/arch/x86/Kconfig.cpu	2015-08-30 14:34:09.000000000 -0400
++++ b/arch/x86/Kconfig.cpu	2015-11-06 14:20:14.948369244 -0500
+@@ -137,9 +137,8 @@ config MPENTIUM4
+ 		-Paxville
+ 		-Dempsey
+ 
+-
+ config MK6
+-	bool "K6/K6-II/K6-III"
++	bool "AMD K6/K6-II/K6-III"
+ 	depends on X86_32
+ 	---help---
+ 	  Select this for an AMD K6-family processor.  Enables use of
+@@ -147,7 +146,7 @@ config MK6
+ 	  flags to GCC.
+ 
+ config MK7
+-	bool "Athlon/Duron/K7"
++	bool "AMD Athlon/Duron/K7"
+ 	depends on X86_32
+ 	---help---
+ 	  Select this for an AMD Athlon K7-family processor.  Enables use of
+@@ -155,12 +154,69 @@ config MK7
+ 	  flags to GCC.
+ 
+ config MK8
+-	bool "Opteron/Athlon64/Hammer/K8"
++	bool "AMD Opteron/Athlon64/Hammer/K8"
+ 	---help---
+ 	  Select this for an AMD Opteron or Athlon64 Hammer-family processor.
+ 	  Enables use of some extended instructions, and passes appropriate
+ 	  optimization flags to GCC.
+ 
++config MK8SSE3
++	bool "AMD Opteron/Athlon64/Hammer/K8 with SSE3"
++	---help---
++	  Select this for improved AMD Opteron or Athlon64 Hammer-family processors.
++	  Enables use of some extended instructions, and passes appropriate
++	  optimization flags to GCC.
++
++config MK10
++	bool "AMD 61xx/7x50/PhenomX3/X4/II/K10"
++	---help---
++	  Select this for an AMD 61xx Eight-Core Magny-Cours, Athlon X2 7x50,
++		Phenom X3/X4/II, Athlon II X2/X3/X4, or Turion II-family processor.
++	  Enables use of some extended instructions, and passes appropriate
++	  optimization flags to GCC.
++
++config MBARCELONA
++	bool "AMD Barcelona"
++	---help---
++	  Select this for AMD Barcelona and newer processors.
++
++	  Enables -march=barcelona
++
++config MBOBCAT
++	bool "AMD Bobcat"
++	---help---
++	  Select this for AMD Bobcat processors.
++
++	  Enables -march=btver1
++
++config MBULLDOZER
++	bool "AMD Bulldozer"
++	---help---
++	  Select this for AMD Bulldozer processors.
++
++	  Enables -march=bdver1
++
++config MPILEDRIVER
++	bool "AMD Piledriver"
++	---help---
++	  Select this for AMD Piledriver processors.
++
++	  Enables -march=bdver2
++
++config MSTEAMROLLER
++	bool "AMD Steamroller"
++	---help---
++	  Select this for AMD Steamroller processors.
++
++	  Enables -march=bdver3
++
++config MJAGUAR
++	bool "AMD Jaguar"
++	---help---
++	  Select this for AMD Jaguar processors.
++
++	  Enables -march=btver2
++
+ config MCRUSOE
+ 	bool "Crusoe"
+ 	depends on X86_32
+@@ -251,8 +307,17 @@ config MPSC
+ 	  using the cpu family field
+ 	  in /proc/cpuinfo. Family 15 is an older Xeon, Family 6 a newer one.
+ 
++config MATOM
++	bool "Intel Atom"
++	---help---
++
++	  Select this for the Intel Atom platform. Intel Atom CPUs have an
++	  in-order pipelining architecture and thus can benefit from
++	  accordingly optimized code. Use a recent GCC with specific Atom
++	  support in order to fully benefit from selecting this option.
++
+ config MCORE2
+-	bool "Core 2/newer Xeon"
++	bool "Intel Core 2"
+ 	---help---
+ 
+ 	  Select this for Intel Core 2 and newer Core 2 Xeons (Xeon 51xx and
+@@ -260,14 +325,71 @@ config MCORE2
+ 	  family in /proc/cpuinfo. Newer ones have 6 and older ones 15
+ 	  (not a typo)
+ 
+-config MATOM
+-	bool "Intel Atom"
++	  Enables -march=core2
++
++config MNEHALEM
++	bool "Intel Nehalem"
+ 	---help---
+ 
+-	  Select this for the Intel Atom platform. Intel Atom CPUs have an
+-	  in-order pipelining architecture and thus can benefit from
+-	  accordingly optimized code. Use a recent GCC with specific Atom
+-	  support in order to fully benefit from selecting this option.
++	  Select this for 1st Gen Core processors in the Nehalem family.
++
++	  Enables -march=nehalem
++
++config MWESTMERE
++	bool "Intel Westmere"
++	---help---
++
++	  Select this for the Intel Westmere formerly Nehalem-C family.
++
++	  Enables -march=westmere
++
++config MSILVERMONT
++	bool "Intel Silvermont"
++	---help---
++
++	  Select this for the Intel Silvermont platform.
++
++	  Enables -march=silvermont
++
++config MSANDYBRIDGE
++	bool "Intel Sandy Bridge"
++	---help---
++
++	  Select this for 2nd Gen Core processors in the Sandy Bridge family.
++
++	  Enables -march=sandybridge
++
++config MIVYBRIDGE
++	bool "Intel Ivy Bridge"
++	---help---
++
++	  Select this for 3rd Gen Core processors in the Ivy Bridge family.
++
++	  Enables -march=ivybridge
++
++config MHASWELL
++	bool "Intel Haswell"
++	---help---
++
++	  Select this for 4th Gen Core processors in the Haswell family.
++
++	  Enables -march=haswell
++
++config MBROADWELL
++	bool "Intel Broadwell"
++	---help---
++
++	  Select this for 5th Gen Core processors in the Broadwell family.
++
++	  Enables -march=broadwell
++
++config MSKYLAKE
++	bool "Intel Skylake"
++	---help---
++
++	  Select this for 6th Gen Core processors in the Skylake family.
++
++	  Enables -march=skylake
+ 
+ config GENERIC_CPU
+ 	bool "Generic-x86-64"
+@@ -276,6 +398,19 @@ config GENERIC_CPU
+ 	  Generic x86-64 CPU.
+ 	  Run equally well on all x86-64 CPUs.
+ 
++config MNATIVE
++ bool "Native optimizations autodetected by GCC"
++ ---help---
++
++   GCC 4.2 and above support -march=native, which automatically detects
++   the optimum settings to use based on your processor. -march=native 
++   also detects and applies additional settings beyond -march specific
++   to your CPU, (eg. -msse4). Unless you have a specific reason not to
++   (e.g. distcc cross-compiling), you should probably be using
++   -march=native rather than anything listed below.
++
++   Enables -march=native
++
+ endchoice
+ 
+ config X86_GENERIC
+@@ -300,7 +435,7 @@ config X86_INTERNODE_CACHE_SHIFT
+ config X86_L1_CACHE_SHIFT
+ 	int
+ 	default "7" if MPENTIUM4 || MPSC
+-	default "6" if MK7 || MK8 || MPENTIUMM || MCORE2 || MATOM || MVIAC7 || X86_GENERIC || GENERIC_CPU
++	default "6" if MK7 || MK8 || MK8SSE3 || MK10 || MBARCELONA || MBOBCAT || MBULLDOZER || MPILEDRIVER || MSTEAMROLLER || MJAGUAR || MPENTIUMM || MCORE2 || MNEHALEM || MWESTMERE || MSILVERMONT || MSANDYBRIDGE || MIVYBRIDGE || MHASWELL || MBROADWELL || MSKYLAKE || MNATIVE || MATOM || MVIAC7 || X86_GENERIC || GENERIC_CPU
+ 	default "4" if MELAN || M486 || MGEODEGX1
+ 	default "5" if MWINCHIP3D || MWINCHIPC6 || MCRUSOE || MEFFICEON || MCYRIXIII || MK6 || MPENTIUMIII || MPENTIUMII || M686 || M586MMX || M586TSC || M586 || MVIAC3_2 || MGEODE_LX
+ 
+@@ -331,11 +466,11 @@ config X86_ALIGNMENT_16
+ 
+ config X86_INTEL_USERCOPY
+ 	def_bool y
+-	depends on MPENTIUM4 || MPENTIUMM || MPENTIUMIII || MPENTIUMII || M586MMX || X86_GENERIC || MK8 || MK7 || MEFFICEON || MCORE2
++	depends on MPENTIUM4 || MPENTIUMM || MPENTIUMIII || MPENTIUMII || M586MMX || X86_GENERIC || MK8 || MK8SSE3 || MK7 || MEFFICEON || MCORE2 || MK10 || MBARCELONA || MNEHALEM || MWESTMERE || MSILVERMONT || MSANDYBRIDGE || MIVYBRIDGE || MHASWELL || MBROADWELL || MSKYLAKE || MNATIVE
+ 
+ config X86_USE_PPRO_CHECKSUM
+ 	def_bool y
+-	depends on MWINCHIP3D || MWINCHIPC6 || MCYRIXIII || MK7 || MK6 || MPENTIUM4 || MPENTIUMM || MPENTIUMIII || MPENTIUMII || M686 || MK8 || MVIAC3_2 || MVIAC7 || MEFFICEON || MGEODE_LX || MCORE2 || MATOM
++	depends on MWINCHIP3D || MWINCHIPC6 || MCYRIXIII || MK7 || MK6 || MK10 || MPENTIUM4 || MPENTIUMM || MPENTIUMIII || MPENTIUMII || M686 || MK8 || MK8SSE3 || MVIAC3_2 || MVIAC7 || MEFFICEON || MGEODE_LX || MCORE2 || MNEHALEM || MWESTMERE || MSILVERMONT || MSANDYBRIDGE || MIVYBRIDGE || MHASWELL || MBROADWELL || MSKYLAKE || MATOM || MNATIVE
+ 
+ config X86_USE_3DNOW
+ 	def_bool y
+@@ -359,17 +494,17 @@ config X86_P6_NOP
+ 
+ config X86_TSC
+ 	def_bool y
+-	depends on (MWINCHIP3D || MCRUSOE || MEFFICEON || MCYRIXIII || MK7 || MK6 || MPENTIUM4 || MPENTIUMM || MPENTIUMIII || MPENTIUMII || M686 || M586MMX || M586TSC || MK8 || MVIAC3_2 || MVIAC7 || MGEODEGX1 || MGEODE_LX || MCORE2 || MATOM) || X86_64
++	depends on (MWINCHIP3D || MCRUSOE || MEFFICEON || MCYRIXIII || MK7 || MK6 || MPENTIUM4 || MPENTIUMM || MPENTIUMIII || MPENTIUMII || M686 || M586MMX || M586TSC || MK8 || MK8SSE3 || MVIAC3_2 || MVIAC7 || MGEODEGX1 || MGEODE_LX || MCORE2 || MNEHALEM || MWESTMERE || MSILVERMONT || MSANDYBRIDGE || MIVYBRIDGE || MHASWELL || MBROADWELL || MSKYLAKE || MNATIVE || MATOM) || X86_64
+ 
+ config X86_CMPXCHG64
+ 	def_bool y
+-	depends on X86_PAE || X86_64 || MCORE2 || MPENTIUM4 || MPENTIUMM || MPENTIUMIII || MPENTIUMII || M686 || MATOM
++	depends on X86_PAE || X86_64 || MCORE2 || MNEHALEM || MWESTMERE || MSILVERMONT || MSANDYBRIDGE || MIVYBRIDGE || MHASWELL || MBROADWELL || MSKYLAKE || MPENTIUM4 || MPENTIUMM || MPENTIUMIII || MPENTIUMII || M686 || MATOM || MNATIVE
+ 
+ # this should be set for all -march=.. options where the compiler
+ # generates cmov.
+ config X86_CMOV
+ 	def_bool y
+-	depends on (MK8 || MK7 || MCORE2 || MPENTIUM4 || MPENTIUMM || MPENTIUMIII || MPENTIUMII || M686 || MVIAC3_2 || MVIAC7 || MCRUSOE || MEFFICEON || X86_64 || MATOM || MGEODE_LX)
++	depends on (MK8 || MK8SSE3 || MK10 || MBARCELONA || MBOBCAT || MBULLDOZER || MPILEDRIVER || MSTEAMROLLER || MJAGUAR || MK7 || MCORE2 || MNEHALEM || MWESTMERE || MSILVERMONT || MSANDYBRIDGE || MIVYBRIDGE || MHASWELL || MBROADWELL || MSKYLAKE || MPENTIUM4 || MPENTIUMM || MPENTIUMIII || MPENTIUMII || M686 || MVIAC3_2 || MVIAC7 || MCRUSOE || MEFFICEON || X86_64 || MNATIVE || MATOM || MGEODE_LX)
+ 
+ config X86_MINIMUM_CPU_FAMILY
+ 	int
+--- a/arch/x86/Makefile	2015-08-30 14:34:09.000000000 -0400
++++ b/arch/x86/Makefile	2015-11-06 14:21:05.708983344 -0500
+@@ -94,13 +94,38 @@ else
+ 	KBUILD_CFLAGS += $(call cc-option,-mskip-rax-setup)
+ 
+         # FIXME - should be integrated in Makefile.cpu (Makefile_32.cpu)
++        cflags-$(CONFIG_MNATIVE) += $(call cc-option,-march=native)
+         cflags-$(CONFIG_MK8) += $(call cc-option,-march=k8)
++        cflags-$(CONFIG_MK8SSE3) += $(call cc-option,-march=k8-sse3,-mtune=k8)
++        cflags-$(CONFIG_MK10) += $(call cc-option,-march=amdfam10)
++        cflags-$(CONFIG_MBARCELONA) += $(call cc-option,-march=barcelona)
++        cflags-$(CONFIG_MBOBCAT) += $(call cc-option,-march=btver1)
++        cflags-$(CONFIG_MBULLDOZER) += $(call cc-option,-march=bdver1)
++        cflags-$(CONFIG_MPILEDRIVER) += $(call cc-option,-march=bdver2)
++        cflags-$(CONFIG_MSTEAMROLLER) += $(call cc-option,-march=bdver3)
++        cflags-$(CONFIG_MJAGUAR) += $(call cc-option,-march=btver2)
+         cflags-$(CONFIG_MPSC) += $(call cc-option,-march=nocona)
+ 
+         cflags-$(CONFIG_MCORE2) += \
+-                $(call cc-option,-march=core2,$(call cc-option,-mtune=generic))
+-	cflags-$(CONFIG_MATOM) += $(call cc-option,-march=atom) \
+-		$(call cc-option,-mtune=atom,$(call cc-option,-mtune=generic))
++                $(call cc-option,-march=core2,$(call cc-option,-mtune=core2))
++        cflags-$(CONFIG_MNEHALEM) += \
++                $(call cc-option,-march=nehalem,$(call cc-option,-mtune=nehalem))
++        cflags-$(CONFIG_MWESTMERE) += \
++                $(call cc-option,-march=westmere,$(call cc-option,-mtune=westmere))
++        cflags-$(CONFIG_MSILVERMONT) += \
++                $(call cc-option,-march=silvermont,$(call cc-option,-mtune=silvermont))
++        cflags-$(CONFIG_MSANDYBRIDGE) += \
++                $(call cc-option,-march=sandybridge,$(call cc-option,-mtune=sandybridge))
++        cflags-$(CONFIG_MIVYBRIDGE) += \
++                $(call cc-option,-march=ivybridge,$(call cc-option,-mtune=ivybridge))
++        cflags-$(CONFIG_MHASWELL) += \
++                $(call cc-option,-march=haswell,$(call cc-option,-mtune=haswell))
++        cflags-$(CONFIG_MBROADWELL) += \
++                $(call cc-option,-march=broadwell,$(call cc-option,-mtune=broadwell))
++        cflags-$(CONFIG_MSKYLAKE) += \
++                $(call cc-option,-march=skylake,$(call cc-option,-mtune=skylake))
++        cflags-$(CONFIG_MATOM) += $(call cc-option,-march=bonnell) \
++                $(call cc-option,-mtune=bonnell,$(call cc-option,-mtune=generic))
+         cflags-$(CONFIG_GENERIC_CPU) += $(call cc-option,-mtune=generic)
+         KBUILD_CFLAGS += $(cflags-y)
+ 
+--- a/arch/x86/Makefile_32.cpu	2015-08-30 14:34:09.000000000 -0400
++++ b/arch/x86/Makefile_32.cpu	2015-11-06 14:21:43.604429077 -0500
+@@ -23,7 +23,16 @@ cflags-$(CONFIG_MK6)		+= -march=k6
+ # Please note, that patches that add -march=athlon-xp and friends are pointless.
+ # They make zero difference whatsosever to performance at this time.
+ cflags-$(CONFIG_MK7)		+= -march=athlon
++cflags-$(CONFIG_MNATIVE) += $(call cc-option,-march=native)
+ cflags-$(CONFIG_MK8)		+= $(call cc-option,-march=k8,-march=athlon)
++cflags-$(CONFIG_MK8SSE3)		+= $(call cc-option,-march=k8-sse3,-march=athlon)
++cflags-$(CONFIG_MK10)	+= $(call cc-option,-march=amdfam10,-march=athlon)
++cflags-$(CONFIG_MBARCELONA)	+= $(call cc-option,-march=barcelona,-march=athlon)
++cflags-$(CONFIG_MBOBCAT)	+= $(call cc-option,-march=btver1,-march=athlon)
++cflags-$(CONFIG_MBULLDOZER)	+= $(call cc-option,-march=bdver1,-march=athlon)
++cflags-$(CONFIG_MPILEDRIVER)	+= $(call cc-option,-march=bdver2,-march=athlon)
++cflags-$(CONFIG_MSTEAMROLLER)	+= $(call cc-option,-march=bdver3,-march=athlon)
++cflags-$(CONFIG_MJAGUAR)	+= $(call cc-option,-march=btver2,-march=athlon)
+ cflags-$(CONFIG_MCRUSOE)	+= -march=i686 $(align)-functions=0 $(align)-jumps=0 $(align)-loops=0
+ cflags-$(CONFIG_MEFFICEON)	+= -march=i686 $(call tune,pentium3) $(align)-functions=0 $(align)-jumps=0 $(align)-loops=0
+ cflags-$(CONFIG_MWINCHIPC6)	+= $(call cc-option,-march=winchip-c6,-march=i586)
+@@ -32,8 +41,16 @@ cflags-$(CONFIG_MCYRIXIII)	+= $(call cc-
+ cflags-$(CONFIG_MVIAC3_2)	+= $(call cc-option,-march=c3-2,-march=i686)
+ cflags-$(CONFIG_MVIAC7)		+= -march=i686
+ cflags-$(CONFIG_MCORE2)		+= -march=i686 $(call tune,core2)
+-cflags-$(CONFIG_MATOM)		+= $(call cc-option,-march=atom,$(call cc-option,-march=core2,-march=i686)) \
+-	$(call cc-option,-mtune=atom,$(call cc-option,-mtune=generic))
++cflags-$(CONFIG_MNEHALEM)	+= -march=i686 $(call tune,nehalem)
++cflags-$(CONFIG_MWESTMERE)	+= -march=i686 $(call tune,westmere)
++cflags-$(CONFIG_MSILVERMONT)	+= -march=i686 $(call tune,silvermont)
++cflags-$(CONFIG_MSANDYBRIDGE)	+= -march=i686 $(call tune,sandybridge)
++cflags-$(CONFIG_MIVYBRIDGE)	+= -march=i686 $(call tune,ivybridge)
++cflags-$(CONFIG_MHASWELL)	+= -march=i686 $(call tune,haswell)
++cflags-$(CONFIG_MBROADWELL)	+= -march=i686 $(call tune,broadwell)
++cflags-$(CONFIG_MSKYLAKE)	+= -march=i686 $(call tune,skylake)
++cflags-$(CONFIG_MATOM)		+= $(call cc-option,-march=bonnell,$(call cc-option,-march=core2,-march=i686)) \
++	$(call cc-option,-mtune=bonnell,$(call cc-option,-mtune=generic))
+ 
+ # AMD Elan support
+ cflags-$(CONFIG_MELAN)		+= -march=i486


^ permalink raw reply related	[flat|nested] 5+ messages in thread

* [gentoo-commits] proj/linux-patches:4.11 commit in: /
@ 2017-03-23 17:12 Mike Pagano
  0 siblings, 0 replies; 5+ messages in thread
From: Mike Pagano @ 2017-03-23 17:12 UTC (permalink / raw
  To: gentoo-commits

commit:     4c14a0858d558e36d4e1135a98d1e21664aa0a80
Author:     Mike Pagano <mpagano <AT> gentoo <DOT> org>
AuthorDate: Thu Mar 23 17:12:05 2017 +0000
Commit:     Mike Pagano <mpagano <AT> gentoo <DOT> org>
CommitDate: Thu Mar 23 17:12:05 2017 +0000
URL:        https://gitweb.gentoo.org/proj/linux-patches.git/commit/?id=4c14a085

Upgrade gcc cpu optimization patc. See bug #613570.

 ...able-additional-cpu-optimizations-for-gcc.patch | 225 +++++++++++++++------
 1 file changed, 166 insertions(+), 59 deletions(-)

diff --git a/5010_enable-additional-cpu-optimizations-for-gcc.patch b/5010_enable-additional-cpu-optimizations-for-gcc.patch
index d9729b2..76cbd9d 100644
--- a/5010_enable-additional-cpu-optimizations-for-gcc.patch
+++ b/5010_enable-additional-cpu-optimizations-for-gcc.patch
@@ -1,33 +1,51 @@
-WARNING - this version of the patch works with version 4.9+ of gcc and with
-kernel version 3.15.x+ and should NOT be applied when compiling on older
-versions due to name changes of the flags with the 4.9 release of gcc.
+WARNING
+This patch works with gcc versions 4.9+ and with kernel version 3.15+ and should
+NOT be applied when compiling on older versions of gcc due to key name changes
+of the march flags introduced with the version 4.9 release of gcc.[1]
+
 Use the older version of this patch hosted on the same github for older
-versions of gcc. For example:
+versions of gcc.
 
-corei7 --> nehalem
-corei7-avx --> sandybridge
-core-avx-i --> ivybridge
-core-avx2 --> haswell
+FEATURES
+This patch adds additional CPU options to the Linux kernel accessible under:
+ Processor type and features  --->
+  Processor family --->
 
-For more, see: https://gcc.gnu.org/gcc-4.9/changes.html
+The expanded microarchitectures include:
+* AMD Improved K8-family
+* AMD K10-family
+* AMD Family 10h (Barcelona)
+* AMD Family 14h (Bobcat)
+* AMD Family 16h (Jaguar)
+* AMD Family 15h (Bulldozer)
+* AMD Family 15h (Piledriver)
+* AMD Family 15h (Steamroller)
+* AMD Family 15h (Excavator)
+* AMD Family 17h (Zen)
+* Intel Silvermont low-power processors
+* Intel 1st Gen Core i3/i5/i7 (Nehalem)
+* Intel 1.5 Gen Core i3/i5/i7 (Westmere)
+* Intel 2nd Gen Core i3/i5/i7 (Sandybridge)
+* Intel 3rd Gen Core i3/i5/i7 (Ivybridge)
+* Intel 4th Gen Core i3/i5/i7 (Haswell)
+* Intel 5th Gen Core i3/i5/i7 (Broadwell)
+* Intel 6th Gen Core i3/i5.i7 (Skylake)
 
-It also changes 'atom' to 'bonnell' in accordance with the gcc v4.9 changes.
-Note that upstream is using the deprecated 'match=atom' flags when I believe it
-should use the newer 'march=bonnell' flag for atom processors.
+It also offers to compile passing the 'native' option which, "selects the CPU
+to generate code for at compilation time by determining the processor type of
+the compiling machine. Using -march=native enables all instruction subsets
+supported by the local machine and will produce code optimized for the local
+machine under the constraints of the selected instruction set."[3]
 
-I have made that change to this patch set as well.  See the following kernel
-bug report to see if I'm right: https://bugzilla.kernel.org/show_bug.cgi?id=77461
+MINOR NOTES
+This patch also changes 'atom' to 'bonnell' in accordance with the gcc v4.9
+changes. Note that upstream is using the deprecated 'match=atom' flags when I
+believe it should use the newer 'march=bonnell' flag for atom processors.[2]
 
-This patch will expand the number of microarchitectures to include newer
-processors including: AMD K10-family, AMD Family 10h (Barcelona), AMD Family
-14h (Bobcat), AMD Family 15h (Bulldozer), AMD Family 15h (Piledriver), AMD
-Family 15h (Steamroller), Family 16h (Jaguar), Intel 1st Gen Core i3/i5/i7
-(Nehalem), Intel 1.5 Gen Core i3/i5/i7 (Westmere), Intel 2nd Gen Core i3/i5/i7
-(Sandybridge), Intel 3rd Gen Core i3/i5/i7 (Ivybridge), Intel 4th Gen Core
-i3/i5/i7 (Haswell), Intel 5th Gen Core i3/i5/i7 (Broadwell), and the low power
-Silvermont series of Atom processors (Silvermont). It also offers the compiler
-the 'native' flag.
+It is not recommended to compile on Atom-CPUs with the 'native' option.[4] The
+recommendation is use to the 'atom' option instead.
 
+BENEFITS
 Small but real speed increases are measurable using a make endpoint comparing
 a generic kernel to one built with one of the respective microarchs.
 
@@ -38,8 +56,18 @@ REQUIREMENTS
 linux version >=3.15
 gcc version >=4.9
 
---- a/arch/x86/include/asm/module.h	2015-08-30 14:34:09.000000000 -0400
-+++ b/arch/x86/include/asm/module.h	2015-11-06 14:18:24.234941036 -0500
+ACKNOWLEDGMENTS
+This patch builds on the seminal work by Jeroen.[5]
+
+REFERENCES
+1. https://gcc.gnu.org/gcc-4.9/changes.html
+2. https://bugzilla.kernel.org/show_bug.cgi?id=77461
+3. https://gcc.gnu.org/onlinedocs/gcc/x86-Options.html
+4. https://github.com/graysky2/kernel_gcc_patch/issues/15
+5. http://www.linuxforge.net/docs/linux/linux-gcc.php
+
+--- a/arch/x86/include/asm/module.h	2016-12-11 14:17:54.000000000 -0500
++++ b/arch/x86/include/asm/module.h	2017-01-06 20:44:36.602227264 -0500
 @@ -15,6 +15,24 @@
  #define MODULE_PROC_FAMILY "586MMX "
  #elif defined CONFIG_MCORE2
@@ -65,7 +93,7 @@ gcc version >=4.9
  #elif defined CONFIG_MATOM
  #define MODULE_PROC_FAMILY "ATOM "
  #elif defined CONFIG_M686
-@@ -33,6 +51,22 @@
+@@ -33,6 +51,26 @@
  #define MODULE_PROC_FAMILY "K7 "
  #elif defined CONFIG_MK8
  #define MODULE_PROC_FAMILY "K8 "
@@ -80,17 +108,29 @@ gcc version >=4.9
 +#elif defined CONFIG_MBULLDOZER
 +#define MODULE_PROC_FAMILY "BULLDOZER "
 +#elif defined CONFIG_MPILEDRIVER
-+#define MODULE_PROC_FAMILY "STEAMROLLER "
-+#elif defined CONFIG_MSTEAMROLLER
 +#define MODULE_PROC_FAMILY "PILEDRIVER "
++#elif defined CONFIG_MSTEAMROLLER
++#define MODULE_PROC_FAMILY "STEAMROLLER "
 +#elif defined CONFIG_MJAGUAR
 +#define MODULE_PROC_FAMILY "JAGUAR "
++#elif defined CONFIG_MEXCAVATOR
++#define MODULE_PROC_FAMILY "EXCAVATOR "
++#elif defined CONFIG_MZEN
++#define MODULE_PROC_FAMILY "ZEN "
  #elif defined CONFIG_MELAN
  #define MODULE_PROC_FAMILY "ELAN "
  #elif defined CONFIG_MCRUSOE
---- a/arch/x86/Kconfig.cpu	2015-08-30 14:34:09.000000000 -0400
-+++ b/arch/x86/Kconfig.cpu	2015-11-06 14:20:14.948369244 -0500
-@@ -137,9 +137,8 @@ config MPENTIUM4
+--- a/arch/x86/Kconfig.cpu	2016-12-11 14:17:54.000000000 -0500
++++ b/arch/x86/Kconfig.cpu	2017-01-06 20:46:14.004109597 -0500
+@@ -115,6 +115,7 @@ config MPENTIUMM
+ config MPENTIUM4
+ 	bool "Pentium-4/Celeron(P4-based)/Pentium-4 M/older Xeon"
+ 	depends on X86_32
++	select X86_P6_NOP
+ 	---help---
+ 	  Select this for Intel Pentium 4 chips.  This includes the
+ 	  Pentium 4, Pentium D, P4-based Celeron and Xeon, and
+@@ -147,9 +148,8 @@ config MPENTIUM4
  		-Paxville
  		-Dempsey
  
@@ -101,7 +141,7 @@ gcc version >=4.9
  	depends on X86_32
  	---help---
  	  Select this for an AMD K6-family processor.  Enables use of
-@@ -147,7 +146,7 @@ config MK6
+@@ -157,7 +157,7 @@ config MK6
  	  flags to GCC.
  
  config MK7
@@ -110,7 +150,7 @@ gcc version >=4.9
  	depends on X86_32
  	---help---
  	  Select this for an AMD Athlon K7-family processor.  Enables use of
-@@ -155,12 +154,69 @@ config MK7
+@@ -165,12 +165,83 @@ config MK7
  	  flags to GCC.
  
  config MK8
@@ -139,54 +179,77 @@ gcc version >=4.9
 +config MBARCELONA
 +	bool "AMD Barcelona"
 +	---help---
-+	  Select this for AMD Barcelona and newer processors.
++	  Select this for AMD Family 10h Barcelona processors.
 +
 +	  Enables -march=barcelona
 +
 +config MBOBCAT
 +	bool "AMD Bobcat"
 +	---help---
-+	  Select this for AMD Bobcat processors.
++	  Select this for AMD Family 14h Bobcat processors.
 +
 +	  Enables -march=btver1
 +
++config MJAGUAR
++	bool "AMD Jaguar"
++	---help---
++	  Select this for AMD Family 16h Jaguar processors.
++
++	  Enables -march=btver2
++
 +config MBULLDOZER
 +	bool "AMD Bulldozer"
 +	---help---
-+	  Select this for AMD Bulldozer processors.
++	  Select this for AMD Family 15h Bulldozer processors.
 +
 +	  Enables -march=bdver1
 +
 +config MPILEDRIVER
 +	bool "AMD Piledriver"
 +	---help---
-+	  Select this for AMD Piledriver processors.
++	  Select this for AMD Family 15h Piledriver processors.
 +
 +	  Enables -march=bdver2
 +
 +config MSTEAMROLLER
 +	bool "AMD Steamroller"
 +	---help---
-+	  Select this for AMD Steamroller processors.
++	  Select this for AMD Family 15h Steamroller processors.
 +
 +	  Enables -march=bdver3
 +
-+config MJAGUAR
-+	bool "AMD Jaguar"
++config MEXCAVATOR
++	bool "AMD Excavator"
 +	---help---
-+	  Select this for AMD Jaguar processors.
++	  Select this for AMD Family 15h Excavator processors.
 +
-+	  Enables -march=btver2
++	  Enables -march=bdver4
++
++config MZEN
++	bool "AMD Zen"
++	---help---
++	  Select this for AMD Family 17h Zen processors.
++
++	  Enables -march=znver1
 +
  config MCRUSOE
  	bool "Crusoe"
  	depends on X86_32
-@@ -251,8 +307,17 @@ config MPSC
+@@ -252,6 +323,7 @@ config MVIAC7
+ 
+ config MPSC
+ 	bool "Intel P4 / older Netburst based Xeon"
++	select X86_P6_NOP
+ 	depends on X86_64
+ 	---help---
+ 	  Optimize for Intel Pentium 4, Pentium D and older Nocona/Dempsey
+@@ -261,8 +333,19 @@ config MPSC
  	  using the cpu family field
  	  in /proc/cpuinfo. Family 15 is an older Xeon, Family 6 a newer one.
  
 +config MATOM
 +	bool "Intel Atom"
++	select X86_P6_NOP
 +	---help---
 +
 +	  Select this for the Intel Atom platform. Intel Atom CPUs have an
@@ -197,10 +260,11 @@ gcc version >=4.9
  config MCORE2
 -	bool "Core 2/newer Xeon"
 +	bool "Intel Core 2"
++	select X86_P6_NOP
  	---help---
  
  	  Select this for Intel Core 2 and newer Core 2 Xeons (Xeon 51xx and
-@@ -260,14 +325,71 @@ config MCORE2
+@@ -270,14 +353,79 @@ config MCORE2
  	  family in /proc/cpuinfo. Newer ones have 6 and older ones 15
  	  (not a typo)
  
@@ -210,6 +274,7 @@ gcc version >=4.9
 +
 +config MNEHALEM
 +	bool "Intel Nehalem"
++	select X86_P6_NOP
  	---help---
  
 -	  Select this for the Intel Atom platform. Intel Atom CPUs have an
@@ -222,6 +287,7 @@ gcc version >=4.9
 +
 +config MWESTMERE
 +	bool "Intel Westmere"
++	select X86_P6_NOP
 +	---help---
 +
 +	  Select this for the Intel Westmere formerly Nehalem-C family.
@@ -230,6 +296,7 @@ gcc version >=4.9
 +
 +config MSILVERMONT
 +	bool "Intel Silvermont"
++	select X86_P6_NOP
 +	---help---
 +
 +	  Select this for the Intel Silvermont platform.
@@ -238,6 +305,7 @@ gcc version >=4.9
 +
 +config MSANDYBRIDGE
 +	bool "Intel Sandy Bridge"
++	select X86_P6_NOP
 +	---help---
 +
 +	  Select this for 2nd Gen Core processors in the Sandy Bridge family.
@@ -246,6 +314,7 @@ gcc version >=4.9
 +
 +config MIVYBRIDGE
 +	bool "Intel Ivy Bridge"
++	select X86_P6_NOP
 +	---help---
 +
 +	  Select this for 3rd Gen Core processors in the Ivy Bridge family.
@@ -254,6 +323,7 @@ gcc version >=4.9
 +
 +config MHASWELL
 +	bool "Intel Haswell"
++	select X86_P6_NOP
 +	---help---
 +
 +	  Select this for 4th Gen Core processors in the Haswell family.
@@ -262,6 +332,7 @@ gcc version >=4.9
 +
 +config MBROADWELL
 +	bool "Intel Broadwell"
++	select X86_P6_NOP
 +	---help---
 +
 +	  Select this for 5th Gen Core processors in the Broadwell family.
@@ -270,6 +341,7 @@ gcc version >=4.9
 +
 +config MSKYLAKE
 +	bool "Intel Skylake"
++	select X86_P6_NOP
 +	---help---
 +
 +	  Select this for 6th Gen Core processors in the Skylake family.
@@ -278,7 +350,7 @@ gcc version >=4.9
  
  config GENERIC_CPU
  	bool "Generic-x86-64"
-@@ -276,6 +398,19 @@ config GENERIC_CPU
+@@ -286,6 +434,19 @@ config GENERIC_CPU
  	  Generic x86-64 CPU.
  	  Run equally well on all x86-64 CPUs.
  
@@ -298,16 +370,16 @@ gcc version >=4.9
  endchoice
  
  config X86_GENERIC
-@@ -300,7 +435,7 @@ config X86_INTERNODE_CACHE_SHIFT
+@@ -310,7 +471,7 @@ config X86_INTERNODE_CACHE_SHIFT
  config X86_L1_CACHE_SHIFT
  	int
  	default "7" if MPENTIUM4 || MPSC
 -	default "6" if MK7 || MK8 || MPENTIUMM || MCORE2 || MATOM || MVIAC7 || X86_GENERIC || GENERIC_CPU
-+	default "6" if MK7 || MK8 || MK8SSE3 || MK10 || MBARCELONA || MBOBCAT || MBULLDOZER || MPILEDRIVER || MSTEAMROLLER || MJAGUAR || MPENTIUMM || MCORE2 || MNEHALEM || MWESTMERE || MSILVERMONT || MSANDYBRIDGE || MIVYBRIDGE || MHASWELL || MBROADWELL || MSKYLAKE || MNATIVE || MATOM || MVIAC7 || X86_GENERIC || GENERIC_CPU
++	default "6" if MK7 || MK8 || MK8SSE3 || MK10 || MBARCELONA || MBOBCAT || MBULLDOZER || MPILEDRIVER || MSTEAMROLLER || MEXCAVATOR || MZEN || MJAGUAR || MPENTIUMM || MCORE2 || MNEHALEM || MWESTMERE || MSILVERMONT || MSANDYBRIDGE || MIVYBRIDGE || MHASWELL || MBROADWELL || MSKYLAKE || MNATIVE || MATOM || MVIAC7 || X86_GENERIC || GENERIC_CPU
  	default "4" if MELAN || M486 || MGEODEGX1
  	default "5" if MWINCHIP3D || MWINCHIPC6 || MCRUSOE || MEFFICEON || MCYRIXIII || MK6 || MPENTIUMIII || MPENTIUMII || M686 || M586MMX || M586TSC || M586 || MVIAC3_2 || MGEODE_LX
  
-@@ -331,11 +466,11 @@ config X86_ALIGNMENT_16
+@@ -341,45 +502,46 @@ config X86_ALIGNMENT_16
  
  config X86_INTEL_USERCOPY
  	def_bool y
@@ -321,7 +393,38 @@ gcc version >=4.9
  
  config X86_USE_3DNOW
  	def_bool y
-@@ -359,17 +494,17 @@ config X86_P6_NOP
+ 	depends on (MCYRIXIII || MK7 || MGEODE_LX) && !UML
+ 
+-#
+-# P6_NOPs are a relatively minor optimization that require a family >=
+-# 6 processor, except that it is broken on certain VIA chips.
+-# Furthermore, AMD chips prefer a totally different sequence of NOPs
+-# (which work on all CPUs).  In addition, it looks like Virtual PC
+-# does not understand them.
+-#
+-# As a result, disallow these if we're not compiling for X86_64 (these
+-# NOPs do work on all x86-64 capable chips); the list of processors in
+-# the right-hand clause are the cores that benefit from this optimization.
+-#
+ config X86_P6_NOP
+-	def_bool y
+-	depends on X86_64
+-	depends on (MCORE2 || MPENTIUM4 || MPSC)
++	default n
++	bool "Support for P6_NOPs on Intel chips"
++	depends on (MCORE2 || MPENTIUM4 || MPSC || MATOM || MNEHALEM || MWESTMERE || MSILVERMONT  || MSANDYBRIDGE || MIVYBRIDGE || MHASWELL || MBROADWELL || MSKYLAKE || MNATIVE)
++	---help---
++	P6_NOPs are a relatively minor optimization that require a family >=
++	6 processor, except that it is broken on certain VIA chips.
++	Furthermore, AMD chips prefer a totally different sequence of NOPs
++	(which work on all CPUs).  In addition, it looks like Virtual PC
++	does not understand them.
++
++	As a result, disallow these if we're not compiling for X86_64 (these
++	NOPs do work on all x86-64 capable chips); the list of processors in
++	the right-hand clause are the cores that benefit from this optimization.
++
++	Say Y if you have Intel CPU newer than Pentium Pro, N otherwise.
  
  config X86_TSC
  	def_bool y
@@ -338,13 +441,13 @@ gcc version >=4.9
  config X86_CMOV
  	def_bool y
 -	depends on (MK8 || MK7 || MCORE2 || MPENTIUM4 || MPENTIUMM || MPENTIUMIII || MPENTIUMII || M686 || MVIAC3_2 || MVIAC7 || MCRUSOE || MEFFICEON || X86_64 || MATOM || MGEODE_LX)
-+	depends on (MK8 || MK8SSE3 || MK10 || MBARCELONA || MBOBCAT || MBULLDOZER || MPILEDRIVER || MSTEAMROLLER || MJAGUAR || MK7 || MCORE2 || MNEHALEM || MWESTMERE || MSILVERMONT || MSANDYBRIDGE || MIVYBRIDGE || MHASWELL || MBROADWELL || MSKYLAKE || MPENTIUM4 || MPENTIUMM || MPENTIUMIII || MPENTIUMII || M686 || MVIAC3_2 || MVIAC7 || MCRUSOE || MEFFICEON || X86_64 || MNATIVE || MATOM || MGEODE_LX)
++	depends on (MK8 || MK8SSE3 || MK10 || MBARCELONA || MBOBCAT || MBULLDOZER || MPILEDRIVER || MSTEAMROLLER || MEXCAVATOR || MZEN || MJAGUAR || MK7 || MCORE2 || MNEHALEM || MWESTMERE || MSILVERMONT || MSANDYBRIDGE || MIVYBRIDGE || MHASWELL || MBROADWELL || MSKYLAKE || MPENTIUM4 || MPENTIUMM || MPENTIUMIII || MPENTIUMII || M686 || MVIAC3_2 || MVIAC7 || MCRUSOE || MEFFICEON || X86_64 || MNATIVE || MATOM || MGEODE_LX)
  
  config X86_MINIMUM_CPU_FAMILY
  	int
---- a/arch/x86/Makefile	2015-08-30 14:34:09.000000000 -0400
-+++ b/arch/x86/Makefile	2015-11-06 14:21:05.708983344 -0500
-@@ -94,13 +94,38 @@ else
+--- a/arch/x86/Makefile	2016-12-11 14:17:54.000000000 -0500
++++ b/arch/x86/Makefile	2017-01-06 20:44:36.603227283 -0500
+@@ -104,13 +104,40 @@ else
  	KBUILD_CFLAGS += $(call cc-option,-mskip-rax-setup)
  
          # FIXME - should be integrated in Makefile.cpu (Makefile_32.cpu)
@@ -354,10 +457,12 @@ gcc version >=4.9
 +        cflags-$(CONFIG_MK10) += $(call cc-option,-march=amdfam10)
 +        cflags-$(CONFIG_MBARCELONA) += $(call cc-option,-march=barcelona)
 +        cflags-$(CONFIG_MBOBCAT) += $(call cc-option,-march=btver1)
++        cflags-$(CONFIG_MJAGUAR) += $(call cc-option,-march=btver2)
 +        cflags-$(CONFIG_MBULLDOZER) += $(call cc-option,-march=bdver1)
 +        cflags-$(CONFIG_MPILEDRIVER) += $(call cc-option,-march=bdver2)
 +        cflags-$(CONFIG_MSTEAMROLLER) += $(call cc-option,-march=bdver3)
-+        cflags-$(CONFIG_MJAGUAR) += $(call cc-option,-march=btver2)
++        cflags-$(CONFIG_MEXCAVATOR) += $(call cc-option,-march=bdver4)
++        cflags-$(CONFIG_MZEN) += $(call cc-option,-march=znver1)
          cflags-$(CONFIG_MPSC) += $(call cc-option,-march=nocona)
  
          cflags-$(CONFIG_MCORE2) += \
@@ -386,9 +491,9 @@ gcc version >=4.9
          cflags-$(CONFIG_GENERIC_CPU) += $(call cc-option,-mtune=generic)
          KBUILD_CFLAGS += $(cflags-y)
  
---- a/arch/x86/Makefile_32.cpu	2015-08-30 14:34:09.000000000 -0400
-+++ b/arch/x86/Makefile_32.cpu	2015-11-06 14:21:43.604429077 -0500
-@@ -23,7 +23,16 @@ cflags-$(CONFIG_MK6)		+= -march=k6
+--- a/arch/x86/Makefile_32.cpu	2016-12-11 14:17:54.000000000 -0500
++++ b/arch/x86/Makefile_32.cpu	2017-01-06 20:44:36.603227283 -0500
+@@ -23,7 +23,18 @@ cflags-$(CONFIG_MK6)		+= -march=k6
  # Please note, that patches that add -march=athlon-xp and friends are pointless.
  # They make zero difference whatsosever to performance at this time.
  cflags-$(CONFIG_MK7)		+= -march=athlon
@@ -398,14 +503,16 @@ gcc version >=4.9
 +cflags-$(CONFIG_MK10)	+= $(call cc-option,-march=amdfam10,-march=athlon)
 +cflags-$(CONFIG_MBARCELONA)	+= $(call cc-option,-march=barcelona,-march=athlon)
 +cflags-$(CONFIG_MBOBCAT)	+= $(call cc-option,-march=btver1,-march=athlon)
++cflags-$(CONFIG_MJAGUAR)	+= $(call cc-option,-march=btver2,-march=athlon)
 +cflags-$(CONFIG_MBULLDOZER)	+= $(call cc-option,-march=bdver1,-march=athlon)
 +cflags-$(CONFIG_MPILEDRIVER)	+= $(call cc-option,-march=bdver2,-march=athlon)
 +cflags-$(CONFIG_MSTEAMROLLER)	+= $(call cc-option,-march=bdver3,-march=athlon)
-+cflags-$(CONFIG_MJAGUAR)	+= $(call cc-option,-march=btver2,-march=athlon)
++cflags-$(CONFIG_MEXCAVATOR)	+= $(call cc-option,-march=bdver4,-march=athlon)
++cflags-$(CONFIG_MZEN)	+= $(call cc-option,-march=znver1,-march=athlon)
  cflags-$(CONFIG_MCRUSOE)	+= -march=i686 $(align)-functions=0 $(align)-jumps=0 $(align)-loops=0
  cflags-$(CONFIG_MEFFICEON)	+= -march=i686 $(call tune,pentium3) $(align)-functions=0 $(align)-jumps=0 $(align)-loops=0
  cflags-$(CONFIG_MWINCHIPC6)	+= $(call cc-option,-march=winchip-c6,-march=i586)
-@@ -32,8 +41,16 @@ cflags-$(CONFIG_MCYRIXIII)	+= $(call cc-
+@@ -32,8 +43,16 @@ cflags-$(CONFIG_MCYRIXIII)	+= $(call cc-
  cflags-$(CONFIG_MVIAC3_2)	+= $(call cc-option,-march=c3-2,-march=i686)
  cflags-$(CONFIG_MVIAC7)		+= -march=i686
  cflags-$(CONFIG_MCORE2)		+= -march=i686 $(call tune,core2)


^ permalink raw reply related	[flat|nested] 5+ messages in thread

* [gentoo-commits] proj/linux-patches:4.11 commit in: /
@ 2017-05-01 23:09 Mike Pagano
  0 siblings, 0 replies; 5+ messages in thread
From: Mike Pagano @ 2017-05-01 23:09 UTC (permalink / raw
  To: gentoo-commits

commit:     ef35bf05ea5efede8a1005b96bc899dc080be4fe
Author:     Mike Pagano <mpagano <AT> gentoo <DOT> org>
AuthorDate: Mon May  1 23:09:26 2017 +0000
Commit:     Mike Pagano <mpagano <AT> gentoo <DOT> org>
CommitDate: Mon May  1 23:09:26 2017 +0000
URL:        https://gitweb.gentoo.org/proj/linux-patches.git/commit/?id=ef35bf05

Add BFQ patchset for 4.11

 0000_README                                        |   16 +
 ...ups-kconfig-build-bits-for-BFQ-v7r11-4.11.patch |  103 +
 ...oduce-the-BFQ-v7r11-I-O-sched-for-4.11.0.patch1 | 7109 +++++++++++++++
 ...rly-Queue-Merge-EQM-to-BFQ-v7r11-for-4.11.patch | 1101 +++
 ...FQ-v7r11-for-4.11.0-into-BFQ-v8r11-for-4.patch1 | 9433 ++++++++++++++++++++
 5 files changed, 17762 insertions(+)

diff --git a/0000_README b/0000_README
index 58e3c74..70e3319 100644
--- a/0000_README
+++ b/0000_README
@@ -71,6 +71,22 @@ Patch:  4567_distro-Gentoo-Kconfig.patch
 From:   Tom Wijsman <TomWij@gentoo.org>
 Desc:   Add Gentoo Linux support config settings and defaults.
 
+Patch:  5001_block-cgroups-kconfig-build-bits-for-BFQ-v7r11-4.11.patch
+From:   http://algo.ing.unimo.it/people/paolo/disk_sched/
+Desc:   BFQ v7r11 patch 1 for 4.10: Build, cgroups and kconfig bits
+
+Patch:  5002_block-introduce-the-BFQ-v7r11-I-O-sched-for-4.11.0.patch1
+From:   http://algo.ing.unimo.it/people/paolo/disk_sched/
+Desc:   BFQ v7r11 patch 2 for 4.10: BFQ Scheduler
+
+Patch:  5003_block-bfq-add-Early-Queue-Merge-EQM-to-BFQ-v7r11-for-4.11.patch
+From:   http://algo.ing.unimo.it/people/paolo/disk_sched/
+Desc:   BFQ v7r11 patch 3 for 4.10: Early Queue Merge (EQM)
+
+Patch:  5004_blkck-bfq-turn-BFQ-v7r11-for-4.11.0-into-BFQ-v8r11-for-4.patch1
+From:   http://algo.ing.unimo.it/people/paolo/disk_sched/
+Desc:   BFQ v8r8 patch 4 for 4.10: Early Queue Merge (EQM)
+
 Patch:  5010_enable-additional-cpu-optimizations-for-gcc.patch
 From:   https://github.com/graysky2/kernel_gcc_patch/
 Desc:   Kernel patch enables gcc >= v4.9 optimizations for additional CPUs.

diff --git a/5001_block-cgroups-kconfig-build-bits-for-BFQ-v7r11-4.11.patch b/5001_block-cgroups-kconfig-build-bits-for-BFQ-v7r11-4.11.patch
new file mode 100644
index 0000000..4555daa
--- /dev/null
+++ b/5001_block-cgroups-kconfig-build-bits-for-BFQ-v7r11-4.11.patch
@@ -0,0 +1,103 @@
+From a0bd3c561ad7ec10c22a5ca345c6e4c5df117e41 Mon Sep 17 00:00:00 2001
+From: Paolo Valente <paolo.valente@unimore.it>
+Date: Tue, 7 Apr 2015 13:39:12 +0200
+Subject: [PATCH 1/4] block: cgroups, kconfig, build bits for BFQ-v7r11-4.11.0
+
+Update Kconfig.iosched and do the related Makefile changes to include
+kernel configuration options for BFQ. Also increase the number of
+policies supported by the blkio controller so that BFQ can add its
+own.
+
+Signed-off-by: Paolo Valente <paolo.valente@unimore.it>
+Signed-off-by: Arianna Avanzini <avanzini@google.com>
+---
+ block/Kconfig.iosched  | 32 ++++++++++++++++++++++++++++++++
+ block/Makefile         |  1 +
+ include/linux/blkdev.h |  2 +-
+ 3 files changed, 34 insertions(+), 1 deletion(-)
+
+diff --git a/block/Kconfig.iosched b/block/Kconfig.iosched
+index 58fc868..bb47b1a 100644
+--- a/block/Kconfig.iosched
++++ b/block/Kconfig.iosched
+@@ -39,6 +39,27 @@ config CFQ_GROUP_IOSCHED
+ 	---help---
+ 	  Enable group IO scheduling in CFQ.
+ 
++config IOSCHED_BFQ
++	tristate "BFQ I/O scheduler"
++	default n
++	---help---
++	  The BFQ I/O scheduler tries to distribute bandwidth among
++	  all processes according to their weights.
++	  It aims at distributing the bandwidth as desired, independently of
++	  the disk parameters and with any workload. It also tries to
++	  guarantee low latency to interactive and soft real-time
++	  applications. If compiled built-in (saying Y here), BFQ can
++	  be configured to support hierarchical scheduling.
++
++config CGROUP_BFQIO
++	bool "BFQ hierarchical scheduling support"
++	depends on CGROUPS && IOSCHED_BFQ=y
++	default n
++	---help---
++	  Enable hierarchical scheduling in BFQ, using the cgroups
++	  filesystem interface.  The name of the subsystem will be
++	  bfqio.
++
+ choice
+ 	prompt "Default I/O scheduler"
+ 	default DEFAULT_CFQ
+@@ -52,6 +73,16 @@ choice
+ 	config DEFAULT_CFQ
+ 		bool "CFQ" if IOSCHED_CFQ=y
+ 
++	config DEFAULT_BFQ
++		bool "BFQ" if IOSCHED_BFQ=y
++		help
++		  Selects BFQ as the default I/O scheduler which will be
++		  used by default for all block devices.
++		  The BFQ I/O scheduler aims at distributing the bandwidth
++		  as desired, independently of the disk parameters and with
++		  any workload. It also tries to guarantee low latency to
++		  interactive and soft real-time applications.
++
+ 	config DEFAULT_NOOP
+ 		bool "No-op"
+ 
+@@ -61,6 +92,7 @@ config DEFAULT_IOSCHED
+ 	string
+ 	default "deadline" if DEFAULT_DEADLINE
+ 	default "cfq" if DEFAULT_CFQ
++	default "bfq" if DEFAULT_BFQ
+ 	default "noop" if DEFAULT_NOOP
+ 
+ config MQ_IOSCHED_DEADLINE
+diff --git a/block/Makefile b/block/Makefile
+index 081bb68..91869f2 100644
+--- a/block/Makefile
++++ b/block/Makefile
+@@ -20,6 +20,7 @@ obj-$(CONFIG_IOSCHED_NOOP)	+= noop-iosched.o
+ obj-$(CONFIG_IOSCHED_DEADLINE)	+= deadline-iosched.o
+ obj-$(CONFIG_IOSCHED_CFQ)	+= cfq-iosched.o
+ obj-$(CONFIG_MQ_IOSCHED_DEADLINE)	+= mq-deadline.o
++obj-$(CONFIG_IOSCHED_BFQ)	+= bfq-iosched.o
+ 
+ obj-$(CONFIG_BLOCK_COMPAT)	+= compat_ioctl.o
+ obj-$(CONFIG_BLK_CMDLINE_PARSER)	+= cmdline-parser.o
+diff --git a/include/linux/blkdev.h b/include/linux/blkdev.h
+index 01a696b..29d537d 100644
+--- a/include/linux/blkdev.h
++++ b/include/linux/blkdev.h
+@@ -48,7 +48,7 @@ struct rq_wb;
+  * Maximum number of blkcg policies allowed to be registered concurrently.
+  * Defined here to simplify include dependency.
+  */
+-#define BLKCG_MAX_POLS		2
++#define BLKCG_MAX_POLS		3
+ 
+ typedef void (rq_end_io_fn)(struct request *, int);
+ 
+-- 
+2.10.0
+

diff --git a/5002_block-introduce-the-BFQ-v7r11-I-O-sched-for-4.11.0.patch1 b/5002_block-introduce-the-BFQ-v7r11-I-O-sched-for-4.11.0.patch1
new file mode 100644
index 0000000..0c46a2e
--- /dev/null
+++ b/5002_block-introduce-the-BFQ-v7r11-I-O-sched-for-4.11.0.patch1
@@ -0,0 +1,7109 @@
+From ce617fdef48078f52afeec078dacbe7ac9d74588 Mon Sep 17 00:00:00 2001
+From: Paolo Valente <paolo.valente@unimore.it>
+Date: Thu, 9 May 2013 19:10:02 +0200
+Subject: [PATCH 2/4] block: introduce the BFQ-v7r11 I/O sched for 4.11.0
+
+The general structure is borrowed from CFQ, as much of the code for
+handling I/O contexts. Over time, several useful features have been
+ported from CFQ as well (details in the changelog in README.BFQ). A
+(bfq_)queue is associated to each task doing I/O on a device, and each
+time a scheduling decision has to be made a queue is selected and served
+until it expires.
+
+    - Slices are given in the service domain: tasks are assigned
+      budgets, measured in number of sectors. Once got the disk, a task
+      must however consume its assigned budget within a configurable
+      maximum time (by default, the maximum possible value of the
+      budgets is automatically computed to comply with this timeout).
+      This allows the desired latency vs "throughput boosting" tradeoff
+      to be set.
+
+    - Budgets are scheduled according to a variant of WF2Q+, implemented
+      using an augmented rb-tree to take eligibility into account while
+      preserving an O(log N) overall complexity.
+
+    - A low-latency tunable is provided; if enabled, both interactive
+      and soft real-time applications are guaranteed a very low latency.
+
+    - Latency guarantees are preserved also in the presence of NCQ.
+
+    - Also with flash-based devices, a high throughput is achieved
+      while still preserving latency guarantees.
+
+    - BFQ features Early Queue Merge (EQM), a sort of fusion of the
+      cooperating-queue-merging and the preemption mechanisms present
+      in CFQ. EQM is in fact a unified mechanism that tries to get a
+      sequential read pattern, and hence a high throughput, with any
+      set of processes performing interleaved I/O over a contiguous
+      sequence of sectors.
+
+    - BFQ supports full hierarchical scheduling, exporting a cgroups
+      interface.  Since each node has a full scheduler, each group can
+      be assigned its own weight.
+
+    - If the cgroups interface is not used, only I/O priorities can be
+      assigned to processes, with ioprio values mapped to weights
+      with the relation weight = IOPRIO_BE_NR - ioprio.
+
+    - ioprio classes are served in strict priority order, i.e., lower
+      priority queues are not served as long as there are higher
+      priority queues.  Among queues in the same class the bandwidth is
+      distributed in proportion to the weight of each queue. A very
+      thin extra bandwidth is however guaranteed to the Idle class, to
+      prevent it from starving.
+
+Signed-off-by: Paolo Valente <paolo.valente@unimore.it>
+Signed-off-by: Arianna Avanzini <avanzini@google.com>
+---
+ block/Kconfig.iosched |    6 +-
+ block/bfq-cgroup.c    | 1186 ++++++++++++++++
+ block/bfq-ioc.c       |   36 +
+ block/bfq-iosched.c   | 3763 +++++++++++++++++++++++++++++++++++++++++++++++++
+ block/bfq-sched.c     | 1199 ++++++++++++++++
+ block/bfq.h           |  801 +++++++++++
+ 6 files changed, 6987 insertions(+), 4 deletions(-)
+ create mode 100644 block/bfq-cgroup.c
+ create mode 100644 block/bfq-ioc.c
+ create mode 100644 block/bfq-iosched.c
+ create mode 100644 block/bfq-sched.c
+ create mode 100644 block/bfq.h
+
+diff --git a/block/Kconfig.iosched b/block/Kconfig.iosched
+index bb47b1a..b1ab0ca 100644
+--- a/block/Kconfig.iosched
++++ b/block/Kconfig.iosched
+@@ -51,14 +51,12 @@ config IOSCHED_BFQ
+ 	  applications. If compiled built-in (saying Y here), BFQ can
+ 	  be configured to support hierarchical scheduling.
+ 
+-config CGROUP_BFQIO
++config BFQ_GROUP_IOSCHED
+ 	bool "BFQ hierarchical scheduling support"
+ 	depends on CGROUPS && IOSCHED_BFQ=y
+ 	default n
+ 	---help---
+-	  Enable hierarchical scheduling in BFQ, using the cgroups
+-	  filesystem interface.  The name of the subsystem will be
+-	  bfqio.
++	  Enable hierarchical scheduling in BFQ, using the blkio controller.
+ 
+ choice
+ 	prompt "Default I/O scheduler"
+diff --git a/block/bfq-cgroup.c b/block/bfq-cgroup.c
+new file mode 100644
+index 0000000..8b08a57
+--- /dev/null
++++ b/block/bfq-cgroup.c
+@@ -0,0 +1,1186 @@
++/*
++ * BFQ: CGROUPS support.
++ *
++ * Based on ideas and code from CFQ:
++ * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
++ *
++ * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
++ *		      Paolo Valente <paolo.valente@unimore.it>
++ *
++ * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
++ *
++ * Licensed under the GPL-2 as detailed in the accompanying COPYING.BFQ
++ * file.
++ */
++
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++
++/* bfqg stats flags */
++enum bfqg_stats_flags {
++	BFQG_stats_waiting = 0,
++	BFQG_stats_idling,
++	BFQG_stats_empty,
++};
++
++#define BFQG_FLAG_FNS(name)						\
++static void bfqg_stats_mark_##name(struct bfqg_stats *stats)	\
++{									\
++	stats->flags |= (1 << BFQG_stats_##name);			\
++}									\
++static void bfqg_stats_clear_##name(struct bfqg_stats *stats)	\
++{									\
++	stats->flags &= ~(1 << BFQG_stats_##name);			\
++}									\
++static int bfqg_stats_##name(struct bfqg_stats *stats)		\
++{									\
++	return (stats->flags & (1 << BFQG_stats_##name)) != 0;		\
++}									\
++
++BFQG_FLAG_FNS(waiting)
++BFQG_FLAG_FNS(idling)
++BFQG_FLAG_FNS(empty)
++#undef BFQG_FLAG_FNS
++
++/* This should be called with the queue_lock held. */
++static void bfqg_stats_update_group_wait_time(struct bfqg_stats *stats)
++{
++	unsigned long long now;
++
++	if (!bfqg_stats_waiting(stats))
++		return;
++
++	now = sched_clock();
++	if (time_after64(now, stats->start_group_wait_time))
++		blkg_stat_add(&stats->group_wait_time,
++			      now - stats->start_group_wait_time);
++	bfqg_stats_clear_waiting(stats);
++}
++
++/* This should be called with the queue_lock held. */
++static void bfqg_stats_set_start_group_wait_time(struct bfq_group *bfqg,
++						 struct bfq_group *curr_bfqg)
++{
++	struct bfqg_stats *stats = &bfqg->stats;
++
++	if (bfqg_stats_waiting(stats))
++		return;
++	if (bfqg == curr_bfqg)
++		return;
++	stats->start_group_wait_time = sched_clock();
++	bfqg_stats_mark_waiting(stats);
++}
++
++/* This should be called with the queue_lock held. */
++static void bfqg_stats_end_empty_time(struct bfqg_stats *stats)
++{
++	unsigned long long now;
++
++	if (!bfqg_stats_empty(stats))
++		return;
++
++	now = sched_clock();
++	if (time_after64(now, stats->start_empty_time))
++		blkg_stat_add(&stats->empty_time,
++			      now - stats->start_empty_time);
++	bfqg_stats_clear_empty(stats);
++}
++
++static void bfqg_stats_update_dequeue(struct bfq_group *bfqg)
++{
++	blkg_stat_add(&bfqg->stats.dequeue, 1);
++}
++
++static void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg)
++{
++	struct bfqg_stats *stats = &bfqg->stats;
++
++	if (blkg_rwstat_total(&stats->queued))
++		return;
++
++	/*
++	 * group is already marked empty. This can happen if bfqq got new
++	 * request in parent group and moved to this group while being added
++	 * to service tree. Just ignore the event and move on.
++	 */
++	if (bfqg_stats_empty(stats))
++		return;
++
++	stats->start_empty_time = sched_clock();
++	bfqg_stats_mark_empty(stats);
++}
++
++static void bfqg_stats_update_idle_time(struct bfq_group *bfqg)
++{
++	struct bfqg_stats *stats = &bfqg->stats;
++
++	if (bfqg_stats_idling(stats)) {
++		unsigned long long now = sched_clock();
++
++		if (time_after64(now, stats->start_idle_time))
++			blkg_stat_add(&stats->idle_time,
++				      now - stats->start_idle_time);
++		bfqg_stats_clear_idling(stats);
++	}
++}
++
++static void bfqg_stats_set_start_idle_time(struct bfq_group *bfqg)
++{
++	struct bfqg_stats *stats = &bfqg->stats;
++
++	stats->start_idle_time = sched_clock();
++	bfqg_stats_mark_idling(stats);
++}
++
++static void bfqg_stats_update_avg_queue_size(struct bfq_group *bfqg)
++{
++	struct bfqg_stats *stats = &bfqg->stats;
++
++	blkg_stat_add(&stats->avg_queue_size_sum,
++		      blkg_rwstat_total(&stats->queued));
++	blkg_stat_add(&stats->avg_queue_size_samples, 1);
++	bfqg_stats_update_group_wait_time(stats);
++}
++
++static struct blkcg_policy blkcg_policy_bfq;
++
++/*
++ * blk-cgroup policy-related handlers
++ * The following functions help in converting between blk-cgroup
++ * internal structures and BFQ-specific structures.
++ */
++
++static struct bfq_group *pd_to_bfqg(struct blkg_policy_data *pd)
++{
++	return pd ? container_of(pd, struct bfq_group, pd) : NULL;
++}
++
++static struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg)
++{
++	return pd_to_blkg(&bfqg->pd);
++}
++
++static struct bfq_group *blkg_to_bfqg(struct blkcg_gq *blkg)
++{
++	struct blkg_policy_data *pd = blkg_to_pd(blkg, &blkcg_policy_bfq);
++
++	BUG_ON(!pd);
++
++	return pd_to_bfqg(pd);
++}
++
++/*
++ * bfq_group handlers
++ * The following functions help in navigating the bfq_group hierarchy
++ * by allowing to find the parent of a bfq_group or the bfq_group
++ * associated to a bfq_queue.
++ */
++
++static struct bfq_group *bfqg_parent(struct bfq_group *bfqg)
++{
++	struct blkcg_gq *pblkg = bfqg_to_blkg(bfqg)->parent;
++
++	return pblkg ? blkg_to_bfqg(pblkg) : NULL;
++}
++
++static struct bfq_group *bfqq_group(struct bfq_queue *bfqq)
++{
++	struct bfq_entity *group_entity = bfqq->entity.parent;
++
++	return group_entity ? container_of(group_entity, struct bfq_group,
++					   entity) :
++			      bfqq->bfqd->root_group;
++}
++
++/*
++ * The following two functions handle get and put of a bfq_group by
++ * wrapping the related blk-cgroup hooks.
++ */
++
++static void bfqg_get(struct bfq_group *bfqg)
++{
++	return blkg_get(bfqg_to_blkg(bfqg));
++}
++
++static void bfqg_put(struct bfq_group *bfqg)
++{
++	return blkg_put(bfqg_to_blkg(bfqg));
++}
++
++static void bfqg_stats_update_io_add(struct bfq_group *bfqg,
++				     struct bfq_queue *bfqq,
++				     int rw)
++{
++	blkg_rwstat_add(&bfqg->stats.queued, rw, 1);
++	bfqg_stats_end_empty_time(&bfqg->stats);
++	if (!(bfqq == ((struct bfq_data *)bfqg->bfqd)->in_service_queue))
++		bfqg_stats_set_start_group_wait_time(bfqg, bfqq_group(bfqq));
++}
++
++static void bfqg_stats_update_io_remove(struct bfq_group *bfqg, int rw)
++{
++	blkg_rwstat_add(&bfqg->stats.queued, rw, -1);
++}
++
++static void bfqg_stats_update_io_merged(struct bfq_group *bfqg, int rw)
++{
++	blkg_rwstat_add(&bfqg->stats.merged, rw, 1);
++}
++
++static void bfqg_stats_update_dispatch(struct bfq_group *bfqg,
++					      uint64_t bytes, int rw)
++{
++	blkg_stat_add(&bfqg->stats.sectors, bytes >> 9);
++	blkg_rwstat_add(&bfqg->stats.serviced, rw, 1);
++	blkg_rwstat_add(&bfqg->stats.service_bytes, rw, bytes);
++}
++
++static void bfqg_stats_update_completion(struct bfq_group *bfqg,
++			uint64_t start_time, uint64_t io_start_time, int rw)
++{
++	struct bfqg_stats *stats = &bfqg->stats;
++	unsigned long long now = sched_clock();
++
++	if (time_after64(now, io_start_time))
++		blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
++	if (time_after64(io_start_time, start_time))
++		blkg_rwstat_add(&stats->wait_time, rw,
++				io_start_time - start_time);
++}
++
++/* @stats = 0 */
++static void bfqg_stats_reset(struct bfqg_stats *stats)
++{
++	if (!stats)
++		return;
++
++	/* queued stats shouldn't be cleared */
++	blkg_rwstat_reset(&stats->service_bytes);
++	blkg_rwstat_reset(&stats->serviced);
++	blkg_rwstat_reset(&stats->merged);
++	blkg_rwstat_reset(&stats->service_time);
++	blkg_rwstat_reset(&stats->wait_time);
++	blkg_stat_reset(&stats->time);
++	blkg_stat_reset(&stats->unaccounted_time);
++	blkg_stat_reset(&stats->avg_queue_size_sum);
++	blkg_stat_reset(&stats->avg_queue_size_samples);
++	blkg_stat_reset(&stats->dequeue);
++	blkg_stat_reset(&stats->group_wait_time);
++	blkg_stat_reset(&stats->idle_time);
++	blkg_stat_reset(&stats->empty_time);
++}
++
++/* @to += @from */
++static void bfqg_stats_merge(struct bfqg_stats *to, struct bfqg_stats *from)
++{
++	if (!to || !from)
++		return;
++
++	/* queued stats shouldn't be cleared */
++	blkg_rwstat_add_aux(&to->service_bytes, &from->service_bytes);
++	blkg_rwstat_add_aux(&to->serviced, &from->serviced);
++	blkg_rwstat_add_aux(&to->merged, &from->merged);
++	blkg_rwstat_add_aux(&to->service_time, &from->service_time);
++	blkg_rwstat_add_aux(&to->wait_time, &from->wait_time);
++	blkg_stat_add_aux(&from->time, &from->time);
++	blkg_stat_add_aux(&to->unaccounted_time, &from->unaccounted_time);
++	blkg_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
++	blkg_stat_add_aux(&to->avg_queue_size_samples,
++			  &from->avg_queue_size_samples);
++	blkg_stat_add_aux(&to->dequeue, &from->dequeue);
++	blkg_stat_add_aux(&to->group_wait_time, &from->group_wait_time);
++	blkg_stat_add_aux(&to->idle_time, &from->idle_time);
++	blkg_stat_add_aux(&to->empty_time, &from->empty_time);
++}
++
++/*
++ * Transfer @bfqg's stats to its parent's dead_stats so that the ancestors'
++ * recursive stats can still account for the amount used by this bfqg after
++ * it's gone.
++ */
++static void bfqg_stats_xfer_dead(struct bfq_group *bfqg)
++{
++	struct bfq_group *parent;
++
++	if (!bfqg) /* root_group */
++		return;
++
++	parent = bfqg_parent(bfqg);
++
++	lockdep_assert_held(bfqg_to_blkg(bfqg)->q->queue_lock);
++
++	if (unlikely(!parent))
++		return;
++
++	bfqg_stats_merge(&parent->dead_stats, &bfqg->stats);
++	bfqg_stats_merge(&parent->dead_stats, &bfqg->dead_stats);
++	bfqg_stats_reset(&bfqg->stats);
++	bfqg_stats_reset(&bfqg->dead_stats);
++}
++
++static void bfq_init_entity(struct bfq_entity *entity,
++			    struct bfq_group *bfqg)
++{
++	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++
++	entity->weight = entity->new_weight;
++	entity->orig_weight = entity->new_weight;
++	if (bfqq) {
++		bfqq->ioprio = bfqq->new_ioprio;
++		bfqq->ioprio_class = bfqq->new_ioprio_class;
++		bfqg_get(bfqg);
++	}
++	entity->parent = bfqg->my_entity;
++	entity->sched_data = &bfqg->sched_data;
++}
++
++static void bfqg_stats_exit(struct bfqg_stats *stats)
++{
++	blkg_rwstat_exit(&stats->service_bytes);
++	blkg_rwstat_exit(&stats->serviced);
++	blkg_rwstat_exit(&stats->merged);
++	blkg_rwstat_exit(&stats->service_time);
++	blkg_rwstat_exit(&stats->wait_time);
++	blkg_rwstat_exit(&stats->queued);
++	blkg_stat_exit(&stats->sectors);
++	blkg_stat_exit(&stats->time);
++	blkg_stat_exit(&stats->unaccounted_time);
++	blkg_stat_exit(&stats->avg_queue_size_sum);
++	blkg_stat_exit(&stats->avg_queue_size_samples);
++	blkg_stat_exit(&stats->dequeue);
++	blkg_stat_exit(&stats->group_wait_time);
++	blkg_stat_exit(&stats->idle_time);
++	blkg_stat_exit(&stats->empty_time);
++}
++
++static int bfqg_stats_init(struct bfqg_stats *stats, gfp_t gfp)
++{
++	if (blkg_rwstat_init(&stats->service_bytes, gfp) ||
++	    blkg_rwstat_init(&stats->serviced, gfp) ||
++	    blkg_rwstat_init(&stats->merged, gfp) ||
++	    blkg_rwstat_init(&stats->service_time, gfp) ||
++	    blkg_rwstat_init(&stats->wait_time, gfp) ||
++	    blkg_rwstat_init(&stats->queued, gfp) ||
++	    blkg_stat_init(&stats->sectors, gfp) ||
++	    blkg_stat_init(&stats->time, gfp) ||
++	    blkg_stat_init(&stats->unaccounted_time, gfp) ||
++	    blkg_stat_init(&stats->avg_queue_size_sum, gfp) ||
++	    blkg_stat_init(&stats->avg_queue_size_samples, gfp) ||
++	    blkg_stat_init(&stats->dequeue, gfp) ||
++	    blkg_stat_init(&stats->group_wait_time, gfp) ||
++	    blkg_stat_init(&stats->idle_time, gfp) ||
++	    blkg_stat_init(&stats->empty_time, gfp)) {
++		bfqg_stats_exit(stats);
++		return -ENOMEM;
++	}
++
++	return 0;
++}
++
++static struct bfq_group_data *cpd_to_bfqgd(struct blkcg_policy_data *cpd)
++{
++	return cpd ? container_of(cpd, struct bfq_group_data, pd) : NULL;
++}
++
++static struct bfq_group_data *blkcg_to_bfqgd(struct blkcg *blkcg)
++{
++	return cpd_to_bfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_bfq));
++}
++
++static void bfq_cpd_init(struct blkcg_policy_data *cpd)
++{
++	struct bfq_group_data *d = cpd_to_bfqgd(cpd);
++
++	d->weight = BFQ_DEFAULT_GRP_WEIGHT;
++}
++
++static struct blkg_policy_data *bfq_pd_alloc(gfp_t gfp, int node)
++{
++	struct bfq_group *bfqg;
++
++	bfqg = kzalloc_node(sizeof(*bfqg), gfp, node);
++	if (!bfqg)
++		return NULL;
++
++	if (bfqg_stats_init(&bfqg->stats, gfp) ||
++	    bfqg_stats_init(&bfqg->dead_stats, gfp)) {
++		kfree(bfqg);
++		return NULL;
++	}
++
++	return &bfqg->pd;
++}
++
++static void bfq_group_set_parent(struct bfq_group *bfqg,
++					struct bfq_group *parent)
++{
++	struct bfq_entity *entity;
++
++	BUG_ON(!parent);
++	BUG_ON(!bfqg);
++	BUG_ON(bfqg == parent);
++
++	entity = &bfqg->entity;
++	entity->parent = parent->my_entity;
++	entity->sched_data = &parent->sched_data;
++}
++
++static void bfq_pd_init(struct blkg_policy_data *pd)
++{
++	struct blkcg_gq *blkg = pd_to_blkg(pd);
++	struct bfq_group *bfqg = blkg_to_bfqg(blkg);
++	struct bfq_data *bfqd = blkg->q->elevator->elevator_data;
++	struct bfq_entity *entity = &bfqg->entity;
++	struct bfq_group_data *d = blkcg_to_bfqgd(blkg->blkcg);
++
++	entity->orig_weight = entity->weight = entity->new_weight = d->weight;
++	entity->my_sched_data = &bfqg->sched_data;
++	bfqg->my_entity = entity; /*
++				   * the root_group's will be set to NULL
++				   * in bfq_init_queue()
++				   */
++	bfqg->bfqd = bfqd;
++	bfqg->active_entities = 0;
++}
++
++static void bfq_pd_free(struct blkg_policy_data *pd)
++{
++	struct bfq_group *bfqg = pd_to_bfqg(pd);
++
++	bfqg_stats_exit(&bfqg->stats);
++	bfqg_stats_exit(&bfqg->dead_stats);
++
++	return kfree(bfqg);
++}
++
++/* offset delta from bfqg->stats to bfqg->dead_stats */
++static const int dead_stats_off_delta = offsetof(struct bfq_group, dead_stats) -
++					offsetof(struct bfq_group, stats);
++
++/* to be used by recursive prfill, sums live and dead stats recursively */
++static u64 bfqg_stat_pd_recursive_sum(struct blkg_policy_data *pd, int off)
++{
++	u64 sum = 0;
++
++	sum += blkg_stat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_bfq, off);
++	sum += blkg_stat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_bfq,
++				       off + dead_stats_off_delta);
++	return sum;
++}
++
++/* to be used by recursive prfill, sums live and dead rwstats recursively */
++static struct blkg_rwstat
++bfqg_rwstat_pd_recursive_sum(struct blkg_policy_data *pd, int off)
++{
++	struct blkg_rwstat a, b;
++
++	a = blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_bfq, off);
++	b = blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_bfq,
++				      off + dead_stats_off_delta);
++	blkg_rwstat_add_aux(&a, &b);
++	return a;
++}
++
++static void bfq_pd_reset_stats(struct blkg_policy_data *pd)
++{
++	struct bfq_group *bfqg = pd_to_bfqg(pd);
++
++	bfqg_stats_reset(&bfqg->stats);
++	bfqg_stats_reset(&bfqg->dead_stats);
++}
++
++static struct bfq_group *bfq_find_alloc_group(struct bfq_data *bfqd,
++					      struct blkcg *blkcg)
++{
++	struct request_queue *q = bfqd->queue;
++	struct bfq_group *bfqg = NULL, *parent;
++	struct bfq_entity *entity = NULL;
++
++	assert_spin_locked(bfqd->queue->queue_lock);
++
++	/* avoid lookup for the common case where there's no blkcg */
++	if (blkcg == &blkcg_root) {
++		bfqg = bfqd->root_group;
++	} else {
++		struct blkcg_gq *blkg;
++
++		blkg = blkg_lookup_create(blkcg, q);
++		if (!IS_ERR(blkg))
++			bfqg = blkg_to_bfqg(blkg);
++		else /* fallback to root_group */
++			bfqg = bfqd->root_group;
++	}
++
++	BUG_ON(!bfqg);
++
++	/*
++	 * Update chain of bfq_groups as we might be handling a leaf group
++	 * which, along with some of its relatives, has not been hooked yet
++	 * to the private hierarchy of BFQ.
++	 */
++	entity = &bfqg->entity;
++	for_each_entity(entity) {
++		bfqg = container_of(entity, struct bfq_group, entity);
++		BUG_ON(!bfqg);
++		if (bfqg != bfqd->root_group) {
++			parent = bfqg_parent(bfqg);
++			if (!parent)
++				parent = bfqd->root_group;
++			BUG_ON(!parent);
++			bfq_group_set_parent(bfqg, parent);
++		}
++	}
++
++	return bfqg;
++}
++
++/**
++ * bfq_bfqq_move - migrate @bfqq to @bfqg.
++ * @bfqd: queue descriptor.
++ * @bfqq: the queue to move.
++ * @entity: @bfqq's entity.
++ * @bfqg: the group to move to.
++ *
++ * Move @bfqq to @bfqg, deactivating it from its old group and reactivating
++ * it on the new one.  Avoid putting the entity on the old group idle tree.
++ *
++ * Must be called under the queue lock; the cgroup owning @bfqg must
++ * not disappear (by now this just means that we are called under
++ * rcu_read_lock()).
++ */
++static void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++			  struct bfq_entity *entity, struct bfq_group *bfqg)
++{
++	int busy, resume;
++
++	busy = bfq_bfqq_busy(bfqq);
++	resume = !RB_EMPTY_ROOT(&bfqq->sort_list);
++
++	BUG_ON(resume && !entity->on_st);
++	BUG_ON(busy && !resume && entity->on_st &&
++	       bfqq != bfqd->in_service_queue);
++
++	if (busy) {
++		BUG_ON(atomic_read(&bfqq->ref) < 2);
++
++		if (!resume)
++			bfq_del_bfqq_busy(bfqd, bfqq, 0);
++		else
++			bfq_deactivate_bfqq(bfqd, bfqq, 0);
++	} else if (entity->on_st)
++		bfq_put_idle_entity(bfq_entity_service_tree(entity), entity);
++	bfqg_put(bfqq_group(bfqq));
++
++	/*
++	 * Here we use a reference to bfqg.  We don't need a refcounter
++	 * as the cgroup reference will not be dropped, so that its
++	 * destroy() callback will not be invoked.
++	 */
++	entity->parent = bfqg->my_entity;
++	entity->sched_data = &bfqg->sched_data;
++	bfqg_get(bfqg);
++
++	if (busy) {
++		if (resume)
++			bfq_activate_bfqq(bfqd, bfqq);
++	}
++
++	if (!bfqd->in_service_queue && !bfqd->rq_in_driver)
++		bfq_schedule_dispatch(bfqd);
++}
++
++/**
++ * __bfq_bic_change_cgroup - move @bic to @cgroup.
++ * @bfqd: the queue descriptor.
++ * @bic: the bic to move.
++ * @blkcg: the blk-cgroup to move to.
++ *
++ * Move bic to blkcg, assuming that bfqd->queue is locked; the caller
++ * has to make sure that the reference to cgroup is valid across the call.
++ *
++ * NOTE: an alternative approach might have been to store the current
++ * cgroup in bfqq and getting a reference to it, reducing the lookup
++ * time here, at the price of slightly more complex code.
++ */
++static struct bfq_group *__bfq_bic_change_cgroup(struct bfq_data *bfqd,
++						struct bfq_io_cq *bic,
++						struct blkcg *blkcg)
++{
++	struct bfq_queue *async_bfqq = bic_to_bfqq(bic, 0);
++	struct bfq_queue *sync_bfqq = bic_to_bfqq(bic, 1);
++	struct bfq_group *bfqg;
++	struct bfq_entity *entity;
++
++	lockdep_assert_held(bfqd->queue->queue_lock);
++
++	bfqg = bfq_find_alloc_group(bfqd, blkcg);
++	if (async_bfqq) {
++		entity = &async_bfqq->entity;
++
++		if (entity->sched_data != &bfqg->sched_data) {
++			bic_set_bfqq(bic, NULL, 0);
++			bfq_log_bfqq(bfqd, async_bfqq,
++				     "bic_change_group: %p %d",
++				     async_bfqq, atomic_read(&async_bfqq->ref));
++			bfq_put_queue(async_bfqq);
++		}
++	}
++
++	if (sync_bfqq) {
++		entity = &sync_bfqq->entity;
++		if (entity->sched_data != &bfqg->sched_data)
++			bfq_bfqq_move(bfqd, sync_bfqq, entity, bfqg);
++	}
++
++	return bfqg;
++}
++
++static void bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio)
++{
++	struct bfq_data *bfqd = bic_to_bfqd(bic);
++	struct blkcg *blkcg;
++	struct bfq_group *bfqg = NULL;
++	uint64_t id;
++
++	rcu_read_lock();
++	blkcg = bio_blkcg(bio);
++	id = blkcg->css.serial_nr;
++	rcu_read_unlock();
++
++	/*
++	 * Check whether blkcg has changed.  The condition may trigger
++	 * spuriously on a newly created cic but there's no harm.
++	 */
++	if (unlikely(!bfqd) || likely(bic->blkcg_id == id))
++		return;
++
++	bfqg = __bfq_bic_change_cgroup(bfqd, bic, blkcg);
++	BUG_ON(!bfqg);
++	bic->blkcg_id = id;
++}
++
++/**
++ * bfq_flush_idle_tree - deactivate any entity on the idle tree of @st.
++ * @st: the service tree being flushed.
++ */
++static void bfq_flush_idle_tree(struct bfq_service_tree *st)
++{
++	struct bfq_entity *entity = st->first_idle;
++
++	for (; entity ; entity = st->first_idle)
++		__bfq_deactivate_entity(entity, 0);
++}
++
++/**
++ * bfq_reparent_leaf_entity - move leaf entity to the root_group.
++ * @bfqd: the device data structure with the root group.
++ * @entity: the entity to move.
++ */
++static void bfq_reparent_leaf_entity(struct bfq_data *bfqd,
++				     struct bfq_entity *entity)
++{
++	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++
++	BUG_ON(!bfqq);
++	bfq_bfqq_move(bfqd, bfqq, entity, bfqd->root_group);
++}
++
++/**
++ * bfq_reparent_active_entities - move to the root group all active
++ *                                entities.
++ * @bfqd: the device data structure with the root group.
++ * @bfqg: the group to move from.
++ * @st: the service tree with the entities.
++ *
++ * Needs queue_lock to be taken and reference to be valid over the call.
++ */
++static void bfq_reparent_active_entities(struct bfq_data *bfqd,
++					 struct bfq_group *bfqg,
++					 struct bfq_service_tree *st)
++{
++	struct rb_root *active = &st->active;
++	struct bfq_entity *entity = NULL;
++
++	if (!RB_EMPTY_ROOT(&st->active))
++		entity = bfq_entity_of(rb_first(active));
++
++	for (; entity ; entity = bfq_entity_of(rb_first(active)))
++		bfq_reparent_leaf_entity(bfqd, entity);
++
++	if (bfqg->sched_data.in_service_entity)
++		bfq_reparent_leaf_entity(bfqd,
++			bfqg->sched_data.in_service_entity);
++}
++
++/**
++ * bfq_destroy_group - destroy @bfqg.
++ * @bfqg: the group being destroyed.
++ *
++ * Destroy @bfqg, making sure that it is not referenced from its parent.
++ * blkio already grabs the queue_lock for us, so no need to use RCU-based magic
++ */
++static void bfq_pd_offline(struct blkg_policy_data *pd)
++{
++	struct bfq_service_tree *st;
++	struct bfq_group *bfqg;
++	struct bfq_data *bfqd;
++	struct bfq_entity *entity;
++	int i;
++
++	BUG_ON(!pd);
++	bfqg = pd_to_bfqg(pd);
++	BUG_ON(!bfqg);
++	bfqd = bfqg->bfqd;
++	BUG_ON(bfqd && !bfqd->root_group);
++
++	entity = bfqg->my_entity;
++
++	if (!entity) /* root group */
++		return;
++
++	/*
++	 * Empty all service_trees belonging to this group before
++	 * deactivating the group itself.
++	 */
++	for (i = 0; i < BFQ_IOPRIO_CLASSES; i++) {
++		BUG_ON(!bfqg->sched_data.service_tree);
++		st = bfqg->sched_data.service_tree + i;
++		/*
++		 * The idle tree may still contain bfq_queues belonging
++		 * to exited task because they never migrated to a different
++		 * cgroup from the one being destroyed now.  No one else
++		 * can access them so it's safe to act without any lock.
++		 */
++		bfq_flush_idle_tree(st);
++
++		/*
++		 * It may happen that some queues are still active
++		 * (busy) upon group destruction (if the corresponding
++		 * processes have been forced to terminate). We move
++		 * all the leaf entities corresponding to these queues
++		 * to the root_group.
++		 * Also, it may happen that the group has an entity
++		 * in service, which is disconnected from the active
++		 * tree: it must be moved, too.
++		 * There is no need to put the sync queues, as the
++		 * scheduler has taken no reference.
++		 */
++		bfq_reparent_active_entities(bfqd, bfqg, st);
++		BUG_ON(!RB_EMPTY_ROOT(&st->active));
++		BUG_ON(!RB_EMPTY_ROOT(&st->idle));
++	}
++	BUG_ON(bfqg->sched_data.next_in_service);
++	BUG_ON(bfqg->sched_data.in_service_entity);
++
++	__bfq_deactivate_entity(entity, 0);
++	bfq_put_async_queues(bfqd, bfqg);
++	BUG_ON(entity->tree);
++
++	bfqg_stats_xfer_dead(bfqg);
++}
++
++static void bfq_end_wr_async(struct bfq_data *bfqd)
++{
++	struct blkcg_gq *blkg;
++
++	list_for_each_entry(blkg, &bfqd->queue->blkg_list, q_node) {
++		struct bfq_group *bfqg = blkg_to_bfqg(blkg);
++
++		bfq_end_wr_async_queues(bfqd, bfqg);
++	}
++	bfq_end_wr_async_queues(bfqd, bfqd->root_group);
++}
++
++static u64 bfqio_cgroup_weight_read(struct cgroup_subsys_state *css,
++				       struct cftype *cftype)
++{
++	struct blkcg *blkcg = css_to_blkcg(css);
++	struct bfq_group_data *bfqgd = blkcg_to_bfqgd(blkcg);
++	int ret = -EINVAL;
++
++	spin_lock_irq(&blkcg->lock);
++	ret = bfqgd->weight;
++	spin_unlock_irq(&blkcg->lock);
++
++	return ret;
++}
++
++static int bfqio_cgroup_weight_read_dfl(struct seq_file *sf, void *v)
++{
++	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
++	struct bfq_group_data *bfqgd = blkcg_to_bfqgd(blkcg);
++
++	spin_lock_irq(&blkcg->lock);
++	seq_printf(sf, "%u\n", bfqgd->weight);
++	spin_unlock_irq(&blkcg->lock);
++
++	return 0;
++}
++
++static int bfqio_cgroup_weight_write(struct cgroup_subsys_state *css,
++					struct cftype *cftype,
++					u64 val)
++{
++	struct blkcg *blkcg = css_to_blkcg(css);
++	struct bfq_group_data *bfqgd = blkcg_to_bfqgd(blkcg);
++	struct blkcg_gq *blkg;
++	int ret = -EINVAL;
++
++	if (val < BFQ_MIN_WEIGHT || val > BFQ_MAX_WEIGHT)
++		return ret;
++
++	ret = 0;
++	spin_lock_irq(&blkcg->lock);
++	bfqgd->weight = (unsigned short)val;
++	hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
++		struct bfq_group *bfqg = blkg_to_bfqg(blkg);
++
++		if (!bfqg)
++			continue;
++		/*
++		 * Setting the prio_changed flag of the entity
++		 * to 1 with new_weight == weight would re-set
++		 * the value of the weight to its ioprio mapping.
++		 * Set the flag only if necessary.
++		 */
++		if ((unsigned short)val != bfqg->entity.new_weight) {
++			bfqg->entity.new_weight = (unsigned short)val;
++			/*
++			 * Make sure that the above new value has been
++			 * stored in bfqg->entity.new_weight before
++			 * setting the prio_changed flag. In fact,
++			 * this flag may be read asynchronously (in
++			 * critical sections protected by a different
++			 * lock than that held here), and finding this
++			 * flag set may cause the execution of the code
++			 * for updating parameters whose value may
++			 * depend also on bfqg->entity.new_weight (in
++			 * __bfq_entity_update_weight_prio).
++			 * This barrier makes sure that the new value
++			 * of bfqg->entity.new_weight is correctly
++			 * seen in that code.
++			 */
++			smp_wmb();
++			bfqg->entity.prio_changed = 1;
++		}
++	}
++	spin_unlock_irq(&blkcg->lock);
++
++	return ret;
++}
++
++static ssize_t bfqio_cgroup_weight_write_dfl(struct kernfs_open_file *of,
++					     char *buf, size_t nbytes,
++					     loff_t off)
++{
++	/* First unsigned long found in the file is used */
++	return bfqio_cgroup_weight_write(of_css(of), NULL,
++					 simple_strtoull(strim(buf), NULL, 0));
++}
++
++static int bfqg_print_stat(struct seq_file *sf, void *v)
++{
++	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat,
++			  &blkcg_policy_bfq, seq_cft(sf)->private, false);
++	return 0;
++}
++
++static int bfqg_print_rwstat(struct seq_file *sf, void *v)
++{
++	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
++			  &blkcg_policy_bfq, seq_cft(sf)->private, true);
++	return 0;
++}
++
++static u64 bfqg_prfill_stat_recursive(struct seq_file *sf,
++				      struct blkg_policy_data *pd, int off)
++{
++	u64 sum = bfqg_stat_pd_recursive_sum(pd, off);
++
++	return __blkg_prfill_u64(sf, pd, sum);
++}
++
++static u64 bfqg_prfill_rwstat_recursive(struct seq_file *sf,
++					struct blkg_policy_data *pd, int off)
++{
++	struct blkg_rwstat sum = bfqg_rwstat_pd_recursive_sum(pd, off);
++
++	return __blkg_prfill_rwstat(sf, pd, &sum);
++}
++
++static int bfqg_print_stat_recursive(struct seq_file *sf, void *v)
++{
++	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
++			  bfqg_prfill_stat_recursive, &blkcg_policy_bfq,
++			  seq_cft(sf)->private, false);
++	return 0;
++}
++
++static int bfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
++{
++	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
++			  bfqg_prfill_rwstat_recursive, &blkcg_policy_bfq,
++			  seq_cft(sf)->private, true);
++	return 0;
++}
++
++static u64 bfqg_prfill_avg_queue_size(struct seq_file *sf,
++				      struct blkg_policy_data *pd, int off)
++{
++	struct bfq_group *bfqg = pd_to_bfqg(pd);
++	u64 samples = blkg_stat_read(&bfqg->stats.avg_queue_size_samples);
++	u64 v = 0;
++
++	if (samples) {
++		v = blkg_stat_read(&bfqg->stats.avg_queue_size_sum);
++		v = div64_u64(v, samples);
++	}
++	__blkg_prfill_u64(sf, pd, v);
++	return 0;
++}
++
++/* print avg_queue_size */
++static int bfqg_print_avg_queue_size(struct seq_file *sf, void *v)
++{
++	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
++			  bfqg_prfill_avg_queue_size, &blkcg_policy_bfq,
++			  0, false);
++	return 0;
++}
++
++static struct bfq_group *
++bfq_create_group_hierarchy(struct bfq_data *bfqd, int node)
++{
++	int ret;
++
++	ret = blkcg_activate_policy(bfqd->queue, &blkcg_policy_bfq);
++	if (ret)
++		return NULL;
++
++	return blkg_to_bfqg(bfqd->queue->root_blkg);
++}
++
++static struct blkcg_policy_data *bfq_cpd_alloc(gfp_t gfp)
++{
++	struct bfq_group_data *bgd;
++
++	bgd = kzalloc(sizeof(*bgd), GFP_KERNEL);
++	if (!bgd)
++		return NULL;
++	return &bgd->pd;
++}
++
++static void bfq_cpd_free(struct blkcg_policy_data *cpd)
++{
++	kfree(cpd_to_bfqgd(cpd));
++}
++
++static struct cftype bfqio_files_dfl[] = {
++	{
++		.name = "weight",
++		.flags = CFTYPE_NOT_ON_ROOT,
++		.seq_show = bfqio_cgroup_weight_read_dfl,
++		.write = bfqio_cgroup_weight_write_dfl,
++	},
++	{} /* terminate */
++};
++
++static struct cftype bfqio_files[] = {
++	{
++		.name = "bfq.weight",
++		.read_u64 = bfqio_cgroup_weight_read,
++		.write_u64 = bfqio_cgroup_weight_write,
++	},
++	/* statistics, cover only the tasks in the bfqg */
++	{
++		.name = "bfq.time",
++		.private = offsetof(struct bfq_group, stats.time),
++		.seq_show = bfqg_print_stat,
++	},
++	{
++		.name = "bfq.sectors",
++		.private = offsetof(struct bfq_group, stats.sectors),
++		.seq_show = bfqg_print_stat,
++	},
++	{
++		.name = "bfq.io_service_bytes",
++		.private = offsetof(struct bfq_group, stats.service_bytes),
++		.seq_show = bfqg_print_rwstat,
++	},
++	{
++		.name = "bfq.io_serviced",
++		.private = offsetof(struct bfq_group, stats.serviced),
++		.seq_show = bfqg_print_rwstat,
++	},
++	{
++		.name = "bfq.io_service_time",
++		.private = offsetof(struct bfq_group, stats.service_time),
++		.seq_show = bfqg_print_rwstat,
++	},
++	{
++		.name = "bfq.io_wait_time",
++		.private = offsetof(struct bfq_group, stats.wait_time),
++		.seq_show = bfqg_print_rwstat,
++	},
++	{
++		.name = "bfq.io_merged",
++		.private = offsetof(struct bfq_group, stats.merged),
++		.seq_show = bfqg_print_rwstat,
++	},
++	{
++		.name = "bfq.io_queued",
++		.private = offsetof(struct bfq_group, stats.queued),
++		.seq_show = bfqg_print_rwstat,
++	},
++
++	/* the same statictics which cover the bfqg and its descendants */
++	{
++		.name = "bfq.time_recursive",
++		.private = offsetof(struct bfq_group, stats.time),
++		.seq_show = bfqg_print_stat_recursive,
++	},
++	{
++		.name = "bfq.sectors_recursive",
++		.private = offsetof(struct bfq_group, stats.sectors),
++		.seq_show = bfqg_print_stat_recursive,
++	},
++	{
++		.name = "bfq.io_service_bytes_recursive",
++		.private = offsetof(struct bfq_group, stats.service_bytes),
++		.seq_show = bfqg_print_rwstat_recursive,
++	},
++	{
++		.name = "bfq.io_serviced_recursive",
++		.private = offsetof(struct bfq_group, stats.serviced),
++		.seq_show = bfqg_print_rwstat_recursive,
++	},
++	{
++		.name = "bfq.io_service_time_recursive",
++		.private = offsetof(struct bfq_group, stats.service_time),
++		.seq_show = bfqg_print_rwstat_recursive,
++	},
++	{
++		.name = "bfq.io_wait_time_recursive",
++		.private = offsetof(struct bfq_group, stats.wait_time),
++		.seq_show = bfqg_print_rwstat_recursive,
++	},
++	{
++		.name = "bfq.io_merged_recursive",
++		.private = offsetof(struct bfq_group, stats.merged),
++		.seq_show = bfqg_print_rwstat_recursive,
++	},
++	{
++		.name = "bfq.io_queued_recursive",
++		.private = offsetof(struct bfq_group, stats.queued),
++		.seq_show = bfqg_print_rwstat_recursive,
++	},
++	{
++		.name = "bfq.avg_queue_size",
++		.seq_show = bfqg_print_avg_queue_size,
++	},
++	{
++		.name = "bfq.group_wait_time",
++		.private = offsetof(struct bfq_group, stats.group_wait_time),
++		.seq_show = bfqg_print_stat,
++	},
++	{
++		.name = "bfq.idle_time",
++		.private = offsetof(struct bfq_group, stats.idle_time),
++		.seq_show = bfqg_print_stat,
++	},
++	{
++		.name = "bfq.empty_time",
++		.private = offsetof(struct bfq_group, stats.empty_time),
++		.seq_show = bfqg_print_stat,
++	},
++	{
++		.name = "bfq.dequeue",
++		.private = offsetof(struct bfq_group, stats.dequeue),
++		.seq_show = bfqg_print_stat,
++	},
++	{
++		.name = "bfq.unaccounted_time",
++		.private = offsetof(struct bfq_group, stats.unaccounted_time),
++		.seq_show = bfqg_print_stat,
++	},
++	{ }	/* terminate */
++};
++
++static struct blkcg_policy blkcg_policy_bfq = {
++	.dfl_cftypes            = bfqio_files_dfl,
++	.legacy_cftypes		= bfqio_files,
++
++	.pd_alloc_fn		= bfq_pd_alloc,
++	.pd_init_fn		= bfq_pd_init,
++	.pd_offline_fn		= bfq_pd_offline,
++	.pd_free_fn		= bfq_pd_free,
++	.pd_reset_stats_fn	= bfq_pd_reset_stats,
++
++	.cpd_alloc_fn		= bfq_cpd_alloc,
++	.cpd_init_fn		= bfq_cpd_init,
++	.cpd_bind_fn		= bfq_cpd_init,
++	.cpd_free_fn		= bfq_cpd_free,
++};
++
++#else
++
++static void bfq_init_entity(struct bfq_entity *entity,
++			    struct bfq_group *bfqg)
++{
++	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++
++	entity->weight = entity->new_weight;
++	entity->orig_weight = entity->new_weight;
++	if (bfqq) {
++		bfqq->ioprio = bfqq->new_ioprio;
++		bfqq->ioprio_class = bfqq->new_ioprio_class;
++	}
++	entity->sched_data = &bfqg->sched_data;
++}
++
++static struct bfq_group *
++bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio)
++{
++	struct bfq_data *bfqd = bic_to_bfqd(bic);
++
++	return bfqd->root_group;
++}
++
++static void bfq_bfqq_move(struct bfq_data *bfqd,
++			  struct bfq_queue *bfqq,
++			  struct bfq_entity *entity,
++			  struct bfq_group *bfqg)
++{
++}
++
++static void bfq_end_wr_async(struct bfq_data *bfqd)
++{
++	bfq_end_wr_async_queues(bfqd, bfqd->root_group);
++}
++
++static void bfq_disconnect_groups(struct bfq_data *bfqd)
++{
++	bfq_put_async_queues(bfqd, bfqd->root_group);
++}
++
++static struct bfq_group *bfq_find_alloc_group(struct bfq_data *bfqd,
++					      struct blkcg *blkcg)
++{
++	return bfqd->root_group;
++}
++
++static struct bfq_group *
++bfq_create_group_hierarchy(struct bfq_data *bfqd, int node)
++{
++	struct bfq_group *bfqg;
++	int i;
++
++	bfqg = kmalloc_node(sizeof(*bfqg), GFP_KERNEL | __GFP_ZERO, node);
++	if (!bfqg)
++		return NULL;
++
++	for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
++		bfqg->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
++
++	return bfqg;
++}
++#endif
+diff --git a/block/bfq-ioc.c b/block/bfq-ioc.c
+new file mode 100644
+index 0000000..fb7bb8f
+--- /dev/null
++++ b/block/bfq-ioc.c
+@@ -0,0 +1,36 @@
++/*
++ * BFQ: I/O context handling.
++ *
++ * Based on ideas and code from CFQ:
++ * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
++ *
++ * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
++ *		      Paolo Valente <paolo.valente@unimore.it>
++ *
++ * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
++ */
++
++/**
++ * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
++ * @icq: the iocontext queue.
++ */
++static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
++{
++	/* bic->icq is the first member, %NULL will convert to %NULL */
++	return container_of(icq, struct bfq_io_cq, icq);
++}
++
++/**
++ * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
++ * @bfqd: the lookup key.
++ * @ioc: the io_context of the process doing I/O.
++ *
++ * Queue lock must be held.
++ */
++static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
++					struct io_context *ioc)
++{
++	if (ioc)
++		return icq_to_bic(ioc_lookup_icq(ioc, bfqd->queue));
++	return NULL;
++}
+diff --git a/block/bfq-iosched.c b/block/bfq-iosched.c
+new file mode 100644
+index 0000000..85e2169
+--- /dev/null
++++ b/block/bfq-iosched.c
+@@ -0,0 +1,3763 @@
++/*
++ * Budget Fair Queueing (BFQ) disk scheduler.
++ *
++ * Based on ideas and code from CFQ:
++ * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
++ *
++ * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
++ *		      Paolo Valente <paolo.valente@unimore.it>
++ *
++ * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
++ *
++ * Licensed under the GPL-2 as detailed in the accompanying COPYING.BFQ
++ * file.
++ *
++ * BFQ is a proportional-share storage-I/O scheduling algorithm based on
++ * the slice-by-slice service scheme of CFQ. But BFQ assigns budgets,
++ * measured in number of sectors, to processes instead of time slices. The
++ * device is not granted to the in-service process for a given time slice,
++ * but until it has exhausted its assigned budget. This change from the time
++ * to the service domain allows BFQ to distribute the device throughput
++ * among processes as desired, without any distortion due to ZBR, workload
++ * fluctuations or other factors. BFQ uses an ad hoc internal scheduler,
++ * called B-WF2Q+, to schedule processes according to their budgets. More
++ * precisely, BFQ schedules queues associated to processes. Thanks to the
++ * accurate policy of B-WF2Q+, BFQ can afford to assign high budgets to
++ * I/O-bound processes issuing sequential requests (to boost the
++ * throughput), and yet guarantee a low latency to interactive and soft
++ * real-time applications.
++ *
++ * BFQ is described in [1], where also a reference to the initial, more
++ * theoretical paper on BFQ can be found. The interested reader can find
++ * in the latter paper full details on the main algorithm, as well as
++ * formulas of the guarantees and formal proofs of all the properties.
++ * With respect to the version of BFQ presented in these papers, this
++ * implementation adds a few more heuristics, such as the one that
++ * guarantees a low latency to soft real-time applications, and a
++ * hierarchical extension based on H-WF2Q+.
++ *
++ * B-WF2Q+ is based on WF2Q+, that is described in [2], together with
++ * H-WF2Q+, while the augmented tree used to implement B-WF2Q+ with O(log N)
++ * complexity derives from the one introduced with EEVDF in [3].
++ *
++ * [1] P. Valente and M. Andreolini, ``Improving Application Responsiveness
++ *     with the BFQ Disk I/O Scheduler'',
++ *     Proceedings of the 5th Annual International Systems and Storage
++ *     Conference (SYSTOR '12), June 2012.
++ *
++ * http://algogroup.unimo.it/people/paolo/disk_sched/bf1-v1-suite-results.pdf
++ *
++ * [2] Jon C.R. Bennett and H. Zhang, ``Hierarchical Packet Fair Queueing
++ *     Algorithms,'' IEEE/ACM Transactions on Networking, 5(5):675-689,
++ *     Oct 1997.
++ *
++ * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
++ *
++ * [3] I. Stoica and H. Abdel-Wahab, ``Earliest Eligible Virtual Deadline
++ *     First: A Flexible and Accurate Mechanism for Proportional Share
++ *     Resource Allocation,'' technical report.
++ *
++ * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
++ */
++#include <linux/module.h>
++#include <linux/slab.h>
++#include <linux/blkdev.h>
++#include <linux/cgroup.h>
++#include <linux/elevator.h>
++#include <linux/jiffies.h>
++#include <linux/rbtree.h>
++#include <linux/ioprio.h>
++#include "bfq.h"
++#include "blk.h"
++
++/* Expiration time of sync (0) and async (1) requests, in jiffies. */
++static const int bfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
++
++/* Maximum backwards seek, in KiB. */
++static const int bfq_back_max = 16 * 1024;
++
++/* Penalty of a backwards seek, in number of sectors. */
++static const int bfq_back_penalty = 2;
++
++/* Idling period duration, in jiffies. */
++static int bfq_slice_idle = HZ / 125;
++
++/* Minimum number of assigned budgets for which stats are safe to compute. */
++static const int bfq_stats_min_budgets = 194;
++
++/* Default maximum budget values, in sectors and number of requests. */
++static const int bfq_default_max_budget = 16 * 1024;
++static const int bfq_max_budget_async_rq = 4;
++
++/*
++ * Async to sync throughput distribution is controlled as follows:
++ * when an async request is served, the entity is charged the number
++ * of sectors of the request, multiplied by the factor below
++ */
++static const int bfq_async_charge_factor = 10;
++
++/* Default timeout values, in jiffies, approximating CFQ defaults. */
++static const int bfq_timeout_sync = HZ / 8;
++static int bfq_timeout_async = HZ / 25;
++
++struct kmem_cache *bfq_pool;
++
++/* Below this threshold (in ms), we consider thinktime immediate. */
++#define BFQ_MIN_TT		2
++
++/* hw_tag detection: parallel requests threshold and min samples needed. */
++#define BFQ_HW_QUEUE_THRESHOLD	4
++#define BFQ_HW_QUEUE_SAMPLES	32
++
++#define BFQQ_SEEK_THR	 (sector_t)(8 * 1024)
++#define BFQQ_SEEKY(bfqq) ((bfqq)->seek_mean > BFQQ_SEEK_THR)
++
++/* Min samples used for peak rate estimation (for autotuning). */
++#define BFQ_PEAK_RATE_SAMPLES	32
++
++/* Shift used for peak rate fixed precision calculations. */
++#define BFQ_RATE_SHIFT		16
++
++/*
++ * By default, BFQ computes the duration of the weight raising for
++ * interactive applications automatically, using the following formula:
++ * duration = (R / r) * T, where r is the peak rate of the device, and
++ * R and T are two reference parameters.
++ * In particular, R is the peak rate of the reference device (see below),
++ * and T is a reference time: given the systems that are likely to be
++ * installed on the reference device according to its speed class, T is
++ * about the maximum time needed, under BFQ and while reading two files in
++ * parallel, to load typical large applications on these systems.
++ * In practice, the slower/faster the device at hand is, the more/less it
++ * takes to load applications with respect to the reference device.
++ * Accordingly, the longer/shorter BFQ grants weight raising to interactive
++ * applications.
++ *
++ * BFQ uses four different reference pairs (R, T), depending on:
++ * . whether the device is rotational or non-rotational;
++ * . whether the device is slow, such as old or portable HDDs, as well as
++ *   SD cards, or fast, such as newer HDDs and SSDs.
++ *
++ * The device's speed class is dynamically (re)detected in
++ * bfq_update_peak_rate() every time the estimated peak rate is updated.
++ *
++ * In the following definitions, R_slow[0]/R_fast[0] and T_slow[0]/T_fast[0]
++ * are the reference values for a slow/fast rotational device, whereas
++ * R_slow[1]/R_fast[1] and T_slow[1]/T_fast[1] are the reference values for
++ * a slow/fast non-rotational device. Finally, device_speed_thresh are the
++ * thresholds used to switch between speed classes.
++ * Both the reference peak rates and the thresholds are measured in
++ * sectors/usec, left-shifted by BFQ_RATE_SHIFT.
++ */
++static int R_slow[2] = {1536, 10752};
++static int R_fast[2] = {17415, 34791};
++/*
++ * To improve readability, a conversion function is used to initialize the
++ * following arrays, which entails that they can be initialized only in a
++ * function.
++ */
++static int T_slow[2];
++static int T_fast[2];
++static int device_speed_thresh[2];
++
++#define BFQ_SERVICE_TREE_INIT	((struct bfq_service_tree)		\
++				{ RB_ROOT, RB_ROOT, NULL, NULL, 0, 0 })
++
++#define RQ_BIC(rq)		((struct bfq_io_cq *) (rq)->elv.priv[0])
++#define RQ_BFQQ(rq)		((rq)->elv.priv[1])
++
++static void bfq_schedule_dispatch(struct bfq_data *bfqd);
++
++#include "bfq-ioc.c"
++#include "bfq-sched.c"
++#include "bfq-cgroup.c"
++
++#define bfq_class_idle(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
++#define bfq_class_rt(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
++
++#define bfq_sample_valid(samples)	((samples) > 80)
++
++/*
++ * We regard a request as SYNC, if either it's a read or has the SYNC bit
++ * set (in which case it could also be a direct WRITE).
++ */
++static int bfq_bio_sync(struct bio *bio)
++{
++	if (bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC))
++		return 1;
++
++	return 0;
++}
++
++/*
++ * Scheduler run of queue, if there are requests pending and no one in the
++ * driver that will restart queueing.
++ */
++static void bfq_schedule_dispatch(struct bfq_data *bfqd)
++{
++	if (bfqd->queued != 0) {
++		bfq_log(bfqd, "schedule dispatch");
++		kblockd_schedule_work(&bfqd->unplug_work);
++	}
++}
++
++/*
++ * Lifted from AS - choose which of rq1 and rq2 that is best served now.
++ * We choose the request that is closesr to the head right now.  Distance
++ * behind the head is penalized and only allowed to a certain extent.
++ */
++static struct request *bfq_choose_req(struct bfq_data *bfqd,
++				      struct request *rq1,
++				      struct request *rq2,
++				      sector_t last)
++{
++	sector_t s1, s2, d1 = 0, d2 = 0;
++	unsigned long back_max;
++#define BFQ_RQ1_WRAP	0x01 /* request 1 wraps */
++#define BFQ_RQ2_WRAP	0x02 /* request 2 wraps */
++	unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
++
++	if (!rq1 || rq1 == rq2)
++		return rq2;
++	if (!rq2)
++		return rq1;
++
++	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
++		return rq1;
++	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
++		return rq2;
++	if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
++		return rq1;
++	else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
++		return rq2;
++
++	s1 = blk_rq_pos(rq1);
++	s2 = blk_rq_pos(rq2);
++
++	/*
++	 * By definition, 1KiB is 2 sectors.
++	 */
++	back_max = bfqd->bfq_back_max * 2;
++
++	/*
++	 * Strict one way elevator _except_ in the case where we allow
++	 * short backward seeks which are biased as twice the cost of a
++	 * similar forward seek.
++	 */
++	if (s1 >= last)
++		d1 = s1 - last;
++	else if (s1 + back_max >= last)
++		d1 = (last - s1) * bfqd->bfq_back_penalty;
++	else
++		wrap |= BFQ_RQ1_WRAP;
++
++	if (s2 >= last)
++		d2 = s2 - last;
++	else if (s2 + back_max >= last)
++		d2 = (last - s2) * bfqd->bfq_back_penalty;
++	else
++		wrap |= BFQ_RQ2_WRAP;
++
++	/* Found required data */
++
++	/*
++	 * By doing switch() on the bit mask "wrap" we avoid having to
++	 * check two variables for all permutations: --> faster!
++	 */
++	switch (wrap) {
++	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
++		if (d1 < d2)
++			return rq1;
++		else if (d2 < d1)
++			return rq2;
++
++		if (s1 >= s2)
++			return rq1;
++		else
++			return rq2;
++
++	case BFQ_RQ2_WRAP:
++		return rq1;
++	case BFQ_RQ1_WRAP:
++		return rq2;
++	case (BFQ_RQ1_WRAP|BFQ_RQ2_WRAP): /* both rqs wrapped */
++	default:
++		/*
++		 * Since both rqs are wrapped,
++		 * start with the one that's further behind head
++		 * (--> only *one* back seek required),
++		 * since back seek takes more time than forward.
++		 */
++		if (s1 <= s2)
++			return rq1;
++		else
++			return rq2;
++	}
++}
++
++/*
++ * Tell whether there are active queues or groups with differentiated weights.
++ */
++static bool bfq_differentiated_weights(struct bfq_data *bfqd)
++{
++	/*
++	 * For weights to differ, at least one of the trees must contain
++	 * at least two nodes.
++	 */
++	return (!RB_EMPTY_ROOT(&bfqd->queue_weights_tree) &&
++		(bfqd->queue_weights_tree.rb_node->rb_left ||
++		 bfqd->queue_weights_tree.rb_node->rb_right)
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++	       ) ||
++	       (!RB_EMPTY_ROOT(&bfqd->group_weights_tree) &&
++		(bfqd->group_weights_tree.rb_node->rb_left ||
++		 bfqd->group_weights_tree.rb_node->rb_right)
++#endif
++	       );
++}
++
++/*
++ * The following function returns true if every queue must receive the
++ * same share of the throughput (this condition is used when deciding
++ * whether idling may be disabled, see the comments in the function
++ * bfq_bfqq_may_idle()).
++ *
++ * Such a scenario occurs when:
++ * 1) all active queues have the same weight,
++ * 2) all active groups at the same level in the groups tree have the same
++ *    weight,
++ * 3) all active groups at the same level in the groups tree have the same
++ *    number of children.
++ *
++ * Unfortunately, keeping the necessary state for evaluating exactly the
++ * above symmetry conditions would be quite complex and time-consuming.
++ * Therefore this function evaluates, instead, the following stronger
++ * sub-conditions, for which it is much easier to maintain the needed
++ * state:
++ * 1) all active queues have the same weight,
++ * 2) all active groups have the same weight,
++ * 3) all active groups have at most one active child each.
++ * In particular, the last two conditions are always true if hierarchical
++ * support and the cgroups interface are not enabled, thus no state needs
++ * to be maintained in this case.
++ */
++static bool bfq_symmetric_scenario(struct bfq_data *bfqd)
++{
++	return
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++		!bfqd->active_numerous_groups &&
++#endif
++		!bfq_differentiated_weights(bfqd);
++}
++
++/*
++ * If the weight-counter tree passed as input contains no counter for
++ * the weight of the input entity, then add that counter; otherwise just
++ * increment the existing counter.
++ *
++ * Note that weight-counter trees contain few nodes in mostly symmetric
++ * scenarios. For example, if all queues have the same weight, then the
++ * weight-counter tree for the queues may contain at most one node.
++ * This holds even if low_latency is on, because weight-raised queues
++ * are not inserted in the tree.
++ * In most scenarios, the rate at which nodes are created/destroyed
++ * should be low too.
++ */
++static void bfq_weights_tree_add(struct bfq_data *bfqd,
++				 struct bfq_entity *entity,
++				 struct rb_root *root)
++{
++	struct rb_node **new = &(root->rb_node), *parent = NULL;
++
++	/*
++	 * Do not insert if the entity is already associated with a
++	 * counter, which happens if:
++	 *   1) the entity is associated with a queue,
++	 *   2) a request arrival has caused the queue to become both
++	 *      non-weight-raised, and hence change its weight, and
++	 *      backlogged; in this respect, each of the two events
++	 *      causes an invocation of this function,
++	 *   3) this is the invocation of this function caused by the
++	 *      second event. This second invocation is actually useless,
++	 *      and we handle this fact by exiting immediately. More
++	 *      efficient or clearer solutions might possibly be adopted.
++	 */
++	if (entity->weight_counter)
++		return;
++
++	while (*new) {
++		struct bfq_weight_counter *__counter = container_of(*new,
++						struct bfq_weight_counter,
++						weights_node);
++		parent = *new;
++
++		if (entity->weight == __counter->weight) {
++			entity->weight_counter = __counter;
++			goto inc_counter;
++		}
++		if (entity->weight < __counter->weight)
++			new = &((*new)->rb_left);
++		else
++			new = &((*new)->rb_right);
++	}
++
++	entity->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
++					 GFP_ATOMIC);
++	entity->weight_counter->weight = entity->weight;
++	rb_link_node(&entity->weight_counter->weights_node, parent, new);
++	rb_insert_color(&entity->weight_counter->weights_node, root);
++
++inc_counter:
++	entity->weight_counter->num_active++;
++}
++
++/*
++ * Decrement the weight counter associated with the entity, and, if the
++ * counter reaches 0, remove the counter from the tree.
++ * See the comments to the function bfq_weights_tree_add() for considerations
++ * about overhead.
++ */
++static void bfq_weights_tree_remove(struct bfq_data *bfqd,
++				    struct bfq_entity *entity,
++				    struct rb_root *root)
++{
++	if (!entity->weight_counter)
++		return;
++
++	BUG_ON(RB_EMPTY_ROOT(root));
++	BUG_ON(entity->weight_counter->weight != entity->weight);
++
++	BUG_ON(!entity->weight_counter->num_active);
++	entity->weight_counter->num_active--;
++	if (entity->weight_counter->num_active > 0)
++		goto reset_entity_pointer;
++
++	rb_erase(&entity->weight_counter->weights_node, root);
++	kfree(entity->weight_counter);
++
++reset_entity_pointer:
++	entity->weight_counter = NULL;
++}
++
++static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
++					struct bfq_queue *bfqq,
++					struct request *last)
++{
++	struct rb_node *rbnext = rb_next(&last->rb_node);
++	struct rb_node *rbprev = rb_prev(&last->rb_node);
++	struct request *next = NULL, *prev = NULL;
++
++	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
++
++	if (rbprev)
++		prev = rb_entry_rq(rbprev);
++
++	if (rbnext)
++		next = rb_entry_rq(rbnext);
++	else {
++		rbnext = rb_first(&bfqq->sort_list);
++		if (rbnext && rbnext != &last->rb_node)
++			next = rb_entry_rq(rbnext);
++	}
++
++	return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
++}
++
++/* see the definition of bfq_async_charge_factor for details */
++static unsigned long bfq_serv_to_charge(struct request *rq,
++					struct bfq_queue *bfqq)
++{
++	return blk_rq_sectors(rq) *
++		(1 + ((!bfq_bfqq_sync(bfqq)) * (bfqq->wr_coeff == 1) *
++		bfq_async_charge_factor));
++}
++
++/**
++ * bfq_updated_next_req - update the queue after a new next_rq selection.
++ * @bfqd: the device data the queue belongs to.
++ * @bfqq: the queue to update.
++ *
++ * If the first request of a queue changes we make sure that the queue
++ * has enough budget to serve at least its first request (if the
++ * request has grown).  We do this because if the queue has not enough
++ * budget for its first request, it has to go through two dispatch
++ * rounds to actually get it dispatched.
++ */
++static void bfq_updated_next_req(struct bfq_data *bfqd,
++				 struct bfq_queue *bfqq)
++{
++	struct bfq_entity *entity = &bfqq->entity;
++	struct bfq_service_tree *st = bfq_entity_service_tree(entity);
++	struct request *next_rq = bfqq->next_rq;
++	unsigned long new_budget;
++
++	if (!next_rq)
++		return;
++
++	if (bfqq == bfqd->in_service_queue)
++		/*
++		 * In order not to break guarantees, budgets cannot be
++		 * changed after an entity has been selected.
++		 */
++		return;
++
++	BUG_ON(entity->tree != &st->active);
++	BUG_ON(entity == entity->sched_data->in_service_entity);
++
++	new_budget = max_t(unsigned long, bfqq->max_budget,
++			   bfq_serv_to_charge(next_rq, bfqq));
++	if (entity->budget != new_budget) {
++		entity->budget = new_budget;
++		bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
++					 new_budget);
++		bfq_activate_bfqq(bfqd, bfqq);
++	}
++}
++
++static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
++{
++	u64 dur;
++
++	if (bfqd->bfq_wr_max_time > 0)
++		return bfqd->bfq_wr_max_time;
++
++	dur = bfqd->RT_prod;
++	do_div(dur, bfqd->peak_rate);
++
++	return dur;
++}
++
++/* Empty burst list and add just bfqq (see comments to bfq_handle_burst) */
++static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
++{
++	struct bfq_queue *item;
++	struct hlist_node *n;
++
++	hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
++		hlist_del_init(&item->burst_list_node);
++	hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
++	bfqd->burst_size = 1;
++}
++
++/* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
++static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
++{
++	/* Increment burst size to take into account also bfqq */
++	bfqd->burst_size++;
++
++	if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
++		struct bfq_queue *pos, *bfqq_item;
++		struct hlist_node *n;
++
++		/*
++		 * Enough queues have been activated shortly after each
++		 * other to consider this burst as large.
++		 */
++		bfqd->large_burst = true;
++
++		/*
++		 * We can now mark all queues in the burst list as
++		 * belonging to a large burst.
++		 */
++		hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
++				     burst_list_node)
++			bfq_mark_bfqq_in_large_burst(bfqq_item);
++		bfq_mark_bfqq_in_large_burst(bfqq);
++
++		/*
++		 * From now on, and until the current burst finishes, any
++		 * new queue being activated shortly after the last queue
++		 * was inserted in the burst can be immediately marked as
++		 * belonging to a large burst. So the burst list is not
++		 * needed any more. Remove it.
++		 */
++		hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
++					  burst_list_node)
++			hlist_del_init(&pos->burst_list_node);
++	} else /* burst not yet large: add bfqq to the burst list */
++		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
++}
++
++/*
++ * If many queues happen to become active shortly after each other, then,
++ * to help the processes associated to these queues get their job done as
++ * soon as possible, it is usually better to not grant either weight-raising
++ * or device idling to these queues. In this comment we describe, firstly,
++ * the reasons why this fact holds, and, secondly, the next function, which
++ * implements the main steps needed to properly mark these queues so that
++ * they can then be treated in a different way.
++ *
++ * As for the terminology, we say that a queue becomes active, i.e.,
++ * switches from idle to backlogged, either when it is created (as a
++ * consequence of the arrival of an I/O request), or, if already existing,
++ * when a new request for the queue arrives while the queue is idle.
++ * Bursts of activations, i.e., activations of different queues occurring
++ * shortly after each other, are typically caused by services or applications
++ * that spawn or reactivate many parallel threads/processes. Examples are
++ * systemd during boot or git grep.
++ *
++ * These services or applications benefit mostly from a high throughput:
++ * the quicker the requests of the activated queues are cumulatively served,
++ * the sooner the target job of these queues gets completed. As a consequence,
++ * weight-raising any of these queues, which also implies idling the device
++ * for it, is almost always counterproductive: in most cases it just lowers
++ * throughput.
++ *
++ * On the other hand, a burst of activations may be also caused by the start
++ * of an application that does not consist in a lot of parallel I/O-bound
++ * threads. In fact, with a complex application, the burst may be just a
++ * consequence of the fact that several processes need to be executed to
++ * start-up the application. To start an application as quickly as possible,
++ * the best thing to do is to privilege the I/O related to the application
++ * with respect to all other I/O. Therefore, the best strategy to start as
++ * quickly as possible an application that causes a burst of activations is
++ * to weight-raise all the queues activated during the burst. This is the
++ * exact opposite of the best strategy for the other type of bursts.
++ *
++ * In the end, to take the best action for each of the two cases, the two
++ * types of bursts need to be distinguished. Fortunately, this seems
++ * relatively easy to do, by looking at the sizes of the bursts. In
++ * particular, we found a threshold such that bursts with a larger size
++ * than that threshold are apparently caused only by services or commands
++ * such as systemd or git grep. For brevity, hereafter we call just 'large'
++ * these bursts. BFQ *does not* weight-raise queues whose activations occur
++ * in a large burst. In addition, for each of these queues BFQ performs or
++ * does not perform idling depending on which choice boosts the throughput
++ * most. The exact choice depends on the device and request pattern at
++ * hand.
++ *
++ * Turning back to the next function, it implements all the steps needed
++ * to detect the occurrence of a large burst and to properly mark all the
++ * queues belonging to it (so that they can then be treated in a different
++ * way). This goal is achieved by maintaining a special "burst list" that
++ * holds, temporarily, the queues that belong to the burst in progress. The
++ * list is then used to mark these queues as belonging to a large burst if
++ * the burst does become large. The main steps are the following.
++ *
++ * . when the very first queue is activated, the queue is inserted into the
++ *   list (as it could be the first queue in a possible burst)
++ *
++ * . if the current burst has not yet become large, and a queue Q that does
++ *   not yet belong to the burst is activated shortly after the last time
++ *   at which a new queue entered the burst list, then the function appends
++ *   Q to the burst list
++ *
++ * . if, as a consequence of the previous step, the burst size reaches
++ *   the large-burst threshold, then
++ *
++ *     . all the queues in the burst list are marked as belonging to a
++ *       large burst
++ *
++ *     . the burst list is deleted; in fact, the burst list already served
++ *       its purpose (keeping temporarily track of the queues in a burst,
++ *       so as to be able to mark them as belonging to a large burst in the
++ *       previous sub-step), and now is not needed any more
++ *
++ *     . the device enters a large-burst mode
++ *
++ * . if a queue Q that does not belong to the burst is activated while
++ *   the device is in large-burst mode and shortly after the last time
++ *   at which a queue either entered the burst list or was marked as
++ *   belonging to the current large burst, then Q is immediately marked
++ *   as belonging to a large burst.
++ *
++ * . if a queue Q that does not belong to the burst is activated a while
++ *   later, i.e., not shortly after, than the last time at which a queue
++ *   either entered the burst list or was marked as belonging to the
++ *   current large burst, then the current burst is deemed as finished and:
++ *
++ *        . the large-burst mode is reset if set
++ *
++ *        . the burst list is emptied
++ *
++ *        . Q is inserted in the burst list, as Q may be the first queue
++ *          in a possible new burst (then the burst list contains just Q
++ *          after this step).
++ */
++static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++			     bool idle_for_long_time)
++{
++	/*
++	 * If bfqq happened to be activated in a burst, but has been idle
++	 * for at least as long as an interactive queue, then we assume
++	 * that, in the overall I/O initiated in the burst, the I/O
++	 * associated to bfqq is finished. So bfqq does not need to be
++	 * treated as a queue belonging to a burst anymore. Accordingly,
++	 * we reset bfqq's in_large_burst flag if set, and remove bfqq
++	 * from the burst list if it's there. We do not decrement instead
++	 * burst_size, because the fact that bfqq does not need to belong
++	 * to the burst list any more does not invalidate the fact that
++	 * bfqq may have been activated during the current burst.
++	 */
++	if (idle_for_long_time) {
++		hlist_del_init(&bfqq->burst_list_node);
++		bfq_clear_bfqq_in_large_burst(bfqq);
++	}
++
++	/*
++	 * If bfqq is already in the burst list or is part of a large
++	 * burst, then there is nothing else to do.
++	 */
++	if (!hlist_unhashed(&bfqq->burst_list_node) ||
++	    bfq_bfqq_in_large_burst(bfqq))
++		return;
++
++	/*
++	 * If bfqq's activation happens late enough, then the current
++	 * burst is finished, and related data structures must be reset.
++	 *
++	 * In this respect, consider the special case where bfqq is the very
++	 * first queue being activated. In this case, last_ins_in_burst is
++	 * not yet significant when we get here. But it is easy to verify
++	 * that, whether or not the following condition is true, bfqq will
++	 * end up being inserted into the burst list. In particular the
++	 * list will happen to contain only bfqq. And this is exactly what
++	 * has to happen, as bfqq may be the first queue in a possible
++	 * burst.
++	 */
++	if (time_is_before_jiffies(bfqd->last_ins_in_burst +
++	    bfqd->bfq_burst_interval)) {
++		bfqd->large_burst = false;
++		bfq_reset_burst_list(bfqd, bfqq);
++		return;
++	}
++
++	/*
++	 * If we get here, then bfqq is being activated shortly after the
++	 * last queue. So, if the current burst is also large, we can mark
++	 * bfqq as belonging to this large burst immediately.
++	 */
++	if (bfqd->large_burst) {
++		bfq_mark_bfqq_in_large_burst(bfqq);
++		return;
++	}
++
++	/*
++	 * If we get here, then a large-burst state has not yet been
++	 * reached, but bfqq is being activated shortly after the last
++	 * queue. Then we add bfqq to the burst.
++	 */
++	bfq_add_to_burst(bfqd, bfqq);
++}
++
++static void bfq_add_request(struct request *rq)
++{
++	struct bfq_queue *bfqq = RQ_BFQQ(rq);
++	struct bfq_entity *entity = &bfqq->entity;
++	struct bfq_data *bfqd = bfqq->bfqd;
++	struct request *next_rq, *prev;
++	unsigned long old_wr_coeff = bfqq->wr_coeff;
++	bool interactive = false;
++
++	bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
++	bfqq->queued[rq_is_sync(rq)]++;
++	bfqd->queued++;
++
++	elv_rb_add(&bfqq->sort_list, rq);
++
++	/*
++	 * Check if this request is a better next-serve candidate.
++	 */
++	prev = bfqq->next_rq;
++	next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
++	BUG_ON(!next_rq);
++	bfqq->next_rq = next_rq;
++
++	if (!bfq_bfqq_busy(bfqq)) {
++		bool soft_rt, in_burst,
++		     idle_for_long_time = time_is_before_jiffies(
++						bfqq->budget_timeout +
++						bfqd->bfq_wr_min_idle_time);
++
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++		bfqg_stats_update_io_add(bfqq_group(RQ_BFQQ(rq)), bfqq,
++					 rq->cmd_flags);
++#endif
++		if (bfq_bfqq_sync(bfqq)) {
++			bool already_in_burst =
++			   !hlist_unhashed(&bfqq->burst_list_node) ||
++			   bfq_bfqq_in_large_burst(bfqq);
++			bfq_handle_burst(bfqd, bfqq, idle_for_long_time);
++			/*
++			 * If bfqq was not already in the current burst,
++			 * then, at this point, bfqq either has been
++			 * added to the current burst or has caused the
++			 * current burst to terminate. In particular, in
++			 * the second case, bfqq has become the first
++			 * queue in a possible new burst.
++			 * In both cases last_ins_in_burst needs to be
++			 * moved forward.
++			 */
++			if (!already_in_burst)
++				bfqd->last_ins_in_burst = jiffies;
++		}
++
++		in_burst = bfq_bfqq_in_large_burst(bfqq);
++		soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
++			!in_burst &&
++			time_is_before_jiffies(bfqq->soft_rt_next_start);
++		interactive = !in_burst && idle_for_long_time;
++		entity->budget = max_t(unsigned long, bfqq->max_budget,
++				       bfq_serv_to_charge(next_rq, bfqq));
++
++		if (!bfq_bfqq_IO_bound(bfqq)) {
++			if (time_before(jiffies,
++					RQ_BIC(rq)->ttime.last_end_request +
++					bfqd->bfq_slice_idle)) {
++				bfqq->requests_within_timer++;
++				if (bfqq->requests_within_timer >=
++				    bfqd->bfq_requests_within_timer)
++					bfq_mark_bfqq_IO_bound(bfqq);
++			} else
++				bfqq->requests_within_timer = 0;
++		}
++
++		if (!bfqd->low_latency)
++			goto add_bfqq_busy;
++
++		/*
++		 * If the queue:
++		 * - is not being boosted,
++		 * - has been idle for enough time,
++		 * - is not a sync queue or is linked to a bfq_io_cq (it is
++		 *   shared "for its nature" or it is not shared and its
++		 *   requests have not been redirected to a shared queue)
++		 * start a weight-raising period.
++		 */
++		if (old_wr_coeff == 1 && (interactive || soft_rt) &&
++		    (!bfq_bfqq_sync(bfqq) || bfqq->bic)) {
++			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
++			if (interactive)
++				bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
++			else
++				bfqq->wr_cur_max_time =
++					bfqd->bfq_wr_rt_max_time;
++			bfq_log_bfqq(bfqd, bfqq,
++				     "wrais starting at %lu, rais_max_time %u",
++				     jiffies,
++				     jiffies_to_msecs(bfqq->wr_cur_max_time));
++		} else if (old_wr_coeff > 1) {
++			if (interactive)
++				bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
++			else if (in_burst ||
++				 (bfqq->wr_cur_max_time ==
++				  bfqd->bfq_wr_rt_max_time &&
++				  !soft_rt)) {
++				bfqq->wr_coeff = 1;
++				bfq_log_bfqq(bfqd, bfqq,
++					"wrais ending at %lu, rais_max_time %u",
++					jiffies,
++					jiffies_to_msecs(bfqq->
++						wr_cur_max_time));
++			} else if (time_before(
++					bfqq->last_wr_start_finish +
++					bfqq->wr_cur_max_time,
++					jiffies +
++					bfqd->bfq_wr_rt_max_time) &&
++				   soft_rt) {
++				/*
++				 *
++				 * The remaining weight-raising time is lower
++				 * than bfqd->bfq_wr_rt_max_time, which means
++				 * that the application is enjoying weight
++				 * raising either because deemed soft-rt in
++				 * the near past, or because deemed interactive
++				 * a long ago.
++				 * In both cases, resetting now the current
++				 * remaining weight-raising time for the
++				 * application to the weight-raising duration
++				 * for soft rt applications would not cause any
++				 * latency increase for the application (as the
++				 * new duration would be higher than the
++				 * remaining time).
++				 *
++				 * In addition, the application is now meeting
++				 * the requirements for being deemed soft rt.
++				 * In the end we can correctly and safely
++				 * (re)charge the weight-raising duration for
++				 * the application with the weight-raising
++				 * duration for soft rt applications.
++				 *
++				 * In particular, doing this recharge now, i.e.,
++				 * before the weight-raising period for the
++				 * application finishes, reduces the probability
++				 * of the following negative scenario:
++				 * 1) the weight of a soft rt application is
++				 *    raised at startup (as for any newly
++				 *    created application),
++				 * 2) since the application is not interactive,
++				 *    at a certain time weight-raising is
++				 *    stopped for the application,
++				 * 3) at that time the application happens to
++				 *    still have pending requests, and hence
++				 *    is destined to not have a chance to be
++				 *    deemed soft rt before these requests are
++				 *    completed (see the comments to the
++				 *    function bfq_bfqq_softrt_next_start()
++				 *    for details on soft rt detection),
++				 * 4) these pending requests experience a high
++				 *    latency because the application is not
++				 *    weight-raised while they are pending.
++				 */
++				bfqq->last_wr_start_finish = jiffies;
++				bfqq->wr_cur_max_time =
++					bfqd->bfq_wr_rt_max_time;
++			}
++		}
++		if (old_wr_coeff != bfqq->wr_coeff)
++			entity->prio_changed = 1;
++add_bfqq_busy:
++		bfqq->last_idle_bklogged = jiffies;
++		bfqq->service_from_backlogged = 0;
++		bfq_clear_bfqq_softrt_update(bfqq);
++		bfq_add_bfqq_busy(bfqd, bfqq);
++	} else {
++		if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
++		    time_is_before_jiffies(
++				bfqq->last_wr_start_finish +
++				bfqd->bfq_wr_min_inter_arr_async)) {
++			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
++			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
++
++			bfqd->wr_busy_queues++;
++			entity->prio_changed = 1;
++			bfq_log_bfqq(bfqd, bfqq,
++			    "non-idle wrais starting at %lu, rais_max_time %u",
++			    jiffies,
++			    jiffies_to_msecs(bfqq->wr_cur_max_time));
++		}
++		if (prev != bfqq->next_rq)
++			bfq_updated_next_req(bfqd, bfqq);
++	}
++
++	if (bfqd->low_latency &&
++		(old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
++		bfqq->last_wr_start_finish = jiffies;
++}
++
++static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
++					  struct bio *bio)
++{
++	struct task_struct *tsk = current;
++	struct bfq_io_cq *bic;
++	struct bfq_queue *bfqq;
++
++	bic = bfq_bic_lookup(bfqd, tsk->io_context);
++	if (!bic)
++		return NULL;
++
++	bfqq = bic_to_bfqq(bic, bfq_bio_sync(bio));
++	if (bfqq)
++		return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
++
++	return NULL;
++}
++
++static void bfq_activate_request(struct request_queue *q, struct request *rq)
++{
++	struct bfq_data *bfqd = q->elevator->elevator_data;
++
++	bfqd->rq_in_driver++;
++	bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
++	bfq_log(bfqd, "activate_request: new bfqd->last_position %llu",
++		(unsigned long long) bfqd->last_position);
++}
++
++static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
++{
++	struct bfq_data *bfqd = q->elevator->elevator_data;
++
++	BUG_ON(bfqd->rq_in_driver == 0);
++	bfqd->rq_in_driver--;
++}
++
++static void bfq_remove_request(struct request *rq)
++{
++	struct bfq_queue *bfqq = RQ_BFQQ(rq);
++	struct bfq_data *bfqd = bfqq->bfqd;
++	const int sync = rq_is_sync(rq);
++
++	if (bfqq->next_rq == rq) {
++		bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
++		bfq_updated_next_req(bfqd, bfqq);
++	}
++
++	if (rq->queuelist.prev != &rq->queuelist)
++		list_del_init(&rq->queuelist);
++	BUG_ON(bfqq->queued[sync] == 0);
++	bfqq->queued[sync]--;
++	bfqd->queued--;
++	elv_rb_del(&bfqq->sort_list, rq);
++
++	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
++		if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue)
++			bfq_del_bfqq_busy(bfqd, bfqq, 1);
++		/*
++		 * Remove queue from request-position tree as it is empty.
++		 */
++		if (bfqq->pos_root) {
++			rb_erase(&bfqq->pos_node, bfqq->pos_root);
++			bfqq->pos_root = NULL;
++		}
++	}
++
++	if (rq->cmd_flags & REQ_META) {
++		BUG_ON(bfqq->meta_pending == 0);
++		bfqq->meta_pending--;
++	}
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++	bfqg_stats_update_io_remove(bfqq_group(bfqq), rq->cmd_flags);
++#endif
++}
++
++static int bfq_merge(struct request_queue *q, struct request **req,
++		     struct bio *bio)
++{
++	struct bfq_data *bfqd = q->elevator->elevator_data;
++	struct request *__rq;
++
++	__rq = bfq_find_rq_fmerge(bfqd, bio);
++	if (__rq && elv_rq_merge_ok(__rq, bio)) {
++		*req = __rq;
++		return ELEVATOR_FRONT_MERGE;
++	}
++
++	return ELEVATOR_NO_MERGE;
++}
++
++static void bfq_merged_request(struct request_queue *q, struct request *req,
++			       int type)
++{
++	if (type == ELEVATOR_FRONT_MERGE &&
++	    rb_prev(&req->rb_node) &&
++	    blk_rq_pos(req) <
++	    blk_rq_pos(container_of(rb_prev(&req->rb_node),
++				    struct request, rb_node))) {
++		struct bfq_queue *bfqq = RQ_BFQQ(req);
++		struct bfq_data *bfqd = bfqq->bfqd;
++		struct request *prev, *next_rq;
++
++		/* Reposition request in its sort_list */
++		elv_rb_del(&bfqq->sort_list, req);
++		elv_rb_add(&bfqq->sort_list, req);
++		/* Choose next request to be served for bfqq */
++		prev = bfqq->next_rq;
++		next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
++					 bfqd->last_position);
++		BUG_ON(!next_rq);
++		bfqq->next_rq = next_rq;
++	}
++}
++
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++static void bfq_bio_merged(struct request_queue *q, struct request *req,
++			   struct bio *bio)
++{
++	bfqg_stats_update_io_merged(bfqq_group(RQ_BFQQ(req)), bio->bi_rw);
++}
++#endif
++
++static void bfq_merged_requests(struct request_queue *q, struct request *rq,
++				struct request *next)
++{
++	struct bfq_queue *bfqq = RQ_BFQQ(rq), *next_bfqq = RQ_BFQQ(next);
++
++	/*
++	 * If next and rq belong to the same bfq_queue and next is older
++	 * than rq, then reposition rq in the fifo (by substituting next
++	 * with rq). Otherwise, if next and rq belong to different
++	 * bfq_queues, never reposition rq: in fact, we would have to
++	 * reposition it with respect to next's position in its own fifo,
++	 * which would most certainly be too expensive with respect to
++	 * the benefits.
++	 */
++	if (bfqq == next_bfqq &&
++	    !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
++	    time_before(next->fifo_time, rq->fifo_time)) {
++		list_del_init(&rq->queuelist);
++		list_replace_init(&next->queuelist, &rq->queuelist);
++		rq->fifo_time = next->fifo_time;
++	}
++
++	if (bfqq->next_rq == next)
++		bfqq->next_rq = rq;
++
++	bfq_remove_request(next);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++	bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
++#endif
++}
++
++/* Must be called with bfqq != NULL */
++static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
++{
++	BUG_ON(!bfqq);
++	if (bfq_bfqq_busy(bfqq))
++		bfqq->bfqd->wr_busy_queues--;
++	bfqq->wr_coeff = 1;
++	bfqq->wr_cur_max_time = 0;
++	/* Trigger a weight change on the next activation of the queue */
++	bfqq->entity.prio_changed = 1;
++}
++
++static void bfq_end_wr_async_queues(struct bfq_data *bfqd,
++				    struct bfq_group *bfqg)
++{
++	int i, j;
++
++	for (i = 0; i < 2; i++)
++		for (j = 0; j < IOPRIO_BE_NR; j++)
++			if (bfqg->async_bfqq[i][j])
++				bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
++	if (bfqg->async_idle_bfqq)
++		bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
++}
++
++static void bfq_end_wr(struct bfq_data *bfqd)
++{
++	struct bfq_queue *bfqq;
++
++	spin_lock_irq(bfqd->queue->queue_lock);
++
++	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
++		bfq_bfqq_end_wr(bfqq);
++	list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
++		bfq_bfqq_end_wr(bfqq);
++	bfq_end_wr_async(bfqd);
++
++	spin_unlock_irq(bfqd->queue->queue_lock);
++}
++
++static int bfq_allow_merge(struct request_queue *q, struct request *rq,
++			   struct bio *bio)
++{
++	struct bfq_data *bfqd = q->elevator->elevator_data;
++	struct bfq_io_cq *bic;
++
++	/*
++	 * Disallow merge of a sync bio into an async request.
++	 */
++	if (bfq_bio_sync(bio) && !rq_is_sync(rq))
++		return 0;
++
++	/*
++	 * Lookup the bfqq that this bio will be queued with. Allow
++	 * merge only if rq is queued there.
++	 * Queue lock is held here.
++	 */
++	bic = bfq_bic_lookup(bfqd, current->io_context);
++	if (!bic)
++		return 0;
++
++	return bic_to_bfqq(bic, bfq_bio_sync(bio)) == RQ_BFQQ(rq);
++}
++
++static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
++				       struct bfq_queue *bfqq)
++{
++	if (bfqq) {
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++		bfqg_stats_update_avg_queue_size(bfqq_group(bfqq));
++#endif
++		bfq_mark_bfqq_must_alloc(bfqq);
++		bfq_mark_bfqq_budget_new(bfqq);
++		bfq_clear_bfqq_fifo_expire(bfqq);
++
++		bfqd->budgets_assigned = (bfqd->budgets_assigned*7 + 256) / 8;
++
++		bfq_log_bfqq(bfqd, bfqq,
++			     "set_in_service_queue, cur-budget = %d",
++			     bfqq->entity.budget);
++	}
++
++	bfqd->in_service_queue = bfqq;
++}
++
++/*
++ * Get and set a new queue for service.
++ */
++static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
++{
++	struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
++
++	__bfq_set_in_service_queue(bfqd, bfqq);
++	return bfqq;
++}
++
++/*
++ * If enough samples have been computed, return the current max budget
++ * stored in bfqd, which is dynamically updated according to the
++ * estimated disk peak rate; otherwise return the default max budget
++ */
++static int bfq_max_budget(struct bfq_data *bfqd)
++{
++	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
++		return bfq_default_max_budget;
++	else
++		return bfqd->bfq_max_budget;
++}
++
++/*
++ * Return min budget, which is a fraction of the current or default
++ * max budget (trying with 1/32)
++ */
++static int bfq_min_budget(struct bfq_data *bfqd)
++{
++	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
++		return bfq_default_max_budget / 32;
++	else
++		return bfqd->bfq_max_budget / 32;
++}
++
++static void bfq_arm_slice_timer(struct bfq_data *bfqd)
++{
++	struct bfq_queue *bfqq = bfqd->in_service_queue;
++	struct bfq_io_cq *bic;
++	unsigned long sl;
++
++	BUG_ON(!RB_EMPTY_ROOT(&bfqq->sort_list));
++
++	/* Processes have exited, don't wait. */
++	bic = bfqd->in_service_bic;
++	if (!bic || atomic_read(&bic->icq.ioc->active_ref) == 0)
++		return;
++
++	bfq_mark_bfqq_wait_request(bfqq);
++
++	/*
++	 * We don't want to idle for seeks, but we do want to allow
++	 * fair distribution of slice time for a process doing back-to-back
++	 * seeks. So allow a little bit of time for him to submit a new rq.
++	 *
++	 * To prevent processes with (partly) seeky workloads from
++	 * being too ill-treated, grant them a small fraction of the
++	 * assigned budget before reducing the waiting time to
++	 * BFQ_MIN_TT. This happened to help reduce latency.
++	 */
++	sl = bfqd->bfq_slice_idle;
++	/*
++	 * Unless the queue is being weight-raised or the scenario is
++	 * asymmetric, grant only minimum idle time if the queue either
++	 * has been seeky for long enough or has already proved to be
++	 * constantly seeky.
++	 */
++	if (bfq_sample_valid(bfqq->seek_samples) &&
++	    ((BFQQ_SEEKY(bfqq) && bfqq->entity.service >
++				  bfq_max_budget(bfqq->bfqd) / 8) ||
++	      bfq_bfqq_constantly_seeky(bfqq)) && bfqq->wr_coeff == 1 &&
++	    bfq_symmetric_scenario(bfqd))
++		sl = min(sl, msecs_to_jiffies(BFQ_MIN_TT));
++	else if (bfqq->wr_coeff > 1)
++		sl = sl * 3;
++	bfqd->last_idling_start = ktime_get();
++	mod_timer(&bfqd->idle_slice_timer, jiffies + sl);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++	bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
++#endif
++	bfq_log(bfqd, "arm idle: %u/%u ms",
++		jiffies_to_msecs(sl), jiffies_to_msecs(bfqd->bfq_slice_idle));
++}
++
++/*
++ * Set the maximum time for the in-service queue to consume its
++ * budget. This prevents seeky processes from lowering the disk
++ * throughput (always guaranteed with a time slice scheme as in CFQ).
++ */
++static void bfq_set_budget_timeout(struct bfq_data *bfqd)
++{
++	struct bfq_queue *bfqq = bfqd->in_service_queue;
++	unsigned int timeout_coeff;
++
++	if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
++		timeout_coeff = 1;
++	else
++		timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
++
++	bfqd->last_budget_start = ktime_get();
++
++	bfq_clear_bfqq_budget_new(bfqq);
++	bfqq->budget_timeout = jiffies +
++		bfqd->bfq_timeout[bfq_bfqq_sync(bfqq)] * timeout_coeff;
++
++	bfq_log_bfqq(bfqd, bfqq, "set budget_timeout %u",
++		jiffies_to_msecs(bfqd->bfq_timeout[bfq_bfqq_sync(bfqq)] *
++		timeout_coeff));
++}
++
++/*
++ * Move request from internal lists to the request queue dispatch list.
++ */
++static void bfq_dispatch_insert(struct request_queue *q, struct request *rq)
++{
++	struct bfq_data *bfqd = q->elevator->elevator_data;
++	struct bfq_queue *bfqq = RQ_BFQQ(rq);
++
++	/*
++	 * For consistency, the next instruction should have been executed
++	 * after removing the request from the queue and dispatching it.
++	 * We execute instead this instruction before bfq_remove_request()
++	 * (and hence introduce a temporary inconsistency), for efficiency.
++	 * In fact, in a forced_dispatch, this prevents two counters related
++	 * to bfqq->dispatched to risk to be uselessly decremented if bfqq
++	 * is not in service, and then to be incremented again after
++	 * incrementing bfqq->dispatched.
++	 */
++	bfqq->dispatched++;
++	bfq_remove_request(rq);
++	elv_dispatch_sort(q, rq);
++
++	if (bfq_bfqq_sync(bfqq))
++		bfqd->sync_flight++;
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++	bfqg_stats_update_dispatch(bfqq_group(bfqq), blk_rq_bytes(rq),
++				   rq->cmd_flags);
++#endif
++}
++
++/*
++ * Return expired entry, or NULL to just start from scratch in rbtree.
++ */
++static struct request *bfq_check_fifo(struct bfq_queue *bfqq)
++{
++	struct request *rq = NULL;
++
++	if (bfq_bfqq_fifo_expire(bfqq))
++		return NULL;
++
++	bfq_mark_bfqq_fifo_expire(bfqq);
++
++	if (list_empty(&bfqq->fifo))
++		return NULL;
++
++	rq = rq_entry_fifo(bfqq->fifo.next);
++
++	if (time_before(jiffies, rq->fifo_time))
++		return NULL;
++
++	return rq;
++}
++
++static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
++{
++	struct bfq_entity *entity = &bfqq->entity;
++
++	return entity->budget - entity->service;
++}
++
++static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
++{
++	BUG_ON(bfqq != bfqd->in_service_queue);
++
++	__bfq_bfqd_reset_in_service(bfqd);
++
++	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
++		/*
++		 * Overloading budget_timeout field to store the time
++		 * at which the queue remains with no backlog; used by
++		 * the weight-raising mechanism.
++		 */
++		bfqq->budget_timeout = jiffies;
++		bfq_del_bfqq_busy(bfqd, bfqq, 1);
++	} else
++		bfq_activate_bfqq(bfqd, bfqq);
++}
++
++/**
++ * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
++ * @bfqd: device data.
++ * @bfqq: queue to update.
++ * @reason: reason for expiration.
++ *
++ * Handle the feedback on @bfqq budget at queue expiration.
++ * See the body for detailed comments.
++ */
++static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
++				     struct bfq_queue *bfqq,
++				     enum bfqq_expiration reason)
++{
++	struct request *next_rq;
++	int budget, min_budget;
++
++	budget = bfqq->max_budget;
++	min_budget = bfq_min_budget(bfqd);
++
++	BUG_ON(bfqq != bfqd->in_service_queue);
++
++	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
++		bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
++	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
++		budget, bfq_min_budget(bfqd));
++	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
++		bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
++
++	if (bfq_bfqq_sync(bfqq)) {
++		switch (reason) {
++		/*
++		 * Caveat: in all the following cases we trade latency
++		 * for throughput.
++		 */
++		case BFQ_BFQQ_TOO_IDLE:
++			/*
++			 * This is the only case where we may reduce
++			 * the budget: if there is no request of the
++			 * process still waiting for completion, then
++			 * we assume (tentatively) that the timer has
++			 * expired because the batch of requests of
++			 * the process could have been served with a
++			 * smaller budget.  Hence, betting that
++			 * process will behave in the same way when it
++			 * becomes backlogged again, we reduce its
++			 * next budget.  As long as we guess right,
++			 * this budget cut reduces the latency
++			 * experienced by the process.
++			 *
++			 * However, if there are still outstanding
++			 * requests, then the process may have not yet
++			 * issued its next request just because it is
++			 * still waiting for the completion of some of
++			 * the still outstanding ones.  So in this
++			 * subcase we do not reduce its budget, on the
++			 * contrary we increase it to possibly boost
++			 * the throughput, as discussed in the
++			 * comments to the BUDGET_TIMEOUT case.
++			 */
++			if (bfqq->dispatched > 0) /* still outstanding reqs */
++				budget = min(budget * 2, bfqd->bfq_max_budget);
++			else {
++				if (budget > 5 * min_budget)
++					budget -= 4 * min_budget;
++				else
++					budget = min_budget;
++			}
++			break;
++		case BFQ_BFQQ_BUDGET_TIMEOUT:
++			/*
++			 * We double the budget here because: 1) it
++			 * gives the chance to boost the throughput if
++			 * this is not a seeky process (which may have
++			 * bumped into this timeout because of, e.g.,
++			 * ZBR), 2) together with charge_full_budget
++			 * it helps give seeky processes higher
++			 * timestamps, and hence be served less
++			 * frequently.
++			 */
++			budget = min(budget * 2, bfqd->bfq_max_budget);
++			break;
++		case BFQ_BFQQ_BUDGET_EXHAUSTED:
++			/*
++			 * The process still has backlog, and did not
++			 * let either the budget timeout or the disk
++			 * idling timeout expire. Hence it is not
++			 * seeky, has a short thinktime and may be
++			 * happy with a higher budget too. So
++			 * definitely increase the budget of this good
++			 * candidate to boost the disk throughput.
++			 */
++			budget = min(budget * 4, bfqd->bfq_max_budget);
++			break;
++		case BFQ_BFQQ_NO_MORE_REQUESTS:
++		       /*
++			* Leave the budget unchanged.
++			*/
++		default:
++			return;
++		}
++	} else
++		/*
++		 * Async queues get always the maximum possible budget
++		 * (their ability to dispatch is limited by
++		 * @bfqd->bfq_max_budget_async_rq).
++		 */
++		budget = bfqd->bfq_max_budget;
++
++	bfqq->max_budget = budget;
++
++	if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
++	    !bfqd->bfq_user_max_budget)
++		bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
++
++	/*
++	 * Make sure that we have enough budget for the next request.
++	 * Since the finish time of the bfqq must be kept in sync with
++	 * the budget, be sure to call __bfq_bfqq_expire() after the
++	 * update.
++	 */
++	next_rq = bfqq->next_rq;
++	if (next_rq)
++		bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
++					    bfq_serv_to_charge(next_rq, bfqq));
++	else
++		bfqq->entity.budget = bfqq->max_budget;
++
++	bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
++			next_rq ? blk_rq_sectors(next_rq) : 0,
++			bfqq->entity.budget);
++}
++
++static unsigned long bfq_calc_max_budget(u64 peak_rate, u64 timeout)
++{
++	unsigned long max_budget;
++
++	/*
++	 * The max_budget calculated when autotuning is equal to the
++	 * amount of sectors transfered in timeout_sync at the
++	 * estimated peak rate.
++	 */
++	max_budget = (unsigned long)(peak_rate * 1000 *
++				     timeout >> BFQ_RATE_SHIFT);
++
++	return max_budget;
++}
++
++/*
++ * In addition to updating the peak rate, checks whether the process
++ * is "slow", and returns 1 if so. This slow flag is used, in addition
++ * to the budget timeout, to reduce the amount of service provided to
++ * seeky processes, and hence reduce their chances to lower the
++ * throughput. See the code for more details.
++ */
++static bool bfq_update_peak_rate(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++				 bool compensate, enum bfqq_expiration reason)
++{
++	u64 bw, usecs, expected, timeout;
++	ktime_t delta;
++	int update = 0;
++
++	if (!bfq_bfqq_sync(bfqq) || bfq_bfqq_budget_new(bfqq))
++		return false;
++
++	if (compensate)
++		delta = bfqd->last_idling_start;
++	else
++		delta = ktime_get();
++	delta = ktime_sub(delta, bfqd->last_budget_start);
++	usecs = ktime_to_us(delta);
++
++	/* Don't trust short/unrealistic values. */
++	if (usecs < 100 || usecs >= LONG_MAX)
++		return false;
++
++	/*
++	 * Calculate the bandwidth for the last slice.  We use a 64 bit
++	 * value to store the peak rate, in sectors per usec in fixed
++	 * point math.  We do so to have enough precision in the estimate
++	 * and to avoid overflows.
++	 */
++	bw = (u64)bfqq->entity.service << BFQ_RATE_SHIFT;
++	do_div(bw, (unsigned long)usecs);
++
++	timeout = jiffies_to_msecs(bfqd->bfq_timeout[BLK_RW_SYNC]);
++
++	/*
++	 * Use only long (> 20ms) intervals to filter out spikes for
++	 * the peak rate estimation.
++	 */
++	if (usecs > 20000) {
++		if (bw > bfqd->peak_rate ||
++		   (!BFQQ_SEEKY(bfqq) &&
++		    reason == BFQ_BFQQ_BUDGET_TIMEOUT)) {
++			bfq_log(bfqd, "measured bw =%llu", bw);
++			/*
++			 * To smooth oscillations use a low-pass filter with
++			 * alpha=7/8, i.e.,
++			 * new_rate = (7/8) * old_rate + (1/8) * bw
++			 */
++			do_div(bw, 8);
++			if (bw == 0)
++				return 0;
++			bfqd->peak_rate *= 7;
++			do_div(bfqd->peak_rate, 8);
++			bfqd->peak_rate += bw;
++			update = 1;
++			bfq_log(bfqd, "new peak_rate=%llu", bfqd->peak_rate);
++		}
++
++		update |= bfqd->peak_rate_samples == BFQ_PEAK_RATE_SAMPLES - 1;
++
++		if (bfqd->peak_rate_samples < BFQ_PEAK_RATE_SAMPLES)
++			bfqd->peak_rate_samples++;
++
++		if (bfqd->peak_rate_samples == BFQ_PEAK_RATE_SAMPLES &&
++		    update) {
++			int dev_type = blk_queue_nonrot(bfqd->queue);
++
++			if (bfqd->bfq_user_max_budget == 0) {
++				bfqd->bfq_max_budget =
++					bfq_calc_max_budget(bfqd->peak_rate,
++							    timeout);
++				bfq_log(bfqd, "new max_budget=%d",
++					bfqd->bfq_max_budget);
++			}
++			if (bfqd->device_speed == BFQ_BFQD_FAST &&
++			    bfqd->peak_rate < device_speed_thresh[dev_type]) {
++				bfqd->device_speed = BFQ_BFQD_SLOW;
++				bfqd->RT_prod = R_slow[dev_type] *
++						T_slow[dev_type];
++			} else if (bfqd->device_speed == BFQ_BFQD_SLOW &&
++			    bfqd->peak_rate > device_speed_thresh[dev_type]) {
++				bfqd->device_speed = BFQ_BFQD_FAST;
++				bfqd->RT_prod = R_fast[dev_type] *
++						T_fast[dev_type];
++			}
++		}
++	}
++
++	/*
++	 * If the process has been served for a too short time
++	 * interval to let its possible sequential accesses prevail on
++	 * the initial seek time needed to move the disk head on the
++	 * first sector it requested, then give the process a chance
++	 * and for the moment return false.
++	 */
++	if (bfqq->entity.budget <= bfq_max_budget(bfqd) / 8)
++		return false;
++
++	/*
++	 * A process is considered ``slow'' (i.e., seeky, so that we
++	 * cannot treat it fairly in the service domain, as it would
++	 * slow down too much the other processes) if, when a slice
++	 * ends for whatever reason, it has received service at a
++	 * rate that would not be high enough to complete the budget
++	 * before the budget timeout expiration.
++	 */
++	expected = bw * 1000 * timeout >> BFQ_RATE_SHIFT;
++
++	/*
++	 * Caveat: processes doing IO in the slower disk zones will
++	 * tend to be slow(er) even if not seeky. And the estimated
++	 * peak rate will actually be an average over the disk
++	 * surface. Hence, to not be too harsh with unlucky processes,
++	 * we keep a budget/3 margin of safety before declaring a
++	 * process slow.
++	 */
++	return expected > (4 * bfqq->entity.budget) / 3;
++}
++
++/*
++ * To be deemed as soft real-time, an application must meet two
++ * requirements. First, the application must not require an average
++ * bandwidth higher than the approximate bandwidth required to playback or
++ * record a compressed high-definition video.
++ * The next function is invoked on the completion of the last request of a
++ * batch, to compute the next-start time instant, soft_rt_next_start, such
++ * that, if the next request of the application does not arrive before
++ * soft_rt_next_start, then the above requirement on the bandwidth is met.
++ *
++ * The second requirement is that the request pattern of the application is
++ * isochronous, i.e., that, after issuing a request or a batch of requests,
++ * the application stops issuing new requests until all its pending requests
++ * have been completed. After that, the application may issue a new batch,
++ * and so on.
++ * For this reason the next function is invoked to compute
++ * soft_rt_next_start only for applications that meet this requirement,
++ * whereas soft_rt_next_start is set to infinity for applications that do
++ * not.
++ *
++ * Unfortunately, even a greedy application may happen to behave in an
++ * isochronous way if the CPU load is high. In fact, the application may
++ * stop issuing requests while the CPUs are busy serving other processes,
++ * then restart, then stop again for a while, and so on. In addition, if
++ * the disk achieves a low enough throughput with the request pattern
++ * issued by the application (e.g., because the request pattern is random
++ * and/or the device is slow), then the application may meet the above
++ * bandwidth requirement too. To prevent such a greedy application to be
++ * deemed as soft real-time, a further rule is used in the computation of
++ * soft_rt_next_start: soft_rt_next_start must be higher than the current
++ * time plus the maximum time for which the arrival of a request is waited
++ * for when a sync queue becomes idle, namely bfqd->bfq_slice_idle.
++ * This filters out greedy applications, as the latter issue instead their
++ * next request as soon as possible after the last one has been completed
++ * (in contrast, when a batch of requests is completed, a soft real-time
++ * application spends some time processing data).
++ *
++ * Unfortunately, the last filter may easily generate false positives if
++ * only bfqd->bfq_slice_idle is used as a reference time interval and one
++ * or both the following cases occur:
++ * 1) HZ is so low that the duration of a jiffy is comparable to or higher
++ *    than bfqd->bfq_slice_idle. This happens, e.g., on slow devices with
++ *    HZ=100.
++ * 2) jiffies, instead of increasing at a constant rate, may stop increasing
++ *    for a while, then suddenly 'jump' by several units to recover the lost
++ *    increments. This seems to happen, e.g., inside virtual machines.
++ * To address this issue, we do not use as a reference time interval just
++ * bfqd->bfq_slice_idle, but bfqd->bfq_slice_idle plus a few jiffies. In
++ * particular we add the minimum number of jiffies for which the filter
++ * seems to be quite precise also in embedded systems and KVM/QEMU virtual
++ * machines.
++ */
++static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
++						struct bfq_queue *bfqq)
++{
++	return max(bfqq->last_idle_bklogged +
++		   HZ * bfqq->service_from_backlogged /
++		   bfqd->bfq_wr_max_softrt_rate,
++		   jiffies + bfqq->bfqd->bfq_slice_idle + 4);
++}
++
++/*
++ * Return the largest-possible time instant such that, for as long as possible,
++ * the current time will be lower than this time instant according to the macro
++ * time_is_before_jiffies().
++ */
++static unsigned long bfq_infinity_from_now(unsigned long now)
++{
++	return now + ULONG_MAX / 2;
++}
++
++/**
++ * bfq_bfqq_expire - expire a queue.
++ * @bfqd: device owning the queue.
++ * @bfqq: the queue to expire.
++ * @compensate: if true, compensate for the time spent idling.
++ * @reason: the reason causing the expiration.
++ *
++ *
++ * If the process associated to the queue is slow (i.e., seeky), or in
++ * case of budget timeout, or, finally, if it is async, we
++ * artificially charge it an entire budget (independently of the
++ * actual service it received). As a consequence, the queue will get
++ * higher timestamps than the correct ones upon reactivation, and
++ * hence it will be rescheduled as if it had received more service
++ * than what it actually received. In the end, this class of processes
++ * will receive less service in proportion to how slowly they consume
++ * their budgets (and hence how seriously they tend to lower the
++ * throughput).
++ *
++ * In contrast, when a queue expires because it has been idling for
++ * too much or because it exhausted its budget, we do not touch the
++ * amount of service it has received. Hence when the queue will be
++ * reactivated and its timestamps updated, the latter will be in sync
++ * with the actual service received by the queue until expiration.
++ *
++ * Charging a full budget to the first type of queues and the exact
++ * service to the others has the effect of using the WF2Q+ policy to
++ * schedule the former on a timeslice basis, without violating the
++ * service domain guarantees of the latter.
++ */
++static void bfq_bfqq_expire(struct bfq_data *bfqd,
++			    struct bfq_queue *bfqq,
++			    bool compensate,
++			    enum bfqq_expiration reason)
++{
++	bool slow;
++
++	BUG_ON(bfqq != bfqd->in_service_queue);
++
++	/*
++	 * Update disk peak rate for autotuning and check whether the
++	 * process is slow (see bfq_update_peak_rate).
++	 */
++	slow = bfq_update_peak_rate(bfqd, bfqq, compensate, reason);
++
++	/*
++	 * As above explained, 'punish' slow (i.e., seeky), timed-out
++	 * and async queues, to favor sequential sync workloads.
++	 *
++	 * Processes doing I/O in the slower disk zones will tend to be
++	 * slow(er) even if not seeky. Hence, since the estimated peak
++	 * rate is actually an average over the disk surface, these
++	 * processes may timeout just for bad luck. To avoid punishing
++	 * them we do not charge a full budget to a process that
++	 * succeeded in consuming at least 2/3 of its budget.
++	 */
++	if (slow || (reason == BFQ_BFQQ_BUDGET_TIMEOUT &&
++		     bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3))
++		bfq_bfqq_charge_full_budget(bfqq);
++
++	bfqq->service_from_backlogged += bfqq->entity.service;
++
++	if (BFQQ_SEEKY(bfqq) && reason == BFQ_BFQQ_BUDGET_TIMEOUT &&
++	    !bfq_bfqq_constantly_seeky(bfqq)) {
++		bfq_mark_bfqq_constantly_seeky(bfqq);
++		if (!blk_queue_nonrot(bfqd->queue))
++			bfqd->const_seeky_busy_in_flight_queues++;
++	}
++
++	if (reason == BFQ_BFQQ_TOO_IDLE &&
++	    bfqq->entity.service <= 2 * bfqq->entity.budget / 10)
++		bfq_clear_bfqq_IO_bound(bfqq);
++
++	if (bfqd->low_latency && bfqq->wr_coeff == 1)
++		bfqq->last_wr_start_finish = jiffies;
++
++	if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
++	    RB_EMPTY_ROOT(&bfqq->sort_list)) {
++		/*
++		 * If we get here, and there are no outstanding requests,
++		 * then the request pattern is isochronous (see the comments
++		 * to the function bfq_bfqq_softrt_next_start()). Hence we
++		 * can compute soft_rt_next_start. If, instead, the queue
++		 * still has outstanding requests, then we have to wait
++		 * for the completion of all the outstanding requests to
++		 * discover whether the request pattern is actually
++		 * isochronous.
++		 */
++		if (bfqq->dispatched == 0)
++			bfqq->soft_rt_next_start =
++				bfq_bfqq_softrt_next_start(bfqd, bfqq);
++		else {
++			/*
++			 * The application is still waiting for the
++			 * completion of one or more requests:
++			 * prevent it from possibly being incorrectly
++			 * deemed as soft real-time by setting its
++			 * soft_rt_next_start to infinity. In fact,
++			 * without this assignment, the application
++			 * would be incorrectly deemed as soft
++			 * real-time if:
++			 * 1) it issued a new request before the
++			 *    completion of all its in-flight
++			 *    requests, and
++			 * 2) at that time, its soft_rt_next_start
++			 *    happened to be in the past.
++			 */
++			bfqq->soft_rt_next_start =
++				bfq_infinity_from_now(jiffies);
++			/*
++			 * Schedule an update of soft_rt_next_start to when
++			 * the task may be discovered to be isochronous.
++			 */
++			bfq_mark_bfqq_softrt_update(bfqq);
++		}
++	}
++
++	bfq_log_bfqq(bfqd, bfqq,
++		"expire (%d, slow %d, num_disp %d, idle_win %d)", reason,
++		slow, bfqq->dispatched, bfq_bfqq_idle_window(bfqq));
++
++	/*
++	 * Increase, decrease or leave budget unchanged according to
++	 * reason.
++	 */
++	__bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
++	__bfq_bfqq_expire(bfqd, bfqq);
++}
++
++/*
++ * Budget timeout is not implemented through a dedicated timer, but
++ * just checked on request arrivals and completions, as well as on
++ * idle timer expirations.
++ */
++static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
++{
++	if (bfq_bfqq_budget_new(bfqq) ||
++	    time_before(jiffies, bfqq->budget_timeout))
++		return false;
++	return true;
++}
++
++/*
++ * If we expire a queue that is waiting for the arrival of a new
++ * request, we may prevent the fictitious timestamp back-shifting that
++ * allows the guarantees of the queue to be preserved (see [1] for
++ * this tricky aspect). Hence we return true only if this condition
++ * does not hold, or if the queue is slow enough to deserve only to be
++ * kicked off for preserving a high throughput.
++*/
++static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
++{
++	bfq_log_bfqq(bfqq->bfqd, bfqq,
++		"may_budget_timeout: wait_request %d left %d timeout %d",
++		bfq_bfqq_wait_request(bfqq),
++			bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3,
++		bfq_bfqq_budget_timeout(bfqq));
++
++	return (!bfq_bfqq_wait_request(bfqq) ||
++		bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3)
++		&&
++		bfq_bfqq_budget_timeout(bfqq);
++}
++
++/*
++ * For a queue that becomes empty, device idling is allowed only if
++ * this function returns true for that queue. As a consequence, since
++ * device idling plays a critical role for both throughput boosting
++ * and service guarantees, the return value of this function plays a
++ * critical role as well.
++ *
++ * In a nutshell, this function returns true only if idling is
++ * beneficial for throughput or, even if detrimental for throughput,
++ * idling is however necessary to preserve service guarantees (low
++ * latency, desired throughput distribution, ...). In particular, on
++ * NCQ-capable devices, this function tries to return false, so as to
++ * help keep the drives' internal queues full, whenever this helps the
++ * device boost the throughput without causing any service-guarantee
++ * issue.
++ *
++ * In more detail, the return value of this function is obtained by,
++ * first, computing a number of boolean variables that take into
++ * account throughput and service-guarantee issues, and, then,
++ * combining these variables in a logical expression. Most of the
++ * issues taken into account are not trivial. We discuss these issues
++ * while introducing the variables.
++ */
++static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
++{
++	struct bfq_data *bfqd = bfqq->bfqd;
++	bool idling_boosts_thr, idling_boosts_thr_without_issues,
++		all_queues_seeky, on_hdd_and_not_all_queues_seeky,
++		idling_needed_for_service_guarantees,
++		asymmetric_scenario;
++
++	/*
++	 * The next variable takes into account the cases where idling
++	 * boosts the throughput.
++	 *
++	 * The value of the variable is computed considering, first, that
++	 * idling is virtually always beneficial for the throughput if:
++	 * (a) the device is not NCQ-capable, or
++	 * (b) regardless of the presence of NCQ, the device is rotational
++	 *     and the request pattern for bfqq is I/O-bound and sequential.
++	 *
++	 * Secondly, and in contrast to the above item (b), idling an
++	 * NCQ-capable flash-based device would not boost the
++	 * throughput even with sequential I/O; rather it would lower
++	 * the throughput in proportion to how fast the device
++	 * is. Accordingly, the next variable is true if any of the
++	 * above conditions (a) and (b) is true, and, in particular,
++	 * happens to be false if bfqd is an NCQ-capable flash-based
++	 * device.
++	 */
++	idling_boosts_thr = !bfqd->hw_tag ||
++		(!blk_queue_nonrot(bfqd->queue) && bfq_bfqq_IO_bound(bfqq) &&
++		 bfq_bfqq_idle_window(bfqq));
++
++	/*
++	 * The value of the next variable,
++	 * idling_boosts_thr_without_issues, is equal to that of
++	 * idling_boosts_thr, unless a special case holds. In this
++	 * special case, described below, idling may cause problems to
++	 * weight-raised queues.
++	 *
++	 * When the request pool is saturated (e.g., in the presence
++	 * of write hogs), if the processes associated with
++	 * non-weight-raised queues ask for requests at a lower rate,
++	 * then processes associated with weight-raised queues have a
++	 * higher probability to get a request from the pool
++	 * immediately (or at least soon) when they need one. Thus
++	 * they have a higher probability to actually get a fraction
++	 * of the device throughput proportional to their high
++	 * weight. This is especially true with NCQ-capable drives,
++	 * which enqueue several requests in advance, and further
++	 * reorder internally-queued requests.
++	 *
++	 * For this reason, we force to false the value of
++	 * idling_boosts_thr_without_issues if there are weight-raised
++	 * busy queues. In this case, and if bfqq is not weight-raised,
++	 * this guarantees that the device is not idled for bfqq (if,
++	 * instead, bfqq is weight-raised, then idling will be
++	 * guaranteed by another variable, see below). Combined with
++	 * the timestamping rules of BFQ (see [1] for details), this
++	 * behavior causes bfqq, and hence any sync non-weight-raised
++	 * queue, to get a lower number of requests served, and thus
++	 * to ask for a lower number of requests from the request
++	 * pool, before the busy weight-raised queues get served
++	 * again. This often mitigates starvation problems in the
++	 * presence of heavy write workloads and NCQ, thereby
++	 * guaranteeing a higher application and system responsiveness
++	 * in these hostile scenarios.
++	 */
++	idling_boosts_thr_without_issues = idling_boosts_thr &&
++		bfqd->wr_busy_queues == 0;
++
++	/*
++	 * There are then two cases where idling must be performed not
++	 * for throughput concerns, but to preserve service
++	 * guarantees. In the description of these cases, we say, for
++	 * short, that a queue is sequential/random if the process
++	 * associated to the queue issues sequential/random requests
++	 * (in the second case the queue may be tagged as seeky or
++	 * even constantly_seeky).
++	 *
++	 * To introduce the first case, we note that, since
++	 * bfq_bfqq_idle_window(bfqq) is false if the device is
++	 * NCQ-capable and bfqq is random (see
++	 * bfq_update_idle_window()), then, from the above two
++	 * assignments it follows that
++	 * idling_boosts_thr_without_issues is false if the device is
++	 * NCQ-capable and bfqq is random. Therefore, for this case,
++	 * device idling would never be allowed if we used just
++	 * idling_boosts_thr_without_issues to decide whether to allow
++	 * it. And, beneficially, this would imply that throughput
++	 * would always be boosted also with random I/O on NCQ-capable
++	 * HDDs.
++	 *
++	 * But we must be careful on this point, to avoid an unfair
++	 * treatment for bfqq. In fact, because of the same above
++	 * assignments, idling_boosts_thr_without_issues is, on the
++	 * other hand, true if 1) the device is an HDD and bfqq is
++	 * sequential, and 2) there are no busy weight-raised
++	 * queues. As a consequence, if we used just
++	 * idling_boosts_thr_without_issues to decide whether to idle
++	 * the device, then with an HDD we might easily bump into a
++	 * scenario where queues that are sequential and I/O-bound
++	 * would enjoy idling, whereas random queues would not. The
++	 * latter might then get a low share of the device throughput,
++	 * simply because the former would get many requests served
++	 * after being set as in service, while the latter would not.
++	 *
++	 * To address this issue, we start by setting to true a
++	 * sentinel variable, on_hdd_and_not_all_queues_seeky, if the
++	 * device is rotational and not all queues with pending or
++	 * in-flight requests are constantly seeky (i.e., there are
++	 * active sequential queues, and bfqq might then be mistreated
++	 * if it does not enjoy idling because it is random).
++	 */
++	all_queues_seeky = bfq_bfqq_constantly_seeky(bfqq) &&
++			   bfqd->busy_in_flight_queues ==
++			   bfqd->const_seeky_busy_in_flight_queues;
++
++	on_hdd_and_not_all_queues_seeky =
++		!blk_queue_nonrot(bfqd->queue) && !all_queues_seeky;
++
++	/*
++	 * To introduce the second case where idling needs to be
++	 * performed to preserve service guarantees, we can note that
++	 * allowing the drive to enqueue more than one request at a
++	 * time, and hence delegating de facto final scheduling
++	 * decisions to the drive's internal scheduler, causes loss of
++	 * control on the actual request service order. In particular,
++	 * the critical situation is when requests from different
++	 * processes happens to be present, at the same time, in the
++	 * internal queue(s) of the drive. In such a situation, the
++	 * drive, by deciding the service order of the
++	 * internally-queued requests, does determine also the actual
++	 * throughput distribution among these processes. But the
++	 * drive typically has no notion or concern about per-process
++	 * throughput distribution, and makes its decisions only on a
++	 * per-request basis. Therefore, the service distribution
++	 * enforced by the drive's internal scheduler is likely to
++	 * coincide with the desired device-throughput distribution
++	 * only in a completely symmetric scenario where:
++	 * (i)  each of these processes must get the same throughput as
++	 *      the others;
++	 * (ii) all these processes have the same I/O pattern
++	 *      (either sequential or random).
++	 * In fact, in such a scenario, the drive will tend to treat
++	 * the requests of each of these processes in about the same
++	 * way as the requests of the others, and thus to provide
++	 * each of these processes with about the same throughput
++	 * (which is exactly the desired throughput distribution). In
++	 * contrast, in any asymmetric scenario, device idling is
++	 * certainly needed to guarantee that bfqq receives its
++	 * assigned fraction of the device throughput (see [1] for
++	 * details).
++	 *
++	 * We address this issue by controlling, actually, only the
++	 * symmetry sub-condition (i), i.e., provided that
++	 * sub-condition (i) holds, idling is not performed,
++	 * regardless of whether sub-condition (ii) holds. In other
++	 * words, only if sub-condition (i) holds, then idling is
++	 * allowed, and the device tends to be prevented from queueing
++	 * many requests, possibly of several processes. The reason
++	 * for not controlling also sub-condition (ii) is that, first,
++	 * in the case of an HDD, the asymmetry in terms of types of
++	 * I/O patterns is already taken in to account in the above
++	 * sentinel variable
++	 * on_hdd_and_not_all_queues_seeky. Secondly, in the case of a
++	 * flash-based device, we prefer however to privilege
++	 * throughput (and idling lowers throughput for this type of
++	 * devices), for the following reasons:
++	 * 1) differently from HDDs, the service time of random
++	 *    requests is not orders of magnitudes lower than the service
++	 *    time of sequential requests; thus, even if processes doing
++	 *    sequential I/O get a preferential treatment with respect to
++	 *    others doing random I/O, the consequences are not as
++	 *    dramatic as with HDDs;
++	 * 2) if a process doing random I/O does need strong
++	 *    throughput guarantees, it is hopefully already being
++	 *    weight-raised, or the user is likely to have assigned it a
++	 *    higher weight than the other processes (and thus
++	 *    sub-condition (i) is likely to be false, which triggers
++	 *    idling).
++	 *
++	 * According to the above considerations, the next variable is
++	 * true (only) if sub-condition (i) holds. To compute the
++	 * value of this variable, we not only use the return value of
++	 * the function bfq_symmetric_scenario(), but also check
++	 * whether bfqq is being weight-raised, because
++	 * bfq_symmetric_scenario() does not take into account also
++	 * weight-raised queues (see comments to
++	 * bfq_weights_tree_add()).
++	 *
++	 * As a side note, it is worth considering that the above
++	 * device-idling countermeasures may however fail in the
++	 * following unlucky scenario: if idling is (correctly)
++	 * disabled in a time period during which all symmetry
++	 * sub-conditions hold, and hence the device is allowed to
++	 * enqueue many requests, but at some later point in time some
++	 * sub-condition stops to hold, then it may become impossible
++	 * to let requests be served in the desired order until all
++	 * the requests already queued in the device have been served.
++	 */
++	asymmetric_scenario = bfqq->wr_coeff > 1 ||
++		!bfq_symmetric_scenario(bfqd);
++
++	/*
++	 * Finally, there is a case where maximizing throughput is the
++	 * best choice even if it may cause unfairness toward
++	 * bfqq. Such a case is when bfqq became active in a burst of
++	 * queue activations. Queues that became active during a large
++	 * burst benefit only from throughput, as discussed in the
++	 * comments to bfq_handle_burst. Thus, if bfqq became active
++	 * in a burst and not idling the device maximizes throughput,
++	 * then the device must no be idled, because not idling the
++	 * device provides bfqq and all other queues in the burst with
++	 * maximum benefit. Combining this and the two cases above, we
++	 * can now establish when idling is actually needed to
++	 * preserve service guarantees.
++	 */
++	idling_needed_for_service_guarantees =
++		(on_hdd_and_not_all_queues_seeky || asymmetric_scenario) &&
++		!bfq_bfqq_in_large_burst(bfqq);
++
++	/*
++	 * We have now all the components we need to compute the return
++	 * value of the function, which is true only if both the following
++	 * conditions hold:
++	 * 1) bfqq is sync, because idling make sense only for sync queues;
++	 * 2) idling either boosts the throughput (without issues), or
++	 *    is necessary to preserve service guarantees.
++	 */
++	return bfq_bfqq_sync(bfqq) &&
++		(idling_boosts_thr_without_issues ||
++		 idling_needed_for_service_guarantees);
++}
++
++/*
++ * If the in-service queue is empty but the function bfq_bfqq_may_idle
++ * returns true, then:
++ * 1) the queue must remain in service and cannot be expired, and
++ * 2) the device must be idled to wait for the possible arrival of a new
++ *    request for the queue.
++ * See the comments to the function bfq_bfqq_may_idle for the reasons
++ * why performing device idling is the best choice to boost the throughput
++ * and preserve service guarantees when bfq_bfqq_may_idle itself
++ * returns true.
++ */
++static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
++{
++	struct bfq_data *bfqd = bfqq->bfqd;
++
++	return RB_EMPTY_ROOT(&bfqq->sort_list) && bfqd->bfq_slice_idle != 0 &&
++	       bfq_bfqq_may_idle(bfqq);
++}
++
++/*
++ * Select a queue for service.  If we have a current queue in service,
++ * check whether to continue servicing it, or retrieve and set a new one.
++ */
++static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
++{
++	struct bfq_queue *bfqq;
++	struct request *next_rq;
++	enum bfqq_expiration reason = BFQ_BFQQ_BUDGET_TIMEOUT;
++
++	bfqq = bfqd->in_service_queue;
++	if (!bfqq)
++		goto new_queue;
++
++	bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
++
++	if (bfq_may_expire_for_budg_timeout(bfqq) &&
++	    !timer_pending(&bfqd->idle_slice_timer) &&
++	    !bfq_bfqq_must_idle(bfqq))
++		goto expire;
++
++	next_rq = bfqq->next_rq;
++	/*
++	 * If bfqq has requests queued and it has enough budget left to
++	 * serve them, keep the queue, otherwise expire it.
++	 */
++	if (next_rq) {
++		if (bfq_serv_to_charge(next_rq, bfqq) >
++			bfq_bfqq_budget_left(bfqq)) {
++			reason = BFQ_BFQQ_BUDGET_EXHAUSTED;
++			goto expire;
++		} else {
++			/*
++			 * The idle timer may be pending because we may
++			 * not disable disk idling even when a new request
++			 * arrives.
++			 */
++			if (timer_pending(&bfqd->idle_slice_timer)) {
++				/*
++				 * If we get here: 1) at least a new request
++				 * has arrived but we have not disabled the
++				 * timer because the request was too small,
++				 * 2) then the block layer has unplugged
++				 * the device, causing the dispatch to be
++				 * invoked.
++				 *
++				 * Since the device is unplugged, now the
++				 * requests are probably large enough to
++				 * provide a reasonable throughput.
++				 * So we disable idling.
++				 */
++				bfq_clear_bfqq_wait_request(bfqq);
++				del_timer(&bfqd->idle_slice_timer);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++				bfqg_stats_update_idle_time(bfqq_group(bfqq));
++#endif
++			}
++			goto keep_queue;
++		}
++	}
++
++	/*
++	 * No requests pending. However, if the in-service queue is idling
++	 * for a new request, or has requests waiting for a completion and
++	 * may idle after their completion, then keep it anyway.
++	 */
++	if (timer_pending(&bfqd->idle_slice_timer) ||
++	    (bfqq->dispatched != 0 && bfq_bfqq_may_idle(bfqq))) {
++		bfqq = NULL;
++		goto keep_queue;
++	}
++
++	reason = BFQ_BFQQ_NO_MORE_REQUESTS;
++expire:
++	bfq_bfqq_expire(bfqd, bfqq, false, reason);
++new_queue:
++	bfqq = bfq_set_in_service_queue(bfqd);
++	bfq_log(bfqd, "select_queue: new queue %d returned",
++		bfqq ? bfqq->pid : 0);
++keep_queue:
++	return bfqq;
++}
++
++static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
++{
++	struct bfq_entity *entity = &bfqq->entity;
++
++	if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
++		bfq_log_bfqq(bfqd, bfqq,
++			"raising period dur %u/%u msec, old coeff %u, w %d(%d)",
++			jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
++			jiffies_to_msecs(bfqq->wr_cur_max_time),
++			bfqq->wr_coeff,
++			bfqq->entity.weight, bfqq->entity.orig_weight);
++
++		BUG_ON(bfqq != bfqd->in_service_queue && entity->weight !=
++		       entity->orig_weight * bfqq->wr_coeff);
++		if (entity->prio_changed)
++			bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
++
++		/*
++		 * If the queue was activated in a burst, or
++		 * too much time has elapsed from the beginning
++		 * of this weight-raising period, then end weight
++		 * raising.
++		 */
++		if (bfq_bfqq_in_large_burst(bfqq) ||
++		    time_is_before_jiffies(bfqq->last_wr_start_finish +
++					   bfqq->wr_cur_max_time)) {
++			bfqq->last_wr_start_finish = jiffies;
++			bfq_log_bfqq(bfqd, bfqq,
++				     "wrais ending at %lu, rais_max_time %u",
++				     bfqq->last_wr_start_finish,
++				     jiffies_to_msecs(bfqq->wr_cur_max_time));
++			bfq_bfqq_end_wr(bfqq);
++		}
++	}
++	/* Update weight both if it must be raised and if it must be lowered */
++	if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
++		__bfq_entity_update_weight_prio(
++			bfq_entity_service_tree(entity),
++			entity);
++}
++
++/*
++ * Dispatch one request from bfqq, moving it to the request queue
++ * dispatch list.
++ */
++static int bfq_dispatch_request(struct bfq_data *bfqd,
++				struct bfq_queue *bfqq)
++{
++	int dispatched = 0;
++	struct request *rq;
++	unsigned long service_to_charge;
++
++	BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list));
++
++	/* Follow expired path, else get first next available. */
++	rq = bfq_check_fifo(bfqq);
++	if (!rq)
++		rq = bfqq->next_rq;
++	service_to_charge = bfq_serv_to_charge(rq, bfqq);
++
++	if (service_to_charge > bfq_bfqq_budget_left(bfqq)) {
++		/*
++		 * This may happen if the next rq is chosen in fifo order
++		 * instead of sector order. The budget is properly
++		 * dimensioned to be always sufficient to serve the next
++		 * request only if it is chosen in sector order. The reason
++		 * is that it would be quite inefficient and little useful
++		 * to always make sure that the budget is large enough to
++		 * serve even the possible next rq in fifo order.
++		 * In fact, requests are seldom served in fifo order.
++		 *
++		 * Expire the queue for budget exhaustion, and make sure
++		 * that the next act_budget is enough to serve the next
++		 * request, even if it comes from the fifo expired path.
++		 */
++		bfqq->next_rq = rq;
++		/*
++		 * Since this dispatch is failed, make sure that
++		 * a new one will be performed
++		 */
++		if (!bfqd->rq_in_driver)
++			bfq_schedule_dispatch(bfqd);
++		goto expire;
++	}
++
++	/* Finally, insert request into driver dispatch list. */
++	bfq_bfqq_served(bfqq, service_to_charge);
++	bfq_dispatch_insert(bfqd->queue, rq);
++
++	bfq_update_wr_data(bfqd, bfqq);
++
++	bfq_log_bfqq(bfqd, bfqq,
++			"dispatched %u sec req (%llu), budg left %d",
++			blk_rq_sectors(rq),
++			(unsigned long long) blk_rq_pos(rq),
++			bfq_bfqq_budget_left(bfqq));
++
++	dispatched++;
++
++	if (!bfqd->in_service_bic) {
++		atomic_long_inc(&RQ_BIC(rq)->icq.ioc->refcount);
++		bfqd->in_service_bic = RQ_BIC(rq);
++	}
++
++	if (bfqd->busy_queues > 1 && ((!bfq_bfqq_sync(bfqq) &&
++	    dispatched >= bfqd->bfq_max_budget_async_rq) ||
++	    bfq_class_idle(bfqq)))
++		goto expire;
++
++	return dispatched;
++
++expire:
++	bfq_bfqq_expire(bfqd, bfqq, false, BFQ_BFQQ_BUDGET_EXHAUSTED);
++	return dispatched;
++}
++
++static int __bfq_forced_dispatch_bfqq(struct bfq_queue *bfqq)
++{
++	int dispatched = 0;
++
++	while (bfqq->next_rq) {
++		bfq_dispatch_insert(bfqq->bfqd->queue, bfqq->next_rq);
++		dispatched++;
++	}
++
++	BUG_ON(!list_empty(&bfqq->fifo));
++	return dispatched;
++}
++
++/*
++ * Drain our current requests.
++ * Used for barriers and when switching io schedulers on-the-fly.
++ */
++static int bfq_forced_dispatch(struct bfq_data *bfqd)
++{
++	struct bfq_queue *bfqq, *n;
++	struct bfq_service_tree *st;
++	int dispatched = 0;
++
++	bfqq = bfqd->in_service_queue;
++	if (bfqq)
++		__bfq_bfqq_expire(bfqd, bfqq);
++
++	/*
++	 * Loop through classes, and be careful to leave the scheduler
++	 * in a consistent state, as feedback mechanisms and vtime
++	 * updates cannot be disabled during the process.
++	 */
++	list_for_each_entry_safe(bfqq, n, &bfqd->active_list, bfqq_list) {
++		st = bfq_entity_service_tree(&bfqq->entity);
++
++		dispatched += __bfq_forced_dispatch_bfqq(bfqq);
++		bfqq->max_budget = bfq_max_budget(bfqd);
++
++		bfq_forget_idle(st);
++	}
++
++	BUG_ON(bfqd->busy_queues != 0);
++
++	return dispatched;
++}
++
++static int bfq_dispatch_requests(struct request_queue *q, int force)
++{
++	struct bfq_data *bfqd = q->elevator->elevator_data;
++	struct bfq_queue *bfqq;
++	int max_dispatch;
++
++	bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
++	if (bfqd->busy_queues == 0)
++		return 0;
++
++	if (unlikely(force))
++		return bfq_forced_dispatch(bfqd);
++
++	bfqq = bfq_select_queue(bfqd);
++	if (!bfqq)
++		return 0;
++
++	if (bfq_class_idle(bfqq))
++		max_dispatch = 1;
++
++	if (!bfq_bfqq_sync(bfqq))
++		max_dispatch = bfqd->bfq_max_budget_async_rq;
++
++	if (!bfq_bfqq_sync(bfqq) && bfqq->dispatched >= max_dispatch) {
++		if (bfqd->busy_queues > 1)
++			return 0;
++		if (bfqq->dispatched >= 4 * max_dispatch)
++			return 0;
++	}
++
++	if (bfqd->sync_flight != 0 && !bfq_bfqq_sync(bfqq))
++		return 0;
++
++	bfq_clear_bfqq_wait_request(bfqq);
++	BUG_ON(timer_pending(&bfqd->idle_slice_timer));
++
++	if (!bfq_dispatch_request(bfqd, bfqq))
++		return 0;
++
++	bfq_log_bfqq(bfqd, bfqq, "dispatched %s request",
++			bfq_bfqq_sync(bfqq) ? "sync" : "async");
++
++	return 1;
++}
++
++/*
++ * Task holds one reference to the queue, dropped when task exits.  Each rq
++ * in-flight on this queue also holds a reference, dropped when rq is freed.
++ *
++ * Queue lock must be held here.
++ */
++static void bfq_put_queue(struct bfq_queue *bfqq)
++{
++	struct bfq_data *bfqd = bfqq->bfqd;
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++	struct bfq_group *bfqg = bfqq_group(bfqq);
++#endif
++
++	BUG_ON(atomic_read(&bfqq->ref) <= 0);
++
++	bfq_log_bfqq(bfqd, bfqq, "put_queue: %p %d", bfqq,
++		     atomic_read(&bfqq->ref));
++	if (!atomic_dec_and_test(&bfqq->ref))
++		return;
++
++	BUG_ON(rb_first(&bfqq->sort_list));
++	BUG_ON(bfqq->allocated[READ] + bfqq->allocated[WRITE] != 0);
++	BUG_ON(bfqq->entity.tree);
++	BUG_ON(bfq_bfqq_busy(bfqq));
++	BUG_ON(bfqd->in_service_queue == bfqq);
++
++	if (bfq_bfqq_sync(bfqq))
++		/*
++		 * The fact that this queue is being destroyed does not
++		 * invalidate the fact that this queue may have been
++		 * activated during the current burst. As a consequence,
++		 * although the queue does not exist anymore, and hence
++		 * needs to be removed from the burst list if there,
++		 * the burst size has not to be decremented.
++		 */
++		hlist_del_init(&bfqq->burst_list_node);
++
++	bfq_log_bfqq(bfqd, bfqq, "put_queue: %p freed", bfqq);
++
++	kmem_cache_free(bfq_pool, bfqq);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++	bfqg_put(bfqg);
++#endif
++}
++
++static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
++{
++	if (bfqq == bfqd->in_service_queue) {
++		__bfq_bfqq_expire(bfqd, bfqq);
++		bfq_schedule_dispatch(bfqd);
++	}
++
++	bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq,
++		     atomic_read(&bfqq->ref));
++
++	bfq_put_queue(bfqq);
++}
++
++static void bfq_init_icq(struct io_cq *icq)
++{
++	struct bfq_io_cq *bic = icq_to_bic(icq);
++
++	bic->ttime.last_end_request = jiffies;
++}
++
++static void bfq_exit_icq(struct io_cq *icq)
++{
++	struct bfq_io_cq *bic = icq_to_bic(icq);
++	struct bfq_data *bfqd = bic_to_bfqd(bic);
++
++	if (bic->bfqq[BLK_RW_ASYNC]) {
++		bfq_exit_bfqq(bfqd, bic->bfqq[BLK_RW_ASYNC]);
++		bic->bfqq[BLK_RW_ASYNC] = NULL;
++	}
++
++	if (bic->bfqq[BLK_RW_SYNC]) {
++		bfq_exit_bfqq(bfqd, bic->bfqq[BLK_RW_SYNC]);
++		bic->bfqq[BLK_RW_SYNC] = NULL;
++	}
++}
++
++/*
++ * Update the entity prio values; note that the new values will not
++ * be used until the next (re)activation.
++ */
++static void
++bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
++{
++	struct task_struct *tsk = current;
++	int ioprio_class;
++
++	ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
++	switch (ioprio_class) {
++	default:
++		dev_err(bfqq->bfqd->queue->backing_dev_info.dev,
++			"bfq: bad prio class %d\n", ioprio_class);
++	case IOPRIO_CLASS_NONE:
++		/*
++		 * No prio set, inherit CPU scheduling settings.
++		 */
++		bfqq->new_ioprio = task_nice_ioprio(tsk);
++		bfqq->new_ioprio_class = task_nice_ioclass(tsk);
++		break;
++	case IOPRIO_CLASS_RT:
++		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
++		bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
++		break;
++	case IOPRIO_CLASS_BE:
++		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
++		bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
++		break;
++	case IOPRIO_CLASS_IDLE:
++		bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
++		bfqq->new_ioprio = 7;
++		bfq_clear_bfqq_idle_window(bfqq);
++		break;
++	}
++
++	if (bfqq->new_ioprio < 0 || bfqq->new_ioprio >= IOPRIO_BE_NR) {
++		pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
++			bfqq->new_ioprio);
++		BUG();
++	}
++
++	bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
++	bfqq->entity.prio_changed = 1;
++}
++
++static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
++{
++	struct bfq_data *bfqd;
++	struct bfq_queue *bfqq, *new_bfqq;
++	unsigned long uninitialized_var(flags);
++	int ioprio = bic->icq.ioc->ioprio;
++
++	bfqd = bfq_get_bfqd_locked(&(bic->icq.q->elevator->elevator_data),
++				   &flags);
++	/*
++	 * This condition may trigger on a newly created bic, be sure to
++	 * drop the lock before returning.
++	 */
++	if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
++		goto out;
++
++	bic->ioprio = ioprio;
++
++	bfqq = bic->bfqq[BLK_RW_ASYNC];
++	if (bfqq) {
++		new_bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic,
++					 GFP_ATOMIC);
++		if (new_bfqq) {
++			bic->bfqq[BLK_RW_ASYNC] = new_bfqq;
++			bfq_log_bfqq(bfqd, bfqq,
++				     "check_ioprio_change: bfqq %p %d",
++				     bfqq, atomic_read(&bfqq->ref));
++			bfq_put_queue(bfqq);
++		}
++	}
++
++	bfqq = bic->bfqq[BLK_RW_SYNC];
++	if (bfqq)
++		bfq_set_next_ioprio_data(bfqq, bic);
++
++out:
++	bfq_put_bfqd_unlock(bfqd, &flags);
++}
++
++static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++			  struct bfq_io_cq *bic, pid_t pid, int is_sync)
++{
++	RB_CLEAR_NODE(&bfqq->entity.rb_node);
++	INIT_LIST_HEAD(&bfqq->fifo);
++	INIT_HLIST_NODE(&bfqq->burst_list_node);
++
++	atomic_set(&bfqq->ref, 0);
++	bfqq->bfqd = bfqd;
++
++	if (bic)
++		bfq_set_next_ioprio_data(bfqq, bic);
++
++	if (is_sync) {
++		if (!bfq_class_idle(bfqq))
++			bfq_mark_bfqq_idle_window(bfqq);
++		bfq_mark_bfqq_sync(bfqq);
++	} else
++		bfq_clear_bfqq_sync(bfqq);
++	bfq_mark_bfqq_IO_bound(bfqq);
++
++	/* Tentative initial value to trade off between thr and lat */
++	bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
++	bfqq->pid = pid;
++
++	bfqq->wr_coeff = 1;
++	bfqq->last_wr_start_finish = 0;
++	/*
++	 * Set to the value for which bfqq will not be deemed as
++	 * soft rt when it becomes backlogged.
++	 */
++	bfqq->soft_rt_next_start = bfq_infinity_from_now(jiffies);
++}
++
++static struct bfq_queue *bfq_find_alloc_queue(struct bfq_data *bfqd,
++					      struct bio *bio, int is_sync,
++					      struct bfq_io_cq *bic,
++					      gfp_t gfp_mask)
++{
++	struct bfq_group *bfqg;
++	struct bfq_queue *bfqq, *new_bfqq = NULL;
++	struct blkcg *blkcg;
++
++retry:
++	rcu_read_lock();
++
++	blkcg = bio_blkcg(bio);
++	bfqg = bfq_find_alloc_group(bfqd, blkcg);
++	/* bic always exists here */
++	bfqq = bic_to_bfqq(bic, is_sync);
++
++	/*
++	 * Always try a new alloc if we fall back to the OOM bfqq
++	 * originally, since it should just be a temporary situation.
++	 */
++	if (!bfqq || bfqq == &bfqd->oom_bfqq) {
++		bfqq = NULL;
++		if (new_bfqq) {
++			bfqq = new_bfqq;
++			new_bfqq = NULL;
++		} else if (gfpflags_allow_blocking(gfp_mask)) {
++			rcu_read_unlock();
++			spin_unlock_irq(bfqd->queue->queue_lock);
++			new_bfqq = kmem_cache_alloc_node(bfq_pool,
++					gfp_mask | __GFP_ZERO,
++					bfqd->queue->node);
++			spin_lock_irq(bfqd->queue->queue_lock);
++			if (new_bfqq)
++				goto retry;
++		} else {
++			bfqq = kmem_cache_alloc_node(bfq_pool,
++					gfp_mask | __GFP_ZERO,
++					bfqd->queue->node);
++		}
++
++		if (bfqq) {
++			bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
++				      is_sync);
++			bfq_init_entity(&bfqq->entity, bfqg);
++			bfq_log_bfqq(bfqd, bfqq, "allocated");
++		} else {
++			bfqq = &bfqd->oom_bfqq;
++			bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
++		}
++	}
++
++	if (new_bfqq)
++		kmem_cache_free(bfq_pool, new_bfqq);
++
++	rcu_read_unlock();
++
++	return bfqq;
++}
++
++static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
++					       struct bfq_group *bfqg,
++					       int ioprio_class, int ioprio)
++{
++	switch (ioprio_class) {
++	case IOPRIO_CLASS_RT:
++		return &bfqg->async_bfqq[0][ioprio];
++	case IOPRIO_CLASS_NONE:
++		ioprio = IOPRIO_NORM;
++		/* fall through */
++	case IOPRIO_CLASS_BE:
++		return &bfqg->async_bfqq[1][ioprio];
++	case IOPRIO_CLASS_IDLE:
++		return &bfqg->async_idle_bfqq;
++	default:
++		BUG();
++	}
++}
++
++static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
++				       struct bio *bio, int is_sync,
++				       struct bfq_io_cq *bic, gfp_t gfp_mask)
++{
++	const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
++	const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
++	struct bfq_queue **async_bfqq = NULL;
++	struct bfq_queue *bfqq = NULL;
++
++	if (!is_sync) {
++		struct blkcg *blkcg;
++		struct bfq_group *bfqg;
++
++		rcu_read_lock();
++		blkcg = bio_blkcg(bio);
++		rcu_read_unlock();
++		bfqg = bfq_find_alloc_group(bfqd, blkcg);
++		async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
++						  ioprio);
++		bfqq = *async_bfqq;
++	}
++
++	if (!bfqq)
++		bfqq = bfq_find_alloc_queue(bfqd, bio, is_sync, bic, gfp_mask);
++
++	/*
++	 * Pin the queue now that it's allocated, scheduler exit will
++	 * prune it.
++	 */
++	if (!is_sync && !(*async_bfqq)) {
++		atomic_inc(&bfqq->ref);
++		bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
++			     bfqq, atomic_read(&bfqq->ref));
++		*async_bfqq = bfqq;
++	}
++
++	atomic_inc(&bfqq->ref);
++	bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq,
++		     atomic_read(&bfqq->ref));
++	return bfqq;
++}
++
++static void bfq_update_io_thinktime(struct bfq_data *bfqd,
++				    struct bfq_io_cq *bic)
++{
++	unsigned long elapsed = jiffies - bic->ttime.last_end_request;
++	unsigned long ttime = min(elapsed, 2UL * bfqd->bfq_slice_idle);
++
++	bic->ttime.ttime_samples = (7*bic->ttime.ttime_samples + 256) / 8;
++	bic->ttime.ttime_total = (7*bic->ttime.ttime_total + 256*ttime) / 8;
++	bic->ttime.ttime_mean = (bic->ttime.ttime_total + 128) /
++				bic->ttime.ttime_samples;
++}
++
++static void bfq_update_io_seektime(struct bfq_data *bfqd,
++				   struct bfq_queue *bfqq,
++				   struct request *rq)
++{
++	sector_t sdist;
++	u64 total;
++
++	if (bfqq->last_request_pos < blk_rq_pos(rq))
++		sdist = blk_rq_pos(rq) - bfqq->last_request_pos;
++	else
++		sdist = bfqq->last_request_pos - blk_rq_pos(rq);
++
++	/*
++	 * Don't allow the seek distance to get too large from the
++	 * odd fragment, pagein, etc.
++	 */
++	if (bfqq->seek_samples == 0) /* first request, not really a seek */
++		sdist = 0;
++	else if (bfqq->seek_samples <= 60) /* second & third seek */
++		sdist = min(sdist, (bfqq->seek_mean * 4) + 2*1024*1024);
++	else
++		sdist = min(sdist, (bfqq->seek_mean * 4) + 2*1024*64);
++
++	bfqq->seek_samples = (7*bfqq->seek_samples + 256) / 8;
++	bfqq->seek_total = (7*bfqq->seek_total + (u64)256*sdist) / 8;
++	total = bfqq->seek_total + (bfqq->seek_samples/2);
++	do_div(total, bfqq->seek_samples);
++	bfqq->seek_mean = (sector_t)total;
++
++	bfq_log_bfqq(bfqd, bfqq, "dist=%llu mean=%llu", (u64)sdist,
++			(u64)bfqq->seek_mean);
++}
++
++/*
++ * Disable idle window if the process thinks too long or seeks so much that
++ * it doesn't matter.
++ */
++static void bfq_update_idle_window(struct bfq_data *bfqd,
++				   struct bfq_queue *bfqq,
++				   struct bfq_io_cq *bic)
++{
++	int enable_idle;
++
++	/* Don't idle for async or idle io prio class. */
++	if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq))
++		return;
++
++	enable_idle = bfq_bfqq_idle_window(bfqq);
++
++	if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
++	    bfqd->bfq_slice_idle == 0 ||
++		(bfqd->hw_tag && BFQQ_SEEKY(bfqq) &&
++			bfqq->wr_coeff == 1))
++		enable_idle = 0;
++	else if (bfq_sample_valid(bic->ttime.ttime_samples)) {
++		if (bic->ttime.ttime_mean > bfqd->bfq_slice_idle &&
++			bfqq->wr_coeff == 1)
++			enable_idle = 0;
++		else
++			enable_idle = 1;
++	}
++	bfq_log_bfqq(bfqd, bfqq, "update_idle_window: enable_idle %d",
++		enable_idle);
++
++	if (enable_idle)
++		bfq_mark_bfqq_idle_window(bfqq);
++	else
++		bfq_clear_bfqq_idle_window(bfqq);
++}
++
++/*
++ * Called when a new fs request (rq) is added to bfqq.  Check if there's
++ * something we should do about it.
++ */
++static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++			    struct request *rq)
++{
++	struct bfq_io_cq *bic = RQ_BIC(rq);
++
++	if (rq->cmd_flags & REQ_META)
++		bfqq->meta_pending++;
++
++	bfq_update_io_thinktime(bfqd, bic);
++	bfq_update_io_seektime(bfqd, bfqq, rq);
++	if (!BFQQ_SEEKY(bfqq) && bfq_bfqq_constantly_seeky(bfqq)) {
++		bfq_clear_bfqq_constantly_seeky(bfqq);
++		if (!blk_queue_nonrot(bfqd->queue)) {
++			BUG_ON(!bfqd->const_seeky_busy_in_flight_queues);
++			bfqd->const_seeky_busy_in_flight_queues--;
++		}
++	}
++	if (bfqq->entity.service > bfq_max_budget(bfqd) / 8 ||
++	    !BFQQ_SEEKY(bfqq))
++		bfq_update_idle_window(bfqd, bfqq, bic);
++
++	bfq_log_bfqq(bfqd, bfqq,
++		     "rq_enqueued: idle_window=%d (seeky %d, mean %llu)",
++		     bfq_bfqq_idle_window(bfqq), BFQQ_SEEKY(bfqq),
++		     (unsigned long long) bfqq->seek_mean);
++
++	bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
++
++	if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
++		bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
++				 blk_rq_sectors(rq) < 32;
++		bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
++
++		/*
++		 * There is just this request queued: if the request
++		 * is small and the queue is not to be expired, then
++		 * just exit.
++		 *
++		 * In this way, if the disk is being idled to wait for
++		 * a new request from the in-service queue, we avoid
++		 * unplugging the device and committing the disk to serve
++		 * just a small request. On the contrary, we wait for
++		 * the block layer to decide when to unplug the device:
++		 * hopefully, new requests will be merged to this one
++		 * quickly, then the device will be unplugged and
++		 * larger requests will be dispatched.
++		 */
++		if (small_req && !budget_timeout)
++			return;
++
++		/*
++		 * A large enough request arrived, or the queue is to
++		 * be expired: in both cases disk idling is to be
++		 * stopped, so clear wait_request flag and reset
++		 * timer.
++		 */
++		bfq_clear_bfqq_wait_request(bfqq);
++		del_timer(&bfqd->idle_slice_timer);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++		bfqg_stats_update_idle_time(bfqq_group(bfqq));
++#endif
++
++		/*
++		 * The queue is not empty, because a new request just
++		 * arrived. Hence we can safely expire the queue, in
++		 * case of budget timeout, without risking that the
++		 * timestamps of the queue are not updated correctly.
++		 * See [1] for more details.
++		 */
++		if (budget_timeout)
++			bfq_bfqq_expire(bfqd, bfqq, false,
++					BFQ_BFQQ_BUDGET_TIMEOUT);
++
++		/*
++		 * Let the request rip immediately, or let a new queue be
++		 * selected if bfqq has just been expired.
++		 */
++		__blk_run_queue(bfqd->queue);
++	}
++}
++
++static void bfq_insert_request(struct request_queue *q, struct request *rq)
++{
++	struct bfq_data *bfqd = q->elevator->elevator_data;
++	struct bfq_queue *bfqq = RQ_BFQQ(rq);
++
++	assert_spin_locked(bfqd->queue->queue_lock);
++
++	bfq_add_request(rq);
++
++	rq->fifo_time = jiffies + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
++	list_add_tail(&rq->queuelist, &bfqq->fifo);
++
++	bfq_rq_enqueued(bfqd, bfqq, rq);
++}
++
++static void bfq_update_hw_tag(struct bfq_data *bfqd)
++{
++	bfqd->max_rq_in_driver = max(bfqd->max_rq_in_driver,
++				     bfqd->rq_in_driver);
++
++	if (bfqd->hw_tag == 1)
++		return;
++
++	/*
++	 * This sample is valid if the number of outstanding requests
++	 * is large enough to allow a queueing behavior.  Note that the
++	 * sum is not exact, as it's not taking into account deactivated
++	 * requests.
++	 */
++	if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD)
++		return;
++
++	if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
++		return;
++
++	bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
++	bfqd->max_rq_in_driver = 0;
++	bfqd->hw_tag_samples = 0;
++}
++
++static void bfq_completed_request(struct request_queue *q, struct request *rq)
++{
++	struct bfq_queue *bfqq = RQ_BFQQ(rq);
++	struct bfq_data *bfqd = bfqq->bfqd;
++	bool sync = bfq_bfqq_sync(bfqq);
++
++	bfq_log_bfqq(bfqd, bfqq, "completed one req with %u sects left (%d)",
++		     blk_rq_sectors(rq), sync);
++
++	bfq_update_hw_tag(bfqd);
++
++	BUG_ON(!bfqd->rq_in_driver);
++	BUG_ON(!bfqq->dispatched);
++	bfqd->rq_in_driver--;
++	bfqq->dispatched--;
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++	bfqg_stats_update_completion(bfqq_group(bfqq),
++				     rq_start_time_ns(rq),
++				     rq_io_start_time_ns(rq), rq->cmd_flags);
++#endif
++
++	if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
++		bfq_weights_tree_remove(bfqd, &bfqq->entity,
++					&bfqd->queue_weights_tree);
++		if (!blk_queue_nonrot(bfqd->queue)) {
++			BUG_ON(!bfqd->busy_in_flight_queues);
++			bfqd->busy_in_flight_queues--;
++			if (bfq_bfqq_constantly_seeky(bfqq)) {
++				BUG_ON(!bfqd->
++					const_seeky_busy_in_flight_queues);
++				bfqd->const_seeky_busy_in_flight_queues--;
++			}
++		}
++	}
++
++	if (sync) {
++		bfqd->sync_flight--;
++		RQ_BIC(rq)->ttime.last_end_request = jiffies;
++	}
++
++	/*
++	 * If we are waiting to discover whether the request pattern of the
++	 * task associated with the queue is actually isochronous, and
++	 * both requisites for this condition to hold are satisfied, then
++	 * compute soft_rt_next_start (see the comments to the function
++	 * bfq_bfqq_softrt_next_start()).
++	 */
++	if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
++	    RB_EMPTY_ROOT(&bfqq->sort_list))
++		bfqq->soft_rt_next_start =
++			bfq_bfqq_softrt_next_start(bfqd, bfqq);
++
++	/*
++	 * If this is the in-service queue, check if it needs to be expired,
++	 * or if we want to idle in case it has no pending requests.
++	 */
++	if (bfqd->in_service_queue == bfqq) {
++		if (bfq_bfqq_budget_new(bfqq))
++			bfq_set_budget_timeout(bfqd);
++
++		if (bfq_bfqq_must_idle(bfqq)) {
++			bfq_arm_slice_timer(bfqd);
++			goto out;
++		} else if (bfq_may_expire_for_budg_timeout(bfqq))
++			bfq_bfqq_expire(bfqd, bfqq, false,
++					BFQ_BFQQ_BUDGET_TIMEOUT);
++		else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
++			 (bfqq->dispatched == 0 ||
++			  !bfq_bfqq_may_idle(bfqq)))
++			bfq_bfqq_expire(bfqd, bfqq, false,
++					BFQ_BFQQ_NO_MORE_REQUESTS);
++	}
++
++	if (!bfqd->rq_in_driver)
++		bfq_schedule_dispatch(bfqd);
++
++out:
++	return;
++}
++
++static int __bfq_may_queue(struct bfq_queue *bfqq)
++{
++	if (bfq_bfqq_wait_request(bfqq) && bfq_bfqq_must_alloc(bfqq)) {
++		bfq_clear_bfqq_must_alloc(bfqq);
++		return ELV_MQUEUE_MUST;
++	}
++
++	return ELV_MQUEUE_MAY;
++}
++
++static int bfq_may_queue(struct request_queue *q, int rw)
++{
++	struct bfq_data *bfqd = q->elevator->elevator_data;
++	struct task_struct *tsk = current;
++	struct bfq_io_cq *bic;
++	struct bfq_queue *bfqq;
++
++	/*
++	 * Don't force setup of a queue from here, as a call to may_queue
++	 * does not necessarily imply that a request actually will be
++	 * queued. So just lookup a possibly existing queue, or return
++	 * 'may queue' if that fails.
++	 */
++	bic = bfq_bic_lookup(bfqd, tsk->io_context);
++	if (!bic)
++		return ELV_MQUEUE_MAY;
++
++	bfqq = bic_to_bfqq(bic, rw_is_sync(rw));
++	if (bfqq)
++		return __bfq_may_queue(bfqq);
++
++	return ELV_MQUEUE_MAY;
++}
++
++/*
++ * Queue lock held here.
++ */
++static void bfq_put_request(struct request *rq)
++{
++	struct bfq_queue *bfqq = RQ_BFQQ(rq);
++
++	if (bfqq) {
++		const int rw = rq_data_dir(rq);
++
++		BUG_ON(!bfqq->allocated[rw]);
++		bfqq->allocated[rw]--;
++
++		rq->elv.priv[0] = NULL;
++		rq->elv.priv[1] = NULL;
++
++		bfq_log_bfqq(bfqq->bfqd, bfqq, "put_request %p, %d",
++			     bfqq, atomic_read(&bfqq->ref));
++		bfq_put_queue(bfqq);
++	}
++}
++
++/*
++ * Allocate bfq data structures associated with this request.
++ */
++static int bfq_set_request(struct request_queue *q, struct request *rq,
++			   struct bio *bio, gfp_t gfp_mask)
++{
++	struct bfq_data *bfqd = q->elevator->elevator_data;
++	struct bfq_io_cq *bic = icq_to_bic(rq->elv.icq);
++	const int rw = rq_data_dir(rq);
++	const int is_sync = rq_is_sync(rq);
++	struct bfq_queue *bfqq;
++	unsigned long flags;
++
++	might_sleep_if(gfpflags_allow_blocking(gfp_mask));
++
++	bfq_check_ioprio_change(bic, bio);
++
++	spin_lock_irqsave(q->queue_lock, flags);
++
++	if (!bic)
++		goto queue_fail;
++
++	bfq_bic_update_cgroup(bic, bio);
++
++	bfqq = bic_to_bfqq(bic, is_sync);
++	if (!bfqq || bfqq == &bfqd->oom_bfqq) {
++		bfqq = bfq_get_queue(bfqd, bio, is_sync, bic, gfp_mask);
++		bic_set_bfqq(bic, bfqq, is_sync);
++		if (is_sync) {
++			if (bfqd->large_burst)
++				bfq_mark_bfqq_in_large_burst(bfqq);
++			else
++				bfq_clear_bfqq_in_large_burst(bfqq);
++		}
++	}
++
++	bfqq->allocated[rw]++;
++	atomic_inc(&bfqq->ref);
++	bfq_log_bfqq(bfqd, bfqq, "set_request: bfqq %p, %d", bfqq,
++		     atomic_read(&bfqq->ref));
++
++	rq->elv.priv[0] = bic;
++	rq->elv.priv[1] = bfqq;
++
++	spin_unlock_irqrestore(q->queue_lock, flags);
++
++	return 0;
++
++queue_fail:
++	bfq_schedule_dispatch(bfqd);
++	spin_unlock_irqrestore(q->queue_lock, flags);
++
++	return 1;
++}
++
++static void bfq_kick_queue(struct work_struct *work)
++{
++	struct bfq_data *bfqd =
++		container_of(work, struct bfq_data, unplug_work);
++	struct request_queue *q = bfqd->queue;
++
++	spin_lock_irq(q->queue_lock);
++	__blk_run_queue(q);
++	spin_unlock_irq(q->queue_lock);
++}
++
++/*
++ * Handler of the expiration of the timer running if the in-service queue
++ * is idling inside its time slice.
++ */
++static void bfq_idle_slice_timer(unsigned long data)
++{
++	struct bfq_data *bfqd = (struct bfq_data *)data;
++	struct bfq_queue *bfqq;
++	unsigned long flags;
++	enum bfqq_expiration reason;
++
++	spin_lock_irqsave(bfqd->queue->queue_lock, flags);
++
++	bfqq = bfqd->in_service_queue;
++	/*
++	 * Theoretical race here: the in-service queue can be NULL or
++	 * different from the queue that was idling if the timer handler
++	 * spins on the queue_lock and a new request arrives for the
++	 * current queue and there is a full dispatch cycle that changes
++	 * the in-service queue.  This can hardly happen, but in the worst
++	 * case we just expire a queue too early.
++	 */
++	if (bfqq) {
++		bfq_log_bfqq(bfqd, bfqq, "slice_timer expired");
++		if (bfq_bfqq_budget_timeout(bfqq))
++			/*
++			 * Also here the queue can be safely expired
++			 * for budget timeout without wasting
++			 * guarantees
++			 */
++			reason = BFQ_BFQQ_BUDGET_TIMEOUT;
++		else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
++			/*
++			 * The queue may not be empty upon timer expiration,
++			 * because we may not disable the timer when the
++			 * first request of the in-service queue arrives
++			 * during disk idling.
++			 */
++			reason = BFQ_BFQQ_TOO_IDLE;
++		else
++			goto schedule_dispatch;
++
++		bfq_bfqq_expire(bfqd, bfqq, true, reason);
++	}
++
++schedule_dispatch:
++	bfq_schedule_dispatch(bfqd);
++
++	spin_unlock_irqrestore(bfqd->queue->queue_lock, flags);
++}
++
++static void bfq_shutdown_timer_wq(struct bfq_data *bfqd)
++{
++	del_timer_sync(&bfqd->idle_slice_timer);
++	cancel_work_sync(&bfqd->unplug_work);
++}
++
++static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
++					struct bfq_queue **bfqq_ptr)
++{
++	struct bfq_group *root_group = bfqd->root_group;
++	struct bfq_queue *bfqq = *bfqq_ptr;
++
++	bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
++	if (bfqq) {
++		bfq_bfqq_move(bfqd, bfqq, &bfqq->entity, root_group);
++		bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
++			     bfqq, atomic_read(&bfqq->ref));
++		bfq_put_queue(bfqq);
++		*bfqq_ptr = NULL;
++	}
++}
++
++/*
++ * Release all the bfqg references to its async queues.  If we are
++ * deallocating the group these queues may still contain requests, so
++ * we reparent them to the root cgroup (i.e., the only one that will
++ * exist for sure until all the requests on a device are gone).
++ */
++static void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
++{
++	int i, j;
++
++	for (i = 0; i < 2; i++)
++		for (j = 0; j < IOPRIO_BE_NR; j++)
++			__bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
++
++	__bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
++}
++
++static void bfq_exit_queue(struct elevator_queue *e)
++{
++	struct bfq_data *bfqd = e->elevator_data;
++	struct request_queue *q = bfqd->queue;
++	struct bfq_queue *bfqq, *n;
++
++	bfq_shutdown_timer_wq(bfqd);
++
++	spin_lock_irq(q->queue_lock);
++
++	BUG_ON(bfqd->in_service_queue);
++	list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
++		bfq_deactivate_bfqq(bfqd, bfqq, 0);
++
++	spin_unlock_irq(q->queue_lock);
++
++	bfq_shutdown_timer_wq(bfqd);
++
++	synchronize_rcu();
++
++	BUG_ON(timer_pending(&bfqd->idle_slice_timer));
++
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++	blkcg_deactivate_policy(q, &blkcg_policy_bfq);
++#else
++	kfree(bfqd->root_group);
++#endif
++
++	kfree(bfqd);
++}
++
++static void bfq_init_root_group(struct bfq_group *root_group,
++				struct bfq_data *bfqd)
++{
++	int i;
++
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++	root_group->entity.parent = NULL;
++	root_group->my_entity = NULL;
++	root_group->bfqd = bfqd;
++#endif
++	for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
++		root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
++}
++
++static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
++{
++	struct bfq_data *bfqd;
++	struct elevator_queue *eq;
++
++	eq = elevator_alloc(q, e);
++	if (!eq)
++		return -ENOMEM;
++
++	bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
++	if (!bfqd) {
++		kobject_put(&eq->kobj);
++		return -ENOMEM;
++	}
++	eq->elevator_data = bfqd;
++
++	/*
++	 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
++	 * Grab a permanent reference to it, so that the normal code flow
++	 * will not attempt to free it.
++	 */
++	bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
++	atomic_inc(&bfqd->oom_bfqq.ref);
++	bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
++	bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
++	bfqd->oom_bfqq.entity.new_weight =
++		bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
++	/*
++	 * Trigger weight initialization, according to ioprio, at the
++	 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
++	 * class won't be changed any more.
++	 */
++	bfqd->oom_bfqq.entity.prio_changed = 1;
++
++	bfqd->queue = q;
++
++	spin_lock_irq(q->queue_lock);
++	q->elevator = eq;
++	spin_unlock_irq(q->queue_lock);
++
++	bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
++	if (!bfqd->root_group)
++		goto out_free;
++	bfq_init_root_group(bfqd->root_group, bfqd);
++	bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++	bfqd->active_numerous_groups = 0;
++#endif
++
++	init_timer(&bfqd->idle_slice_timer);
++	bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
++	bfqd->idle_slice_timer.data = (unsigned long)bfqd;
++
++	bfqd->queue_weights_tree = RB_ROOT;
++	bfqd->group_weights_tree = RB_ROOT;
++
++	INIT_WORK(&bfqd->unplug_work, bfq_kick_queue);
++
++	INIT_LIST_HEAD(&bfqd->active_list);
++	INIT_LIST_HEAD(&bfqd->idle_list);
++	INIT_HLIST_HEAD(&bfqd->burst_list);
++
++	bfqd->hw_tag = -1;
++
++	bfqd->bfq_max_budget = bfq_default_max_budget;
++
++	bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
++	bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
++	bfqd->bfq_back_max = bfq_back_max;
++	bfqd->bfq_back_penalty = bfq_back_penalty;
++	bfqd->bfq_slice_idle = bfq_slice_idle;
++	bfqd->bfq_class_idle_last_service = 0;
++	bfqd->bfq_max_budget_async_rq = bfq_max_budget_async_rq;
++	bfqd->bfq_timeout[BLK_RW_ASYNC] = bfq_timeout_async;
++	bfqd->bfq_timeout[BLK_RW_SYNC] = bfq_timeout_sync;
++
++	bfqd->bfq_requests_within_timer = 120;
++
++	bfqd->bfq_large_burst_thresh = 11;
++	bfqd->bfq_burst_interval = msecs_to_jiffies(500);
++
++	bfqd->low_latency = true;
++
++	bfqd->bfq_wr_coeff = 20;
++	bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
++	bfqd->bfq_wr_max_time = 0;
++	bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
++	bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
++	bfqd->bfq_wr_max_softrt_rate = 7000; /*
++					      * Approximate rate required
++					      * to playback or record a
++					      * high-definition compressed
++					      * video.
++					      */
++	bfqd->wr_busy_queues = 0;
++	bfqd->busy_in_flight_queues = 0;
++	bfqd->const_seeky_busy_in_flight_queues = 0;
++
++	/*
++	 * Begin by assuming, optimistically, that the device peak rate is
++	 * equal to the highest reference rate.
++	 */
++	bfqd->RT_prod = R_fast[blk_queue_nonrot(bfqd->queue)] *
++			T_fast[blk_queue_nonrot(bfqd->queue)];
++	bfqd->peak_rate = R_fast[blk_queue_nonrot(bfqd->queue)];
++	bfqd->device_speed = BFQ_BFQD_FAST;
++
++	return 0;
++
++out_free:
++	kfree(bfqd);
++	kobject_put(&eq->kobj);
++	return -ENOMEM;
++}
++
++static void bfq_slab_kill(void)
++{
++	kmem_cache_destroy(bfq_pool);
++}
++
++static int __init bfq_slab_setup(void)
++{
++	bfq_pool = KMEM_CACHE(bfq_queue, 0);
++	if (!bfq_pool)
++		return -ENOMEM;
++	return 0;
++}
++
++static ssize_t bfq_var_show(unsigned int var, char *page)
++{
++	return sprintf(page, "%d\n", var);
++}
++
++static ssize_t bfq_var_store(unsigned long *var, const char *page,
++			     size_t count)
++{
++	unsigned long new_val;
++	int ret = kstrtoul(page, 10, &new_val);
++
++	if (ret == 0)
++		*var = new_val;
++
++	return count;
++}
++
++static ssize_t bfq_wr_max_time_show(struct elevator_queue *e, char *page)
++{
++	struct bfq_data *bfqd = e->elevator_data;
++
++	return sprintf(page, "%d\n", bfqd->bfq_wr_max_time > 0 ?
++		       jiffies_to_msecs(bfqd->bfq_wr_max_time) :
++		       jiffies_to_msecs(bfq_wr_duration(bfqd)));
++}
++
++static ssize_t bfq_weights_show(struct elevator_queue *e, char *page)
++{
++	struct bfq_queue *bfqq;
++	struct bfq_data *bfqd = e->elevator_data;
++	ssize_t num_char = 0;
++
++	num_char += sprintf(page + num_char, "Tot reqs queued %d\n\n",
++			    bfqd->queued);
++
++	spin_lock_irq(bfqd->queue->queue_lock);
++
++	num_char += sprintf(page + num_char, "Active:\n");
++	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list) {
++		num_char += sprintf(page + num_char,
++				    "pid%d: weight %hu, nr_queued %d %d, ",
++				    bfqq->pid,
++				    bfqq->entity.weight,
++				    bfqq->queued[0],
++				    bfqq->queued[1]);
++		num_char += sprintf(page + num_char,
++				    "dur %d/%u\n",
++				    jiffies_to_msecs(
++					    jiffies -
++					    bfqq->last_wr_start_finish),
++				    jiffies_to_msecs(bfqq->wr_cur_max_time));
++	}
++
++	num_char += sprintf(page + num_char, "Idle:\n");
++	list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list) {
++		num_char += sprintf(page + num_char,
++				    "pid%d: weight %hu, dur %d/%u\n",
++				    bfqq->pid,
++				    bfqq->entity.weight,
++				    jiffies_to_msecs(jiffies -
++						     bfqq->last_wr_start_finish),
++				    jiffies_to_msecs(bfqq->wr_cur_max_time));
++	}
++
++	spin_unlock_irq(bfqd->queue->queue_lock);
++
++	return num_char;
++}
++
++#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
++static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
++{									\
++	struct bfq_data *bfqd = e->elevator_data;			\
++	unsigned int __data = __VAR;					\
++	if (__CONV)							\
++		__data = jiffies_to_msecs(__data);			\
++	return bfq_var_show(__data, (page));				\
++}
++SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 1);
++SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 1);
++SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
++SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
++SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 1);
++SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
++SHOW_FUNCTION(bfq_max_budget_async_rq_show,
++	      bfqd->bfq_max_budget_async_rq, 0);
++SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout[BLK_RW_SYNC], 1);
++SHOW_FUNCTION(bfq_timeout_async_show, bfqd->bfq_timeout[BLK_RW_ASYNC], 1);
++SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
++SHOW_FUNCTION(bfq_wr_coeff_show, bfqd->bfq_wr_coeff, 0);
++SHOW_FUNCTION(bfq_wr_rt_max_time_show, bfqd->bfq_wr_rt_max_time, 1);
++SHOW_FUNCTION(bfq_wr_min_idle_time_show, bfqd->bfq_wr_min_idle_time, 1);
++SHOW_FUNCTION(bfq_wr_min_inter_arr_async_show, bfqd->bfq_wr_min_inter_arr_async,
++	1);
++SHOW_FUNCTION(bfq_wr_max_softrt_rate_show, bfqd->bfq_wr_max_softrt_rate, 0);
++#undef SHOW_FUNCTION
++
++#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
++static ssize_t								\
++__FUNC(struct elevator_queue *e, const char *page, size_t count)	\
++{									\
++	struct bfq_data *bfqd = e->elevator_data;			\
++	unsigned long uninitialized_var(__data);			\
++	int ret = bfq_var_store(&__data, (page), count);		\
++	if (__data < (MIN))						\
++		__data = (MIN);						\
++	else if (__data > (MAX))					\
++		__data = (MAX);						\
++	if (__CONV)							\
++		*(__PTR) = msecs_to_jiffies(__data);			\
++	else								\
++		*(__PTR) = __data;					\
++	return ret;							\
++}
++STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
++		INT_MAX, 1);
++STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
++		INT_MAX, 1);
++STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
++STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
++		INT_MAX, 0);
++STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 1);
++STORE_FUNCTION(bfq_max_budget_async_rq_store, &bfqd->bfq_max_budget_async_rq,
++		1, INT_MAX, 0);
++STORE_FUNCTION(bfq_timeout_async_store, &bfqd->bfq_timeout[BLK_RW_ASYNC], 0,
++		INT_MAX, 1);
++STORE_FUNCTION(bfq_wr_coeff_store, &bfqd->bfq_wr_coeff, 1, INT_MAX, 0);
++STORE_FUNCTION(bfq_wr_max_time_store, &bfqd->bfq_wr_max_time, 0, INT_MAX, 1);
++STORE_FUNCTION(bfq_wr_rt_max_time_store, &bfqd->bfq_wr_rt_max_time, 0, INT_MAX,
++		1);
++STORE_FUNCTION(bfq_wr_min_idle_time_store, &bfqd->bfq_wr_min_idle_time, 0,
++		INT_MAX, 1);
++STORE_FUNCTION(bfq_wr_min_inter_arr_async_store,
++		&bfqd->bfq_wr_min_inter_arr_async, 0, INT_MAX, 1);
++STORE_FUNCTION(bfq_wr_max_softrt_rate_store, &bfqd->bfq_wr_max_softrt_rate, 0,
++		INT_MAX, 0);
++#undef STORE_FUNCTION
++
++/* do nothing for the moment */
++static ssize_t bfq_weights_store(struct elevator_queue *e,
++				    const char *page, size_t count)
++{
++	return count;
++}
++
++static unsigned long bfq_estimated_max_budget(struct bfq_data *bfqd)
++{
++	u64 timeout = jiffies_to_msecs(bfqd->bfq_timeout[BLK_RW_SYNC]);
++
++	if (bfqd->peak_rate_samples >= BFQ_PEAK_RATE_SAMPLES)
++		return bfq_calc_max_budget(bfqd->peak_rate, timeout);
++	else
++		return bfq_default_max_budget;
++}
++
++static ssize_t bfq_max_budget_store(struct elevator_queue *e,
++				    const char *page, size_t count)
++{
++	struct bfq_data *bfqd = e->elevator_data;
++	unsigned long uninitialized_var(__data);
++	int ret = bfq_var_store(&__data, (page), count);
++
++	if (__data == 0)
++		bfqd->bfq_max_budget = bfq_estimated_max_budget(bfqd);
++	else {
++		if (__data > INT_MAX)
++			__data = INT_MAX;
++		bfqd->bfq_max_budget = __data;
++	}
++
++	bfqd->bfq_user_max_budget = __data;
++
++	return ret;
++}
++
++static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
++				      const char *page, size_t count)
++{
++	struct bfq_data *bfqd = e->elevator_data;
++	unsigned long uninitialized_var(__data);
++	int ret = bfq_var_store(&__data, (page), count);
++
++	if (__data < 1)
++		__data = 1;
++	else if (__data > INT_MAX)
++		__data = INT_MAX;
++
++	bfqd->bfq_timeout[BLK_RW_SYNC] = msecs_to_jiffies(__data);
++	if (bfqd->bfq_user_max_budget == 0)
++		bfqd->bfq_max_budget = bfq_estimated_max_budget(bfqd);
++
++	return ret;
++}
++
++static ssize_t bfq_low_latency_store(struct elevator_queue *e,
++				     const char *page, size_t count)
++{
++	struct bfq_data *bfqd = e->elevator_data;
++	unsigned long uninitialized_var(__data);
++	int ret = bfq_var_store(&__data, (page), count);
++
++	if (__data > 1)
++		__data = 1;
++	if (__data == 0 && bfqd->low_latency != 0)
++		bfq_end_wr(bfqd);
++	bfqd->low_latency = __data;
++
++	return ret;
++}
++
++#define BFQ_ATTR(name) \
++	__ATTR(name, S_IRUGO|S_IWUSR, bfq_##name##_show, bfq_##name##_store)
++
++static struct elv_fs_entry bfq_attrs[] = {
++	BFQ_ATTR(fifo_expire_sync),
++	BFQ_ATTR(fifo_expire_async),
++	BFQ_ATTR(back_seek_max),
++	BFQ_ATTR(back_seek_penalty),
++	BFQ_ATTR(slice_idle),
++	BFQ_ATTR(max_budget),
++	BFQ_ATTR(max_budget_async_rq),
++	BFQ_ATTR(timeout_sync),
++	BFQ_ATTR(timeout_async),
++	BFQ_ATTR(low_latency),
++	BFQ_ATTR(wr_coeff),
++	BFQ_ATTR(wr_max_time),
++	BFQ_ATTR(wr_rt_max_time),
++	BFQ_ATTR(wr_min_idle_time),
++	BFQ_ATTR(wr_min_inter_arr_async),
++	BFQ_ATTR(wr_max_softrt_rate),
++	BFQ_ATTR(weights),
++	__ATTR_NULL
++};
++
++static struct elevator_type iosched_bfq = {
++	.ops = {
++		.elevator_merge_fn =		bfq_merge,
++		.elevator_merged_fn =		bfq_merged_request,
++		.elevator_merge_req_fn =	bfq_merged_requests,
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++		.elevator_bio_merged_fn =	bfq_bio_merged,
++#endif
++		.elevator_allow_merge_fn =	bfq_allow_merge,
++		.elevator_dispatch_fn =		bfq_dispatch_requests,
++		.elevator_add_req_fn =		bfq_insert_request,
++		.elevator_activate_req_fn =	bfq_activate_request,
++		.elevator_deactivate_req_fn =	bfq_deactivate_request,
++		.elevator_completed_req_fn =	bfq_completed_request,
++		.elevator_former_req_fn =	elv_rb_former_request,
++		.elevator_latter_req_fn =	elv_rb_latter_request,
++		.elevator_init_icq_fn =		bfq_init_icq,
++		.elevator_exit_icq_fn =		bfq_exit_icq,
++		.elevator_set_req_fn =		bfq_set_request,
++		.elevator_put_req_fn =		bfq_put_request,
++		.elevator_may_queue_fn =	bfq_may_queue,
++		.elevator_init_fn =		bfq_init_queue,
++		.elevator_exit_fn =		bfq_exit_queue,
++	},
++	.icq_size =		sizeof(struct bfq_io_cq),
++	.icq_align =		__alignof__(struct bfq_io_cq),
++	.elevator_attrs =	bfq_attrs,
++	.elevator_name =	"bfq",
++	.elevator_owner =	THIS_MODULE,
++};
++
++static int __init bfq_init(void)
++{
++	int ret;
++
++	/*
++	 * Can be 0 on HZ < 1000 setups.
++	 */
++	if (bfq_slice_idle == 0)
++		bfq_slice_idle = 1;
++
++	if (bfq_timeout_async == 0)
++		bfq_timeout_async = 1;
++
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++	ret = blkcg_policy_register(&blkcg_policy_bfq);
++	if (ret)
++		return ret;
++#endif
++
++	ret = -ENOMEM;
++	if (bfq_slab_setup())
++		goto err_pol_unreg;
++
++	/*
++	 * Times to load large popular applications for the typical systems
++	 * installed on the reference devices (see the comments before the
++	 * definitions of the two arrays).
++	 */
++	T_slow[0] = msecs_to_jiffies(2600);
++	T_slow[1] = msecs_to_jiffies(1000);
++	T_fast[0] = msecs_to_jiffies(5500);
++	T_fast[1] = msecs_to_jiffies(2000);
++
++	/*
++	 * Thresholds that determine the switch between speed classes (see
++	 * the comments before the definition of the array).
++	 */
++	device_speed_thresh[0] = (R_fast[0] + R_slow[0]) / 2;
++	device_speed_thresh[1] = (R_fast[1] + R_slow[1]) / 2;
++
++	ret = elv_register(&iosched_bfq);
++	if (ret)
++		goto err_pol_unreg;
++
++	pr_info("BFQ I/O-scheduler: v7r11");
++
++	return 0;
++
++err_pol_unreg:
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++	blkcg_policy_unregister(&blkcg_policy_bfq);
++#endif
++	return ret;
++}
++
++static void __exit bfq_exit(void)
++{
++	elv_unregister(&iosched_bfq);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++	blkcg_policy_unregister(&blkcg_policy_bfq);
++#endif
++	bfq_slab_kill();
++}
++
++module_init(bfq_init);
++module_exit(bfq_exit);
++
++MODULE_AUTHOR("Arianna Avanzini, Fabio Checconi, Paolo Valente");
++MODULE_LICENSE("GPL");
+diff --git a/block/bfq-sched.c b/block/bfq-sched.c
+new file mode 100644
+index 0000000..a5ed694
+--- /dev/null
++++ b/block/bfq-sched.c
+@@ -0,0 +1,1199 @@
++/*
++ * BFQ: Hierarchical B-WF2Q+ scheduler.
++ *
++ * Based on ideas and code from CFQ:
++ * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
++ *
++ * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
++ *		      Paolo Valente <paolo.valente@unimore.it>
++ *
++ * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
++ */
++
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++#define for_each_entity(entity)	\
++	for (; entity ; entity = entity->parent)
++
++#define for_each_entity_safe(entity, parent) \
++	for (; entity && ({ parent = entity->parent; 1; }); entity = parent)
++
++
++static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
++						 int extract,
++						 struct bfq_data *bfqd);
++
++static struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
++
++static void bfq_update_budget(struct bfq_entity *next_in_service)
++{
++	struct bfq_entity *bfqg_entity;
++	struct bfq_group *bfqg;
++	struct bfq_sched_data *group_sd;
++
++	BUG_ON(!next_in_service);
++
++	group_sd = next_in_service->sched_data;
++
++	bfqg = container_of(group_sd, struct bfq_group, sched_data);
++	/*
++	 * bfq_group's my_entity field is not NULL only if the group
++	 * is not the root group. We must not touch the root entity
++	 * as it must never become an in-service entity.
++	 */
++	bfqg_entity = bfqg->my_entity;
++	if (bfqg_entity)
++		bfqg_entity->budget = next_in_service->budget;
++}
++
++static int bfq_update_next_in_service(struct bfq_sched_data *sd)
++{
++	struct bfq_entity *next_in_service;
++
++	if (sd->in_service_entity)
++		/* will update/requeue at the end of service */
++		return 0;
++
++	/*
++	 * NOTE: this can be improved in many ways, such as returning
++	 * 1 (and thus propagating upwards the update) only when the
++	 * budget changes, or caching the bfqq that will be scheduled
++	 * next from this subtree.  By now we worry more about
++	 * correctness than about performance...
++	 */
++	next_in_service = bfq_lookup_next_entity(sd, 0, NULL);
++	sd->next_in_service = next_in_service;
++
++	if (next_in_service)
++		bfq_update_budget(next_in_service);
++
++	return 1;
++}
++
++static void bfq_check_next_in_service(struct bfq_sched_data *sd,
++				      struct bfq_entity *entity)
++{
++	BUG_ON(sd->next_in_service != entity);
++}
++#else
++#define for_each_entity(entity)	\
++	for (; entity ; entity = NULL)
++
++#define for_each_entity_safe(entity, parent) \
++	for (parent = NULL; entity ; entity = parent)
++
++static int bfq_update_next_in_service(struct bfq_sched_data *sd)
++{
++	return 0;
++}
++
++static void bfq_check_next_in_service(struct bfq_sched_data *sd,
++				      struct bfq_entity *entity)
++{
++}
++
++static void bfq_update_budget(struct bfq_entity *next_in_service)
++{
++}
++#endif
++
++/*
++ * Shift for timestamp calculations.  This actually limits the maximum
++ * service allowed in one timestamp delta (small shift values increase it),
++ * the maximum total weight that can be used for the queues in the system
++ * (big shift values increase it), and the period of virtual time
++ * wraparounds.
++ */
++#define WFQ_SERVICE_SHIFT	22
++
++/**
++ * bfq_gt - compare two timestamps.
++ * @a: first ts.
++ * @b: second ts.
++ *
++ * Return @a > @b, dealing with wrapping correctly.
++ */
++static int bfq_gt(u64 a, u64 b)
++{
++	return (s64)(a - b) > 0;
++}
++
++static struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity)
++{
++	struct bfq_queue *bfqq = NULL;
++
++	BUG_ON(!entity);
++
++	if (!entity->my_sched_data)
++		bfqq = container_of(entity, struct bfq_queue, entity);
++
++	return bfqq;
++}
++
++
++/**
++ * bfq_delta - map service into the virtual time domain.
++ * @service: amount of service.
++ * @weight: scale factor (weight of an entity or weight sum).
++ */
++static u64 bfq_delta(unsigned long service, unsigned long weight)
++{
++	u64 d = (u64)service << WFQ_SERVICE_SHIFT;
++
++	do_div(d, weight);
++	return d;
++}
++
++/**
++ * bfq_calc_finish - assign the finish time to an entity.
++ * @entity: the entity to act upon.
++ * @service: the service to be charged to the entity.
++ */
++static void bfq_calc_finish(struct bfq_entity *entity, unsigned long service)
++{
++	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++
++	BUG_ON(entity->weight == 0);
++
++	entity->finish = entity->start +
++		bfq_delta(service, entity->weight);
++
++	if (bfqq) {
++		bfq_log_bfqq(bfqq->bfqd, bfqq,
++			"calc_finish: serv %lu, w %d",
++			service, entity->weight);
++		bfq_log_bfqq(bfqq->bfqd, bfqq,
++			"calc_finish: start %llu, finish %llu, delta %llu",
++			entity->start, entity->finish,
++			bfq_delta(service, entity->weight));
++	}
++}
++
++/**
++ * bfq_entity_of - get an entity from a node.
++ * @node: the node field of the entity.
++ *
++ * Convert a node pointer to the relative entity.  This is used only
++ * to simplify the logic of some functions and not as the generic
++ * conversion mechanism because, e.g., in the tree walking functions,
++ * the check for a %NULL value would be redundant.
++ */
++static struct bfq_entity *bfq_entity_of(struct rb_node *node)
++{
++	struct bfq_entity *entity = NULL;
++
++	if (node)
++		entity = rb_entry(node, struct bfq_entity, rb_node);
++
++	return entity;
++}
++
++/**
++ * bfq_extract - remove an entity from a tree.
++ * @root: the tree root.
++ * @entity: the entity to remove.
++ */
++static void bfq_extract(struct rb_root *root, struct bfq_entity *entity)
++{
++	BUG_ON(entity->tree != root);
++
++	entity->tree = NULL;
++	rb_erase(&entity->rb_node, root);
++}
++
++/**
++ * bfq_idle_extract - extract an entity from the idle tree.
++ * @st: the service tree of the owning @entity.
++ * @entity: the entity being removed.
++ */
++static void bfq_idle_extract(struct bfq_service_tree *st,
++			     struct bfq_entity *entity)
++{
++	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++	struct rb_node *next;
++
++	BUG_ON(entity->tree != &st->idle);
++
++	if (entity == st->first_idle) {
++		next = rb_next(&entity->rb_node);
++		st->first_idle = bfq_entity_of(next);
++	}
++
++	if (entity == st->last_idle) {
++		next = rb_prev(&entity->rb_node);
++		st->last_idle = bfq_entity_of(next);
++	}
++
++	bfq_extract(&st->idle, entity);
++
++	if (bfqq)
++		list_del(&bfqq->bfqq_list);
++}
++
++/**
++ * bfq_insert - generic tree insertion.
++ * @root: tree root.
++ * @entity: entity to insert.
++ *
++ * This is used for the idle and the active tree, since they are both
++ * ordered by finish time.
++ */
++static void bfq_insert(struct rb_root *root, struct bfq_entity *entity)
++{
++	struct bfq_entity *entry;
++	struct rb_node **node = &root->rb_node;
++	struct rb_node *parent = NULL;
++
++	BUG_ON(entity->tree);
++
++	while (*node) {
++		parent = *node;
++		entry = rb_entry(parent, struct bfq_entity, rb_node);
++
++		if (bfq_gt(entry->finish, entity->finish))
++			node = &parent->rb_left;
++		else
++			node = &parent->rb_right;
++	}
++
++	rb_link_node(&entity->rb_node, parent, node);
++	rb_insert_color(&entity->rb_node, root);
++
++	entity->tree = root;
++}
++
++/**
++ * bfq_update_min - update the min_start field of a entity.
++ * @entity: the entity to update.
++ * @node: one of its children.
++ *
++ * This function is called when @entity may store an invalid value for
++ * min_start due to updates to the active tree.  The function  assumes
++ * that the subtree rooted at @node (which may be its left or its right
++ * child) has a valid min_start value.
++ */
++static void bfq_update_min(struct bfq_entity *entity, struct rb_node *node)
++{
++	struct bfq_entity *child;
++
++	if (node) {
++		child = rb_entry(node, struct bfq_entity, rb_node);
++		if (bfq_gt(entity->min_start, child->min_start))
++			entity->min_start = child->min_start;
++	}
++}
++
++/**
++ * bfq_update_active_node - recalculate min_start.
++ * @node: the node to update.
++ *
++ * @node may have changed position or one of its children may have moved,
++ * this function updates its min_start value.  The left and right subtrees
++ * are assumed to hold a correct min_start value.
++ */
++static void bfq_update_active_node(struct rb_node *node)
++{
++	struct bfq_entity *entity = rb_entry(node, struct bfq_entity, rb_node);
++
++	entity->min_start = entity->start;
++	bfq_update_min(entity, node->rb_right);
++	bfq_update_min(entity, node->rb_left);
++}
++
++/**
++ * bfq_update_active_tree - update min_start for the whole active tree.
++ * @node: the starting node.
++ *
++ * @node must be the deepest modified node after an update.  This function
++ * updates its min_start using the values held by its children, assuming
++ * that they did not change, and then updates all the nodes that may have
++ * changed in the path to the root.  The only nodes that may have changed
++ * are the ones in the path or their siblings.
++ */
++static void bfq_update_active_tree(struct rb_node *node)
++{
++	struct rb_node *parent;
++
++up:
++	bfq_update_active_node(node);
++
++	parent = rb_parent(node);
++	if (!parent)
++		return;
++
++	if (node == parent->rb_left && parent->rb_right)
++		bfq_update_active_node(parent->rb_right);
++	else if (parent->rb_left)
++		bfq_update_active_node(parent->rb_left);
++
++	node = parent;
++	goto up;
++}
++
++static void bfq_weights_tree_add(struct bfq_data *bfqd,
++				 struct bfq_entity *entity,
++				 struct rb_root *root);
++
++static void bfq_weights_tree_remove(struct bfq_data *bfqd,
++				    struct bfq_entity *entity,
++				    struct rb_root *root);
++
++
++/**
++ * bfq_active_insert - insert an entity in the active tree of its
++ *                     group/device.
++ * @st: the service tree of the entity.
++ * @entity: the entity being inserted.
++ *
++ * The active tree is ordered by finish time, but an extra key is kept
++ * per each node, containing the minimum value for the start times of
++ * its children (and the node itself), so it's possible to search for
++ * the eligible node with the lowest finish time in logarithmic time.
++ */
++static void bfq_active_insert(struct bfq_service_tree *st,
++			      struct bfq_entity *entity)
++{
++	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++	struct rb_node *node = &entity->rb_node;
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++	struct bfq_sched_data *sd = NULL;
++	struct bfq_group *bfqg = NULL;
++	struct bfq_data *bfqd = NULL;
++#endif
++
++	bfq_insert(&st->active, entity);
++
++	if (node->rb_left)
++		node = node->rb_left;
++	else if (node->rb_right)
++		node = node->rb_right;
++
++	bfq_update_active_tree(node);
++
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++	sd = entity->sched_data;
++	bfqg = container_of(sd, struct bfq_group, sched_data);
++	BUG_ON(!bfqg);
++	bfqd = (struct bfq_data *)bfqg->bfqd;
++#endif
++	if (bfqq)
++		list_add(&bfqq->bfqq_list, &bfqq->bfqd->active_list);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++	else { /* bfq_group */
++		BUG_ON(!bfqd);
++		bfq_weights_tree_add(bfqd, entity, &bfqd->group_weights_tree);
++	}
++	if (bfqg != bfqd->root_group) {
++		BUG_ON(!bfqg);
++		BUG_ON(!bfqd);
++		bfqg->active_entities++;
++		if (bfqg->active_entities == 2)
++			bfqd->active_numerous_groups++;
++	}
++#endif
++}
++
++/**
++ * bfq_ioprio_to_weight - calc a weight from an ioprio.
++ * @ioprio: the ioprio value to convert.
++ */
++static unsigned short bfq_ioprio_to_weight(int ioprio)
++{
++	BUG_ON(ioprio < 0 || ioprio >= IOPRIO_BE_NR);
++	return IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF - ioprio;
++}
++
++/**
++ * bfq_weight_to_ioprio - calc an ioprio from a weight.
++ * @weight: the weight value to convert.
++ *
++ * To preserve as much as possible the old only-ioprio user interface,
++ * 0 is used as an escape ioprio value for weights (numerically) equal or
++ * larger than IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF.
++ */
++static unsigned short bfq_weight_to_ioprio(int weight)
++{
++	BUG_ON(weight < BFQ_MIN_WEIGHT || weight > BFQ_MAX_WEIGHT);
++	return IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF - weight < 0 ?
++		0 : IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF - weight;
++}
++
++static void bfq_get_entity(struct bfq_entity *entity)
++{
++	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++
++	if (bfqq) {
++		atomic_inc(&bfqq->ref);
++		bfq_log_bfqq(bfqq->bfqd, bfqq, "get_entity: %p %d",
++			     bfqq, atomic_read(&bfqq->ref));
++	}
++}
++
++/**
++ * bfq_find_deepest - find the deepest node that an extraction can modify.
++ * @node: the node being removed.
++ *
++ * Do the first step of an extraction in an rb tree, looking for the
++ * node that will replace @node, and returning the deepest node that
++ * the following modifications to the tree can touch.  If @node is the
++ * last node in the tree return %NULL.
++ */
++static struct rb_node *bfq_find_deepest(struct rb_node *node)
++{
++	struct rb_node *deepest;
++
++	if (!node->rb_right && !node->rb_left)
++		deepest = rb_parent(node);
++	else if (!node->rb_right)
++		deepest = node->rb_left;
++	else if (!node->rb_left)
++		deepest = node->rb_right;
++	else {
++		deepest = rb_next(node);
++		if (deepest->rb_right)
++			deepest = deepest->rb_right;
++		else if (rb_parent(deepest) != node)
++			deepest = rb_parent(deepest);
++	}
++
++	return deepest;
++}
++
++/**
++ * bfq_active_extract - remove an entity from the active tree.
++ * @st: the service_tree containing the tree.
++ * @entity: the entity being removed.
++ */
++static void bfq_active_extract(struct bfq_service_tree *st,
++			       struct bfq_entity *entity)
++{
++	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++	struct rb_node *node;
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++	struct bfq_sched_data *sd = NULL;
++	struct bfq_group *bfqg = NULL;
++	struct bfq_data *bfqd = NULL;
++#endif
++
++	node = bfq_find_deepest(&entity->rb_node);
++	bfq_extract(&st->active, entity);
++
++	if (node)
++		bfq_update_active_tree(node);
++
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++	sd = entity->sched_data;
++	bfqg = container_of(sd, struct bfq_group, sched_data);
++	BUG_ON(!bfqg);
++	bfqd = (struct bfq_data *)bfqg->bfqd;
++#endif
++	if (bfqq)
++		list_del(&bfqq->bfqq_list);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++	else { /* bfq_group */
++		BUG_ON(!bfqd);
++		bfq_weights_tree_remove(bfqd, entity,
++					&bfqd->group_weights_tree);
++	}
++	if (bfqg != bfqd->root_group) {
++		BUG_ON(!bfqg);
++		BUG_ON(!bfqd);
++		BUG_ON(!bfqg->active_entities);
++		bfqg->active_entities--;
++		if (bfqg->active_entities == 1) {
++			BUG_ON(!bfqd->active_numerous_groups);
++			bfqd->active_numerous_groups--;
++		}
++	}
++#endif
++}
++
++/**
++ * bfq_idle_insert - insert an entity into the idle tree.
++ * @st: the service tree containing the tree.
++ * @entity: the entity to insert.
++ */
++static void bfq_idle_insert(struct bfq_service_tree *st,
++			    struct bfq_entity *entity)
++{
++	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++	struct bfq_entity *first_idle = st->first_idle;
++	struct bfq_entity *last_idle = st->last_idle;
++
++	if (!first_idle || bfq_gt(first_idle->finish, entity->finish))
++		st->first_idle = entity;
++	if (!last_idle || bfq_gt(entity->finish, last_idle->finish))
++		st->last_idle = entity;
++
++	bfq_insert(&st->idle, entity);
++
++	if (bfqq)
++		list_add(&bfqq->bfqq_list, &bfqq->bfqd->idle_list);
++}
++
++/**
++ * bfq_forget_entity - remove an entity from the wfq trees.
++ * @st: the service tree.
++ * @entity: the entity being removed.
++ *
++ * Update the device status and forget everything about @entity, putting
++ * the device reference to it, if it is a queue.  Entities belonging to
++ * groups are not refcounted.
++ */
++static void bfq_forget_entity(struct bfq_service_tree *st,
++			      struct bfq_entity *entity)
++{
++	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++	struct bfq_sched_data *sd;
++
++	BUG_ON(!entity->on_st);
++
++	entity->on_st = 0;
++	st->wsum -= entity->weight;
++	if (bfqq) {
++		sd = entity->sched_data;
++		bfq_log_bfqq(bfqq->bfqd, bfqq, "forget_entity: %p %d",
++			     bfqq, atomic_read(&bfqq->ref));
++		bfq_put_queue(bfqq);
++	}
++}
++
++/**
++ * bfq_put_idle_entity - release the idle tree ref of an entity.
++ * @st: service tree for the entity.
++ * @entity: the entity being released.
++ */
++static void bfq_put_idle_entity(struct bfq_service_tree *st,
++				struct bfq_entity *entity)
++{
++	bfq_idle_extract(st, entity);
++	bfq_forget_entity(st, entity);
++}
++
++/**
++ * bfq_forget_idle - update the idle tree if necessary.
++ * @st: the service tree to act upon.
++ *
++ * To preserve the global O(log N) complexity we only remove one entry here;
++ * as the idle tree will not grow indefinitely this can be done safely.
++ */
++static void bfq_forget_idle(struct bfq_service_tree *st)
++{
++	struct bfq_entity *first_idle = st->first_idle;
++	struct bfq_entity *last_idle = st->last_idle;
++
++	if (RB_EMPTY_ROOT(&st->active) && last_idle &&
++	    !bfq_gt(last_idle->finish, st->vtime)) {
++		/*
++		 * Forget the whole idle tree, increasing the vtime past
++		 * the last finish time of idle entities.
++		 */
++		st->vtime = last_idle->finish;
++	}
++
++	if (first_idle && !bfq_gt(first_idle->finish, st->vtime))
++		bfq_put_idle_entity(st, first_idle);
++}
++
++static struct bfq_service_tree *
++__bfq_entity_update_weight_prio(struct bfq_service_tree *old_st,
++			 struct bfq_entity *entity)
++{
++	struct bfq_service_tree *new_st = old_st;
++
++	if (entity->prio_changed) {
++		struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++		unsigned short prev_weight, new_weight;
++		struct bfq_data *bfqd = NULL;
++		struct rb_root *root;
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++		struct bfq_sched_data *sd;
++		struct bfq_group *bfqg;
++#endif
++
++		if (bfqq)
++			bfqd = bfqq->bfqd;
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++		else {
++			sd = entity->my_sched_data;
++			bfqg = container_of(sd, struct bfq_group, sched_data);
++			BUG_ON(!bfqg);
++			bfqd = (struct bfq_data *)bfqg->bfqd;
++			BUG_ON(!bfqd);
++		}
++#endif
++
++		BUG_ON(old_st->wsum < entity->weight);
++		old_st->wsum -= entity->weight;
++
++		if (entity->new_weight != entity->orig_weight) {
++			if (entity->new_weight < BFQ_MIN_WEIGHT ||
++			    entity->new_weight > BFQ_MAX_WEIGHT) {
++				pr_crit("update_weight_prio: new_weight %d\n",
++					entity->new_weight);
++				BUG();
++			}
++			entity->orig_weight = entity->new_weight;
++			if (bfqq)
++				bfqq->ioprio =
++				  bfq_weight_to_ioprio(entity->orig_weight);
++		}
++
++		if (bfqq)
++			bfqq->ioprio_class = bfqq->new_ioprio_class;
++		entity->prio_changed = 0;
++
++		/*
++		 * NOTE: here we may be changing the weight too early,
++		 * this will cause unfairness.  The correct approach
++		 * would have required additional complexity to defer
++		 * weight changes to the proper time instants (i.e.,
++		 * when entity->finish <= old_st->vtime).
++		 */
++		new_st = bfq_entity_service_tree(entity);
++
++		prev_weight = entity->weight;
++		new_weight = entity->orig_weight *
++			     (bfqq ? bfqq->wr_coeff : 1);
++		/*
++		 * If the weight of the entity changes, remove the entity
++		 * from its old weight counter (if there is a counter
++		 * associated with the entity), and add it to the counter
++		 * associated with its new weight.
++		 */
++		if (prev_weight != new_weight) {
++			root = bfqq ? &bfqd->queue_weights_tree :
++				      &bfqd->group_weights_tree;
++			bfq_weights_tree_remove(bfqd, entity, root);
++		}
++		entity->weight = new_weight;
++		/*
++		 * Add the entity to its weights tree only if it is
++		 * not associated with a weight-raised queue.
++		 */
++		if (prev_weight != new_weight &&
++		    (bfqq ? bfqq->wr_coeff == 1 : 1))
++			/* If we get here, root has been initialized. */
++			bfq_weights_tree_add(bfqd, entity, root);
++
++		new_st->wsum += entity->weight;
++
++		if (new_st != old_st)
++			entity->start = new_st->vtime;
++	}
++
++	return new_st;
++}
++
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++static void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg);
++#endif
++
++/**
++ * bfq_bfqq_served - update the scheduler status after selection for
++ *                   service.
++ * @bfqq: the queue being served.
++ * @served: bytes to transfer.
++ *
++ * NOTE: this can be optimized, as the timestamps of upper level entities
++ * are synchronized every time a new bfqq is selected for service.  By now,
++ * we keep it to better check consistency.
++ */
++static void bfq_bfqq_served(struct bfq_queue *bfqq, int served)
++{
++	struct bfq_entity *entity = &bfqq->entity;
++	struct bfq_service_tree *st;
++
++	for_each_entity(entity) {
++		st = bfq_entity_service_tree(entity);
++
++		entity->service += served;
++		BUG_ON(entity->service > entity->budget);
++		BUG_ON(st->wsum == 0);
++
++		st->vtime += bfq_delta(served, st->wsum);
++		bfq_forget_idle(st);
++	}
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++	bfqg_stats_set_start_empty_time(bfqq_group(bfqq));
++#endif
++	bfq_log_bfqq(bfqq->bfqd, bfqq, "bfqq_served %d secs", served);
++}
++
++/**
++ * bfq_bfqq_charge_full_budget - set the service to the entity budget.
++ * @bfqq: the queue that needs a service update.
++ *
++ * When it's not possible to be fair in the service domain, because
++ * a queue is not consuming its budget fast enough (the meaning of
++ * fast depends on the timeout parameter), we charge it a full
++ * budget.  In this way we should obtain a sort of time-domain
++ * fairness among all the seeky/slow queues.
++ */
++static void bfq_bfqq_charge_full_budget(struct bfq_queue *bfqq)
++{
++	struct bfq_entity *entity = &bfqq->entity;
++
++	bfq_log_bfqq(bfqq->bfqd, bfqq, "charge_full_budget");
++
++	bfq_bfqq_served(bfqq, entity->budget - entity->service);
++}
++
++/**
++ * __bfq_activate_entity - activate an entity.
++ * @entity: the entity being activated.
++ *
++ * Called whenever an entity is activated, i.e., it is not active and one
++ * of its children receives a new request, or has to be reactivated due to
++ * budget exhaustion.  It uses the current budget of the entity (and the
++ * service received if @entity is active) of the queue to calculate its
++ * timestamps.
++ */
++static void __bfq_activate_entity(struct bfq_entity *entity)
++{
++	struct bfq_sched_data *sd = entity->sched_data;
++	struct bfq_service_tree *st = bfq_entity_service_tree(entity);
++
++	if (entity == sd->in_service_entity) {
++		BUG_ON(entity->tree);
++		/*
++		 * If we are requeueing the current entity we have
++		 * to take care of not charging to it service it has
++		 * not received.
++		 */
++		bfq_calc_finish(entity, entity->service);
++		entity->start = entity->finish;
++		sd->in_service_entity = NULL;
++	} else if (entity->tree == &st->active) {
++		/*
++		 * Requeueing an entity due to a change of some
++		 * next_in_service entity below it.  We reuse the
++		 * old start time.
++		 */
++		bfq_active_extract(st, entity);
++	} else if (entity->tree == &st->idle) {
++		/*
++		 * Must be on the idle tree, bfq_idle_extract() will
++		 * check for that.
++		 */
++		bfq_idle_extract(st, entity);
++		entity->start = bfq_gt(st->vtime, entity->finish) ?
++				       st->vtime : entity->finish;
++	} else {
++		/*
++		 * The finish time of the entity may be invalid, and
++		 * it is in the past for sure, otherwise the queue
++		 * would have been on the idle tree.
++		 */
++		entity->start = st->vtime;
++		st->wsum += entity->weight;
++		bfq_get_entity(entity);
++
++		BUG_ON(entity->on_st);
++		entity->on_st = 1;
++	}
++
++	st = __bfq_entity_update_weight_prio(st, entity);
++	bfq_calc_finish(entity, entity->budget);
++	bfq_active_insert(st, entity);
++}
++
++/**
++ * bfq_activate_entity - activate an entity and its ancestors if necessary.
++ * @entity: the entity to activate.
++ *
++ * Activate @entity and all the entities on the path from it to the root.
++ */
++static void bfq_activate_entity(struct bfq_entity *entity)
++{
++	struct bfq_sched_data *sd;
++
++	for_each_entity(entity) {
++		__bfq_activate_entity(entity);
++
++		sd = entity->sched_data;
++		if (!bfq_update_next_in_service(sd))
++			/*
++			 * No need to propagate the activation to the
++			 * upper entities, as they will be updated when
++			 * the in-service entity is rescheduled.
++			 */
++			break;
++	}
++}
++
++/**
++ * __bfq_deactivate_entity - deactivate an entity from its service tree.
++ * @entity: the entity to deactivate.
++ * @requeue: if false, the entity will not be put into the idle tree.
++ *
++ * Deactivate an entity, independently from its previous state.  If the
++ * entity was not on a service tree just return, otherwise if it is on
++ * any scheduler tree, extract it from that tree, and if necessary
++ * and if the caller did not specify @requeue, put it on the idle tree.
++ *
++ * Return %1 if the caller should update the entity hierarchy, i.e.,
++ * if the entity was in service or if it was the next_in_service for
++ * its sched_data; return %0 otherwise.
++ */
++static int __bfq_deactivate_entity(struct bfq_entity *entity, int requeue)
++{
++	struct bfq_sched_data *sd = entity->sched_data;
++	struct bfq_service_tree *st;
++	int was_in_service;
++	int ret = 0;
++
++	if (sd == NULL || !entity->on_st) /* never activated, or inactive */
++		return 0;
++
++	st = bfq_entity_service_tree(entity);
++	was_in_service = entity == sd->in_service_entity;
++
++	BUG_ON(was_in_service && entity->tree);
++
++	if (was_in_service) {
++		bfq_calc_finish(entity, entity->service);
++		sd->in_service_entity = NULL;
++	} else if (entity->tree == &st->active)
++		bfq_active_extract(st, entity);
++	else if (entity->tree == &st->idle)
++		bfq_idle_extract(st, entity);
++	else if (entity->tree)
++		BUG();
++
++	if (was_in_service || sd->next_in_service == entity)
++		ret = bfq_update_next_in_service(sd);
++
++	if (!requeue || !bfq_gt(entity->finish, st->vtime))
++		bfq_forget_entity(st, entity);
++	else
++		bfq_idle_insert(st, entity);
++
++	BUG_ON(sd->in_service_entity == entity);
++	BUG_ON(sd->next_in_service == entity);
++
++	return ret;
++}
++
++/**
++ * bfq_deactivate_entity - deactivate an entity.
++ * @entity: the entity to deactivate.
++ * @requeue: true if the entity can be put on the idle tree
++ */
++static void bfq_deactivate_entity(struct bfq_entity *entity, int requeue)
++{
++	struct bfq_sched_data *sd;
++	struct bfq_entity *parent;
++
++	for_each_entity_safe(entity, parent) {
++		sd = entity->sched_data;
++
++		if (!__bfq_deactivate_entity(entity, requeue))
++			/*
++			 * The parent entity is still backlogged, and
++			 * we don't need to update it as it is still
++			 * in service.
++			 */
++			break;
++
++		if (sd->next_in_service)
++			/*
++			 * The parent entity is still backlogged and
++			 * the budgets on the path towards the root
++			 * need to be updated.
++			 */
++			goto update;
++
++		/*
++		 * If we reach there the parent is no more backlogged and
++		 * we want to propagate the dequeue upwards.
++		 */
++		requeue = 1;
++	}
++
++	return;
++
++update:
++	entity = parent;
++	for_each_entity(entity) {
++		__bfq_activate_entity(entity);
++
++		sd = entity->sched_data;
++		if (!bfq_update_next_in_service(sd))
++			break;
++	}
++}
++
++/**
++ * bfq_update_vtime - update vtime if necessary.
++ * @st: the service tree to act upon.
++ *
++ * If necessary update the service tree vtime to have at least one
++ * eligible entity, skipping to its start time.  Assumes that the
++ * active tree of the device is not empty.
++ *
++ * NOTE: this hierarchical implementation updates vtimes quite often,
++ * we may end up with reactivated processes getting timestamps after a
++ * vtime skip done because we needed a ->first_active entity on some
++ * intermediate node.
++ */
++static void bfq_update_vtime(struct bfq_service_tree *st)
++{
++	struct bfq_entity *entry;
++	struct rb_node *node = st->active.rb_node;
++
++	entry = rb_entry(node, struct bfq_entity, rb_node);
++	if (bfq_gt(entry->min_start, st->vtime)) {
++		st->vtime = entry->min_start;
++		bfq_forget_idle(st);
++	}
++}
++
++/**
++ * bfq_first_active_entity - find the eligible entity with
++ *                           the smallest finish time
++ * @st: the service tree to select from.
++ *
++ * This function searches the first schedulable entity, starting from the
++ * root of the tree and going on the left every time on this side there is
++ * a subtree with at least one eligible (start >= vtime) entity. The path on
++ * the right is followed only if a) the left subtree contains no eligible
++ * entities and b) no eligible entity has been found yet.
++ */
++static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st)
++{
++	struct bfq_entity *entry, *first = NULL;
++	struct rb_node *node = st->active.rb_node;
++
++	while (node) {
++		entry = rb_entry(node, struct bfq_entity, rb_node);
++left:
++		if (!bfq_gt(entry->start, st->vtime))
++			first = entry;
++
++		BUG_ON(bfq_gt(entry->min_start, st->vtime));
++
++		if (node->rb_left) {
++			entry = rb_entry(node->rb_left,
++					 struct bfq_entity, rb_node);
++			if (!bfq_gt(entry->min_start, st->vtime)) {
++				node = node->rb_left;
++				goto left;
++			}
++		}
++		if (first)
++			break;
++		node = node->rb_right;
++	}
++
++	BUG_ON(!first && !RB_EMPTY_ROOT(&st->active));
++	return first;
++}
++
++/**
++ * __bfq_lookup_next_entity - return the first eligible entity in @st.
++ * @st: the service tree.
++ *
++ * Update the virtual time in @st and return the first eligible entity
++ * it contains.
++ */
++static struct bfq_entity *__bfq_lookup_next_entity(struct bfq_service_tree *st,
++						   bool force)
++{
++	struct bfq_entity *entity, *new_next_in_service = NULL;
++
++	if (RB_EMPTY_ROOT(&st->active))
++		return NULL;
++
++	bfq_update_vtime(st);
++	entity = bfq_first_active_entity(st);
++	BUG_ON(bfq_gt(entity->start, st->vtime));
++
++	/*
++	 * If the chosen entity does not match with the sched_data's
++	 * next_in_service and we are forcedly serving the IDLE priority
++	 * class tree, bubble up budget update.
++	 */
++	if (unlikely(force && entity != entity->sched_data->next_in_service)) {
++		new_next_in_service = entity;
++		for_each_entity(new_next_in_service)
++			bfq_update_budget(new_next_in_service);
++	}
++
++	return entity;
++}
++
++/**
++ * bfq_lookup_next_entity - return the first eligible entity in @sd.
++ * @sd: the sched_data.
++ * @extract: if true the returned entity will be also extracted from @sd.
++ *
++ * NOTE: since we cache the next_in_service entity at each level of the
++ * hierarchy, the complexity of the lookup can be decreased with
++ * absolutely no effort just returning the cached next_in_service value;
++ * we prefer to do full lookups to test the consistency of * the data
++ * structures.
++ */
++static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
++						 int extract,
++						 struct bfq_data *bfqd)
++{
++	struct bfq_service_tree *st = sd->service_tree;
++	struct bfq_entity *entity;
++	int i = 0;
++
++	BUG_ON(sd->in_service_entity);
++
++	if (bfqd &&
++	    jiffies - bfqd->bfq_class_idle_last_service > BFQ_CL_IDLE_TIMEOUT) {
++		entity = __bfq_lookup_next_entity(st + BFQ_IOPRIO_CLASSES - 1,
++						  true);
++		if (entity) {
++			i = BFQ_IOPRIO_CLASSES - 1;
++			bfqd->bfq_class_idle_last_service = jiffies;
++			sd->next_in_service = entity;
++		}
++	}
++	for (; i < BFQ_IOPRIO_CLASSES; i++) {
++		entity = __bfq_lookup_next_entity(st + i, false);
++		if (entity) {
++			if (extract) {
++				bfq_check_next_in_service(sd, entity);
++				bfq_active_extract(st + i, entity);
++				sd->in_service_entity = entity;
++				sd->next_in_service = NULL;
++			}
++			break;
++		}
++	}
++
++	return entity;
++}
++
++/*
++ * Get next queue for service.
++ */
++static struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd)
++{
++	struct bfq_entity *entity = NULL;
++	struct bfq_sched_data *sd;
++	struct bfq_queue *bfqq;
++
++	BUG_ON(bfqd->in_service_queue);
++
++	if (bfqd->busy_queues == 0)
++		return NULL;
++
++	sd = &bfqd->root_group->sched_data;
++	for (; sd ; sd = entity->my_sched_data) {
++		entity = bfq_lookup_next_entity(sd, 1, bfqd);
++		BUG_ON(!entity);
++		entity->service = 0;
++	}
++
++	bfqq = bfq_entity_to_bfqq(entity);
++	BUG_ON(!bfqq);
++
++	return bfqq;
++}
++
++static void __bfq_bfqd_reset_in_service(struct bfq_data *bfqd)
++{
++	if (bfqd->in_service_bic) {
++		put_io_context(bfqd->in_service_bic->icq.ioc);
++		bfqd->in_service_bic = NULL;
++	}
++
++	bfqd->in_service_queue = NULL;
++	del_timer(&bfqd->idle_slice_timer);
++}
++
++static void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++				int requeue)
++{
++	struct bfq_entity *entity = &bfqq->entity;
++
++	if (bfqq == bfqd->in_service_queue)
++		__bfq_bfqd_reset_in_service(bfqd);
++
++	bfq_deactivate_entity(entity, requeue);
++}
++
++static void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
++{
++	struct bfq_entity *entity = &bfqq->entity;
++
++	bfq_activate_entity(entity);
++}
++
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++static void bfqg_stats_update_dequeue(struct bfq_group *bfqg);
++#endif
++
++/*
++ * Called when the bfqq no longer has requests pending, remove it from
++ * the service tree.
++ */
++static void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++			      int requeue)
++{
++	BUG_ON(!bfq_bfqq_busy(bfqq));
++	BUG_ON(!RB_EMPTY_ROOT(&bfqq->sort_list));
++
++	bfq_log_bfqq(bfqd, bfqq, "del from busy");
++
++	bfq_clear_bfqq_busy(bfqq);
++
++	BUG_ON(bfqd->busy_queues == 0);
++	bfqd->busy_queues--;
++
++	if (!bfqq->dispatched) {
++		bfq_weights_tree_remove(bfqd, &bfqq->entity,
++					&bfqd->queue_weights_tree);
++		if (!blk_queue_nonrot(bfqd->queue)) {
++			BUG_ON(!bfqd->busy_in_flight_queues);
++			bfqd->busy_in_flight_queues--;
++			if (bfq_bfqq_constantly_seeky(bfqq)) {
++				BUG_ON(!bfqd->
++					const_seeky_busy_in_flight_queues);
++				bfqd->const_seeky_busy_in_flight_queues--;
++			}
++		}
++	}
++	if (bfqq->wr_coeff > 1)
++		bfqd->wr_busy_queues--;
++
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++	bfqg_stats_update_dequeue(bfqq_group(bfqq));
++#endif
++
++	bfq_deactivate_bfqq(bfqd, bfqq, requeue);
++}
++
++/*
++ * Called when an inactive queue receives a new request.
++ */
++static void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq)
++{
++	BUG_ON(bfq_bfqq_busy(bfqq));
++	BUG_ON(bfqq == bfqd->in_service_queue);
++
++	bfq_log_bfqq(bfqd, bfqq, "add to busy");
++
++	bfq_activate_bfqq(bfqd, bfqq);
++
++	bfq_mark_bfqq_busy(bfqq);
++	bfqd->busy_queues++;
++
++	if (!bfqq->dispatched) {
++		if (bfqq->wr_coeff == 1)
++			bfq_weights_tree_add(bfqd, &bfqq->entity,
++					     &bfqd->queue_weights_tree);
++		if (!blk_queue_nonrot(bfqd->queue)) {
++			bfqd->busy_in_flight_queues++;
++			if (bfq_bfqq_constantly_seeky(bfqq))
++				bfqd->const_seeky_busy_in_flight_queues++;
++		}
++	}
++	if (bfqq->wr_coeff > 1)
++		bfqd->wr_busy_queues++;
++}
+diff --git a/block/bfq.h b/block/bfq.h
+new file mode 100644
+index 0000000..2bf54ae
+--- /dev/null
++++ b/block/bfq.h
+@@ -0,0 +1,801 @@
++/*
++ * BFQ-v7r11 for 4.5.0: data structures and common functions prototypes.
++ *
++ * Based on ideas and code from CFQ:
++ * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
++ *
++ * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
++ *		      Paolo Valente <paolo.valente@unimore.it>
++ *
++ * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
++ */
++
++#ifndef _BFQ_H
++#define _BFQ_H
++
++#include <linux/blktrace_api.h>
++#include <linux/hrtimer.h>
++#include <linux/ioprio.h>
++#include <linux/rbtree.h>
++#include <linux/blk-cgroup.h>
++
++#define BFQ_IOPRIO_CLASSES	3
++#define BFQ_CL_IDLE_TIMEOUT	(HZ/5)
++
++#define BFQ_MIN_WEIGHT			1
++#define BFQ_MAX_WEIGHT			1000
++#define BFQ_WEIGHT_CONVERSION_COEFF	10
++
++#define BFQ_DEFAULT_QUEUE_IOPRIO	4
++
++#define BFQ_DEFAULT_GRP_WEIGHT	10
++#define BFQ_DEFAULT_GRP_IOPRIO	0
++#define BFQ_DEFAULT_GRP_CLASS	IOPRIO_CLASS_BE
++
++struct bfq_entity;
++
++/**
++ * struct bfq_service_tree - per ioprio_class service tree.
++ * @active: tree for active entities (i.e., those backlogged).
++ * @idle: tree for idle entities (i.e., those not backlogged, with V <= F_i).
++ * @first_idle: idle entity with minimum F_i.
++ * @last_idle: idle entity with maximum F_i.
++ * @vtime: scheduler virtual time.
++ * @wsum: scheduler weight sum; active and idle entities contribute to it.
++ *
++ * Each service tree represents a B-WF2Q+ scheduler on its own.  Each
++ * ioprio_class has its own independent scheduler, and so its own
++ * bfq_service_tree.  All the fields are protected by the queue lock
++ * of the containing bfqd.
++ */
++struct bfq_service_tree {
++	struct rb_root active;
++	struct rb_root idle;
++
++	struct bfq_entity *first_idle;
++	struct bfq_entity *last_idle;
++
++	u64 vtime;
++	unsigned long wsum;
++};
++
++/**
++ * struct bfq_sched_data - multi-class scheduler.
++ * @in_service_entity: entity in service.
++ * @next_in_service: head-of-the-line entity in the scheduler.
++ * @service_tree: array of service trees, one per ioprio_class.
++ *
++ * bfq_sched_data is the basic scheduler queue.  It supports three
++ * ioprio_classes, and can be used either as a toplevel queue or as
++ * an intermediate queue on a hierarchical setup.
++ * @next_in_service points to the active entity of the sched_data
++ * service trees that will be scheduled next.
++ *
++ * The supported ioprio_classes are the same as in CFQ, in descending
++ * priority order, IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, IOPRIO_CLASS_IDLE.
++ * Requests from higher priority queues are served before all the
++ * requests from lower priority queues; among requests of the same
++ * queue requests are served according to B-WF2Q+.
++ * All the fields are protected by the queue lock of the containing bfqd.
++ */
++struct bfq_sched_data {
++	struct bfq_entity *in_service_entity;
++	struct bfq_entity *next_in_service;
++	struct bfq_service_tree service_tree[BFQ_IOPRIO_CLASSES];
++};
++
++/**
++ * struct bfq_weight_counter - counter of the number of all active entities
++ *                             with a given weight.
++ * @weight: weight of the entities that this counter refers to.
++ * @num_active: number of active entities with this weight.
++ * @weights_node: weights tree member (see bfq_data's @queue_weights_tree
++ *                and @group_weights_tree).
++ */
++struct bfq_weight_counter {
++	short int weight;
++	unsigned int num_active;
++	struct rb_node weights_node;
++};
++
++/**
++ * struct bfq_entity - schedulable entity.
++ * @rb_node: service_tree member.
++ * @weight_counter: pointer to the weight counter associated with this entity.
++ * @on_st: flag, true if the entity is on a tree (either the active or
++ *         the idle one of its service_tree).
++ * @finish: B-WF2Q+ finish timestamp (aka F_i).
++ * @start: B-WF2Q+ start timestamp (aka S_i).
++ * @tree: tree the entity is enqueued into; %NULL if not on a tree.
++ * @min_start: minimum start time of the (active) subtree rooted at
++ *             this entity; used for O(log N) lookups into active trees.
++ * @service: service received during the last round of service.
++ * @budget: budget used to calculate F_i; F_i = S_i + @budget / @weight.
++ * @weight: weight of the queue
++ * @parent: parent entity, for hierarchical scheduling.
++ * @my_sched_data: for non-leaf nodes in the cgroup hierarchy, the
++ *                 associated scheduler queue, %NULL on leaf nodes.
++ * @sched_data: the scheduler queue this entity belongs to.
++ * @ioprio: the ioprio in use.
++ * @new_weight: when a weight change is requested, the new weight value.
++ * @orig_weight: original weight, used to implement weight boosting
++ * @prio_changed: flag, true when the user requested a weight, ioprio or
++ *		  ioprio_class change.
++ *
++ * A bfq_entity is used to represent either a bfq_queue (leaf node in the
++ * cgroup hierarchy) or a bfq_group into the upper level scheduler.  Each
++ * entity belongs to the sched_data of the parent group in the cgroup
++ * hierarchy.  Non-leaf entities have also their own sched_data, stored
++ * in @my_sched_data.
++ *
++ * Each entity stores independently its priority values; this would
++ * allow different weights on different devices, but this
++ * functionality is not exported to userspace by now.  Priorities and
++ * weights are updated lazily, first storing the new values into the
++ * new_* fields, then setting the @prio_changed flag.  As soon as
++ * there is a transition in the entity state that allows the priority
++ * update to take place the effective and the requested priority
++ * values are synchronized.
++ *
++ * Unless cgroups are used, the weight value is calculated from the
++ * ioprio to export the same interface as CFQ.  When dealing with
++ * ``well-behaved'' queues (i.e., queues that do not spend too much
++ * time to consume their budget and have true sequential behavior, and
++ * when there are no external factors breaking anticipation) the
++ * relative weights at each level of the cgroups hierarchy should be
++ * guaranteed.  All the fields are protected by the queue lock of the
++ * containing bfqd.
++ */
++struct bfq_entity {
++	struct rb_node rb_node;
++	struct bfq_weight_counter *weight_counter;
++
++	int on_st;
++
++	u64 finish;
++	u64 start;
++
++	struct rb_root *tree;
++
++	u64 min_start;
++
++	int service, budget;
++	unsigned short weight, new_weight;
++	unsigned short orig_weight;
++
++	struct bfq_entity *parent;
++
++	struct bfq_sched_data *my_sched_data;
++	struct bfq_sched_data *sched_data;
++
++	int prio_changed;
++};
++
++struct bfq_group;
++
++/**
++ * struct bfq_queue - leaf schedulable entity.
++ * @ref: reference counter.
++ * @bfqd: parent bfq_data.
++ * @new_ioprio: when an ioprio change is requested, the new ioprio value.
++ * @ioprio_class: the ioprio_class in use.
++ * @new_ioprio_class: when an ioprio_class change is requested, the new
++ *                    ioprio_class value.
++ * @new_bfqq: shared bfq_queue if queue is cooperating with
++ *           one or more other queues.
++ * @sort_list: sorted list of pending requests.
++ * @next_rq: if fifo isn't expired, next request to serve.
++ * @queued: nr of requests queued in @sort_list.
++ * @allocated: currently allocated requests.
++ * @meta_pending: pending metadata requests.
++ * @fifo: fifo list of requests in sort_list.
++ * @entity: entity representing this queue in the scheduler.
++ * @max_budget: maximum budget allowed from the feedback mechanism.
++ * @budget_timeout: budget expiration (in jiffies).
++ * @dispatched: number of requests on the dispatch list or inside driver.
++ * @flags: status flags.
++ * @bfqq_list: node for active/idle bfqq list inside our bfqd.
++ * @burst_list_node: node for the device's burst list.
++ * @seek_samples: number of seeks sampled
++ * @seek_total: sum of the distances of the seeks sampled
++ * @seek_mean: mean seek distance
++ * @last_request_pos: position of the last request enqueued
++ * @requests_within_timer: number of consecutive pairs of request completion
++ *                         and arrival, such that the queue becomes idle
++ *                         after the completion, but the next request arrives
++ *                         within an idle time slice; used only if the queue's
++ *                         IO_bound has been cleared.
++ * @pid: pid of the process owning the queue, used for logging purposes.
++ * @last_wr_start_finish: start time of the current weight-raising period if
++ *                        the @bfq-queue is being weight-raised, otherwise
++ *                        finish time of the last weight-raising period
++ * @wr_cur_max_time: current max raising time for this queue
++ * @soft_rt_next_start: minimum time instant such that, only if a new
++ *                      request is enqueued after this time instant in an
++ *                      idle @bfq_queue with no outstanding requests, then
++ *                      the task associated with the queue it is deemed as
++ *                      soft real-time (see the comments to the function
++ *                      bfq_bfqq_softrt_next_start())
++ * @last_idle_bklogged: time of the last transition of the @bfq_queue from
++ *                      idle to backlogged
++ * @service_from_backlogged: cumulative service received from the @bfq_queue
++ *                           since the last transition from idle to
++ *                           backlogged
++ * @bic: pointer to the bfq_io_cq owning the bfq_queue, set to %NULL if the
++ *	 queue is shared
++ *
++ * A bfq_queue is a leaf request queue; it can be associated with an
++ * io_context or more, if it  is  async or shared  between  cooperating
++ * processes. @cgroup holds a reference to the cgroup, to be sure that it
++ * does not disappear while a bfqq still references it (mostly to avoid
++ * races between request issuing and task migration followed by cgroup
++ * destruction).
++ * All the fields are protected by the queue lock of the containing bfqd.
++ */
++struct bfq_queue {
++	atomic_t ref;
++	struct bfq_data *bfqd;
++
++	unsigned short ioprio, new_ioprio;
++	unsigned short ioprio_class, new_ioprio_class;
++
++	/* fields for cooperating queues handling */
++	struct bfq_queue *new_bfqq;
++	struct rb_node pos_node;
++	struct rb_root *pos_root;
++
++	struct rb_root sort_list;
++	struct request *next_rq;
++	int queued[2];
++	int allocated[2];
++	int meta_pending;
++	struct list_head fifo;
++
++	struct bfq_entity entity;
++
++	int max_budget;
++	unsigned long budget_timeout;
++
++	int dispatched;
++
++	unsigned int flags;
++
++	struct list_head bfqq_list;
++
++	struct hlist_node burst_list_node;
++
++	unsigned int seek_samples;
++	u64 seek_total;
++	sector_t seek_mean;
++	sector_t last_request_pos;
++
++	unsigned int requests_within_timer;
++
++	pid_t pid;
++	struct bfq_io_cq *bic;
++
++	/* weight-raising fields */
++	unsigned long wr_cur_max_time;
++	unsigned long soft_rt_next_start;
++	unsigned long last_wr_start_finish;
++	unsigned int wr_coeff;
++	unsigned long last_idle_bklogged;
++	unsigned long service_from_backlogged;
++};
++
++/**
++ * struct bfq_ttime - per process thinktime stats.
++ * @ttime_total: total process thinktime
++ * @ttime_samples: number of thinktime samples
++ * @ttime_mean: average process thinktime
++ */
++struct bfq_ttime {
++	unsigned long last_end_request;
++
++	unsigned long ttime_total;
++	unsigned long ttime_samples;
++	unsigned long ttime_mean;
++};
++
++/**
++ * struct bfq_io_cq - per (request_queue, io_context) structure.
++ * @icq: associated io_cq structure
++ * @bfqq: array of two process queues, the sync and the async
++ * @ttime: associated @bfq_ttime struct
++ * @ioprio: per (request_queue, blkcg) ioprio.
++ * @blkcg_id: id of the blkcg the related io_cq belongs to.
++ */
++struct bfq_io_cq {
++	struct io_cq icq; /* must be the first member */
++	struct bfq_queue *bfqq[2];
++	struct bfq_ttime ttime;
++	int ioprio;
++
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++	uint64_t blkcg_id; /* the current blkcg ID */
++#endif
++};
++
++enum bfq_device_speed {
++	BFQ_BFQD_FAST,
++	BFQ_BFQD_SLOW,
++};
++
++/**
++ * struct bfq_data - per device data structure.
++ * @queue: request queue for the managed device.
++ * @root_group: root bfq_group for the device.
++ * @active_numerous_groups: number of bfq_groups containing more than one
++ *                          active @bfq_entity.
++ * @queue_weights_tree: rbtree of weight counters of @bfq_queues, sorted by
++ *                      weight. Used to keep track of whether all @bfq_queues
++ *                     have the same weight. The tree contains one counter
++ *                     for each distinct weight associated to some active
++ *                     and not weight-raised @bfq_queue (see the comments to
++ *                      the functions bfq_weights_tree_[add|remove] for
++ *                     further details).
++ * @group_weights_tree: rbtree of non-queue @bfq_entity weight counters, sorted
++ *                      by weight. Used to keep track of whether all
++ *                     @bfq_groups have the same weight. The tree contains
++ *                     one counter for each distinct weight associated to
++ *                     some active @bfq_group (see the comments to the
++ *                     functions bfq_weights_tree_[add|remove] for further
++ *                     details).
++ * @busy_queues: number of bfq_queues containing requests (including the
++ *		 queue in service, even if it is idling).
++ * @busy_in_flight_queues: number of @bfq_queues containing pending or
++ *                         in-flight requests, plus the @bfq_queue in
++ *                         service, even if idle but waiting for the
++ *                         possible arrival of its next sync request. This
++ *                         field is updated only if the device is rotational,
++ *                         but used only if the device is also NCQ-capable.
++ *                         The reason why the field is updated also for non-
++ *                         NCQ-capable rotational devices is related to the
++ *                         fact that the value of @hw_tag may be set also
++ *                         later than when busy_in_flight_queues may need to
++ *                         be incremented for the first time(s). Taking also
++ *                         this possibility into account, to avoid unbalanced
++ *                         increments/decrements, would imply more overhead
++ *                         than just updating busy_in_flight_queues
++ *                         regardless of the value of @hw_tag.
++ * @const_seeky_busy_in_flight_queues: number of constantly-seeky @bfq_queues
++ *                                     (that is, seeky queues that expired
++ *                                     for budget timeout at least once)
++ *                                     containing pending or in-flight
++ *                                     requests, including the in-service
++ *                                     @bfq_queue if constantly seeky. This
++ *                                     field is updated only if the device
++ *                                     is rotational, but used only if the
++ *                                     device is also NCQ-capable (see the
++ *                                     comments to @busy_in_flight_queues).
++ * @wr_busy_queues: number of weight-raised busy @bfq_queues.
++ * @queued: number of queued requests.
++ * @rq_in_driver: number of requests dispatched and waiting for completion.
++ * @sync_flight: number of sync requests in the driver.
++ * @max_rq_in_driver: max number of reqs in driver in the last
++ *                    @hw_tag_samples completed requests.
++ * @hw_tag_samples: nr of samples used to calculate hw_tag.
++ * @hw_tag: flag set to one if the driver is showing a queueing behavior.
++ * @budgets_assigned: number of budgets assigned.
++ * @idle_slice_timer: timer set when idling for the next sequential request
++ *                    from the queue in service.
++ * @unplug_work: delayed work to restart dispatching on the request queue.
++ * @in_service_queue: bfq_queue in service.
++ * @in_service_bic: bfq_io_cq (bic) associated with the @in_service_queue.
++ * @last_position: on-disk position of the last served request.
++ * @last_budget_start: beginning of the last budget.
++ * @last_idling_start: beginning of the last idle slice.
++ * @peak_rate: peak transfer rate observed for a budget.
++ * @peak_rate_samples: number of samples used to calculate @peak_rate.
++ * @bfq_max_budget: maximum budget allotted to a bfq_queue before
++ *                  rescheduling.
++ * @active_list: list of all the bfq_queues active on the device.
++ * @idle_list: list of all the bfq_queues idle on the device.
++ * @bfq_fifo_expire: timeout for async/sync requests; when it expires
++ *                   requests are served in fifo order.
++ * @bfq_back_penalty: weight of backward seeks wrt forward ones.
++ * @bfq_back_max: maximum allowed backward seek.
++ * @bfq_slice_idle: maximum idling time.
++ * @bfq_user_max_budget: user-configured max budget value
++ *                       (0 for auto-tuning).
++ * @bfq_max_budget_async_rq: maximum budget (in nr of requests) allotted to
++ *                           async queues.
++ * @bfq_timeout: timeout for bfq_queues to consume their budget; used to
++ *               to prevent seeky queues to impose long latencies to well
++ *               behaved ones (this also implies that seeky queues cannot
++ *               receive guarantees in the service domain; after a timeout
++ *               they are charged for the whole allocated budget, to try
++ *               to preserve a behavior reasonably fair among them, but
++ *               without service-domain guarantees).
++ * @bfq_coop_thresh: number of queue merges after which a @bfq_queue is
++ *                   no more granted any weight-raising.
++ * @bfq_failed_cooperations: number of consecutive failed cooperation
++ *                           chances after which weight-raising is restored
++ *                           to a queue subject to more than bfq_coop_thresh
++ *                           queue merges.
++ * @bfq_requests_within_timer: number of consecutive requests that must be
++ *                             issued within the idle time slice to set
++ *                             again idling to a queue which was marked as
++ *                             non-I/O-bound (see the definition of the
++ *                             IO_bound flag for further details).
++ * @last_ins_in_burst: last time at which a queue entered the current
++ *                     burst of queues being activated shortly after
++ *                     each other; for more details about this and the
++ *                     following parameters related to a burst of
++ *                     activations, see the comments to the function
++ *                     @bfq_handle_burst.
++ * @bfq_burst_interval: reference time interval used to decide whether a
++ *                      queue has been activated shortly after
++ *                      @last_ins_in_burst.
++ * @burst_size: number of queues in the current burst of queue activations.
++ * @bfq_large_burst_thresh: maximum burst size above which the current
++ *			    queue-activation burst is deemed as 'large'.
++ * @large_burst: true if a large queue-activation burst is in progress.
++ * @burst_list: head of the burst list (as for the above fields, more details
++ *		in the comments to the function bfq_handle_burst).
++ * @low_latency: if set to true, low-latency heuristics are enabled.
++ * @bfq_wr_coeff: maximum factor by which the weight of a weight-raised
++ *                queue is multiplied.
++ * @bfq_wr_max_time: maximum duration of a weight-raising period (jiffies).
++ * @bfq_wr_rt_max_time: maximum duration for soft real-time processes.
++ * @bfq_wr_min_idle_time: minimum idle period after which weight-raising
++ *			  may be reactivated for a queue (in jiffies).
++ * @bfq_wr_min_inter_arr_async: minimum period between request arrivals
++ *				after which weight-raising may be
++ *				reactivated for an already busy queue
++ *				(in jiffies).
++ * @bfq_wr_max_softrt_rate: max service-rate for a soft real-time queue,
++ *			    sectors per seconds.
++ * @RT_prod: cached value of the product R*T used for computing the maximum
++ *	     duration of the weight raising automatically.
++ * @device_speed: device-speed class for the low-latency heuristic.
++ * @oom_bfqq: fallback dummy bfqq for extreme OOM conditions.
++ *
++ * All the fields are protected by the @queue lock.
++ */
++struct bfq_data {
++	struct request_queue *queue;
++
++	struct bfq_group *root_group;
++
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++	int active_numerous_groups;
++#endif
++
++	struct rb_root queue_weights_tree;
++	struct rb_root group_weights_tree;
++
++	int busy_queues;
++	int busy_in_flight_queues;
++	int const_seeky_busy_in_flight_queues;
++	int wr_busy_queues;
++	int queued;
++	int rq_in_driver;
++	int sync_flight;
++
++	int max_rq_in_driver;
++	int hw_tag_samples;
++	int hw_tag;
++
++	int budgets_assigned;
++
++	struct timer_list idle_slice_timer;
++	struct work_struct unplug_work;
++
++	struct bfq_queue *in_service_queue;
++	struct bfq_io_cq *in_service_bic;
++
++	sector_t last_position;
++
++	ktime_t last_budget_start;
++	ktime_t last_idling_start;
++	int peak_rate_samples;
++	u64 peak_rate;
++	int bfq_max_budget;
++
++	struct list_head active_list;
++	struct list_head idle_list;
++
++	unsigned int bfq_fifo_expire[2];
++	unsigned int bfq_back_penalty;
++	unsigned int bfq_back_max;
++	unsigned int bfq_slice_idle;
++	u64 bfq_class_idle_last_service;
++
++	int bfq_user_max_budget;
++	int bfq_max_budget_async_rq;
++	unsigned int bfq_timeout[2];
++
++	unsigned int bfq_coop_thresh;
++	unsigned int bfq_failed_cooperations;
++	unsigned int bfq_requests_within_timer;
++
++	unsigned long last_ins_in_burst;
++	unsigned long bfq_burst_interval;
++	int burst_size;
++	unsigned long bfq_large_burst_thresh;
++	bool large_burst;
++	struct hlist_head burst_list;
++
++	bool low_latency;
++
++	/* parameters of the low_latency heuristics */
++	unsigned int bfq_wr_coeff;
++	unsigned int bfq_wr_max_time;
++	unsigned int bfq_wr_rt_max_time;
++	unsigned int bfq_wr_min_idle_time;
++	unsigned long bfq_wr_min_inter_arr_async;
++	unsigned int bfq_wr_max_softrt_rate;
++	u64 RT_prod;
++	enum bfq_device_speed device_speed;
++
++	struct bfq_queue oom_bfqq;
++};
++
++enum bfqq_state_flags {
++	BFQ_BFQQ_FLAG_busy = 0,		/* has requests or is in service */
++	BFQ_BFQQ_FLAG_wait_request,	/* waiting for a request */
++	BFQ_BFQQ_FLAG_must_alloc,	/* must be allowed rq alloc */
++	BFQ_BFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
++	BFQ_BFQQ_FLAG_idle_window,	/* slice idling enabled */
++	BFQ_BFQQ_FLAG_sync,		/* synchronous queue */
++	BFQ_BFQQ_FLAG_budget_new,	/* no completion with this budget */
++	BFQ_BFQQ_FLAG_IO_bound,		/*
++					 * bfqq has timed-out at least once
++					 * having consumed at most 2/10 of
++					 * its budget
++					 */
++	BFQ_BFQQ_FLAG_in_large_burst,	/*
++					 * bfqq activated in a large burst,
++					 * see comments to bfq_handle_burst.
++					 */
++	BFQ_BFQQ_FLAG_constantly_seeky,	/*
++					 * bfqq has proved to be slow and
++					 * seeky until budget timeout
++					 */
++	BFQ_BFQQ_FLAG_softrt_update,	/*
++					 * may need softrt-next-start
++					 * update
++					 */
++};
++
++#define BFQ_BFQQ_FNS(name)						\
++static void bfq_mark_bfqq_##name(struct bfq_queue *bfqq)		\
++{									\
++	(bfqq)->flags |= (1 << BFQ_BFQQ_FLAG_##name);			\
++}									\
++static void bfq_clear_bfqq_##name(struct bfq_queue *bfqq)		\
++{									\
++	(bfqq)->flags &= ~(1 << BFQ_BFQQ_FLAG_##name);			\
++}									\
++static int bfq_bfqq_##name(const struct bfq_queue *bfqq)		\
++{									\
++	return ((bfqq)->flags & (1 << BFQ_BFQQ_FLAG_##name)) != 0;	\
++}
++
++BFQ_BFQQ_FNS(busy);
++BFQ_BFQQ_FNS(wait_request);
++BFQ_BFQQ_FNS(must_alloc);
++BFQ_BFQQ_FNS(fifo_expire);
++BFQ_BFQQ_FNS(idle_window);
++BFQ_BFQQ_FNS(sync);
++BFQ_BFQQ_FNS(budget_new);
++BFQ_BFQQ_FNS(IO_bound);
++BFQ_BFQQ_FNS(in_large_burst);
++BFQ_BFQQ_FNS(constantly_seeky);
++BFQ_BFQQ_FNS(softrt_update);
++#undef BFQ_BFQQ_FNS
++
++/* Logging facilities. */
++#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) \
++	blk_add_trace_msg((bfqd)->queue, "bfq%d " fmt, (bfqq)->pid, ##args)
++
++#define bfq_log(bfqd, fmt, args...) \
++	blk_add_trace_msg((bfqd)->queue, "bfq " fmt, ##args)
++
++/* Expiration reasons. */
++enum bfqq_expiration {
++	BFQ_BFQQ_TOO_IDLE = 0,		/*
++					 * queue has been idling for
++					 * too long
++					 */
++	BFQ_BFQQ_BUDGET_TIMEOUT,	/* budget took too long to be used */
++	BFQ_BFQQ_BUDGET_EXHAUSTED,	/* budget consumed */
++	BFQ_BFQQ_NO_MORE_REQUESTS,	/* the queue has no more requests */
++};
++
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++
++struct bfqg_stats {
++	/* total bytes transferred */
++	struct blkg_rwstat		service_bytes;
++	/* total IOs serviced, post merge */
++	struct blkg_rwstat		serviced;
++	/* number of ios merged */
++	struct blkg_rwstat		merged;
++	/* total time spent on device in ns, may not be accurate w/ queueing */
++	struct blkg_rwstat		service_time;
++	/* total time spent waiting in scheduler queue in ns */
++	struct blkg_rwstat		wait_time;
++	/* number of IOs queued up */
++	struct blkg_rwstat		queued;
++	/* total sectors transferred */
++	struct blkg_stat		sectors;
++	/* total disk time and nr sectors dispatched by this group */
++	struct blkg_stat		time;
++	/* time not charged to this cgroup */
++	struct blkg_stat		unaccounted_time;
++	/* sum of number of ios queued across all samples */
++	struct blkg_stat		avg_queue_size_sum;
++	/* count of samples taken for average */
++	struct blkg_stat		avg_queue_size_samples;
++	/* how many times this group has been removed from service tree */
++	struct blkg_stat		dequeue;
++	/* total time spent waiting for it to be assigned a timeslice. */
++	struct blkg_stat		group_wait_time;
++	/* time spent idling for this blkcg_gq */
++	struct blkg_stat		idle_time;
++	/* total time with empty current active q with other requests queued */
++	struct blkg_stat		empty_time;
++	/* fields after this shouldn't be cleared on stat reset */
++	uint64_t			start_group_wait_time;
++	uint64_t			start_idle_time;
++	uint64_t			start_empty_time;
++	uint16_t			flags;
++};
++
++/*
++ * struct bfq_group_data - per-blkcg storage for the blkio subsystem.
++ *
++ * @ps: @blkcg_policy_storage that this structure inherits
++ * @weight: weight of the bfq_group
++ */
++struct bfq_group_data {
++	/* must be the first member */
++	struct blkcg_policy_data pd;
++
++	unsigned short weight;
++};
++
++/**
++ * struct bfq_group - per (device, cgroup) data structure.
++ * @entity: schedulable entity to insert into the parent group sched_data.
++ * @sched_data: own sched_data, to contain child entities (they may be
++ *              both bfq_queues and bfq_groups).
++ * @bfqd: the bfq_data for the device this group acts upon.
++ * @async_bfqq: array of async queues for all the tasks belonging to
++ *              the group, one queue per ioprio value per ioprio_class,
++ *              except for the idle class that has only one queue.
++ * @async_idle_bfqq: async queue for the idle class (ioprio is ignored).
++ * @my_entity: pointer to @entity, %NULL for the toplevel group; used
++ *             to avoid too many special cases during group creation/
++ *             migration.
++ * @active_entities: number of active entities belonging to the group;
++ *                   unused for the root group. Used to know whether there
++ *                   are groups with more than one active @bfq_entity
++ *                   (see the comments to the function
++ *                   bfq_bfqq_must_not_expire()).
++ *
++ * Each (device, cgroup) pair has its own bfq_group, i.e., for each cgroup
++ * there is a set of bfq_groups, each one collecting the lower-level
++ * entities belonging to the group that are acting on the same device.
++ *
++ * Locking works as follows:
++ *    o @bfqd is protected by the queue lock, RCU is used to access it
++ *      from the readers.
++ *    o All the other fields are protected by the @bfqd queue lock.
++ */
++struct bfq_group {
++	/* must be the first member */
++	struct blkg_policy_data pd;
++
++	struct bfq_entity entity;
++	struct bfq_sched_data sched_data;
++
++	void *bfqd;
++
++	struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR];
++	struct bfq_queue *async_idle_bfqq;
++
++	struct bfq_entity *my_entity;
++
++	int active_entities;
++
++	struct bfqg_stats stats;
++	struct bfqg_stats dead_stats;	/* stats pushed from dead children */
++};
++
++#else
++struct bfq_group {
++	struct bfq_sched_data sched_data;
++
++	struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR];
++	struct bfq_queue *async_idle_bfqq;
++};
++#endif
++
++static struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity);
++
++static struct bfq_service_tree *
++bfq_entity_service_tree(struct bfq_entity *entity)
++{
++	struct bfq_sched_data *sched_data = entity->sched_data;
++	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++	unsigned int idx = bfqq ? bfqq->ioprio_class - 1 :
++				  BFQ_DEFAULT_GRP_CLASS;
++
++	BUG_ON(idx >= BFQ_IOPRIO_CLASSES);
++	BUG_ON(sched_data == NULL);
++
++	return sched_data->service_tree + idx;
++}
++
++static struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
++{
++	return bic->bfqq[is_sync];
++}
++
++static void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq,
++			 bool is_sync)
++{
++	bic->bfqq[is_sync] = bfqq;
++}
++
++static struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
++{
++	return bic->icq.q->elevator->elevator_data;
++}
++
++/**
++ * bfq_get_bfqd_locked - get a lock to a bfqd using a RCU protected pointer.
++ * @ptr: a pointer to a bfqd.
++ * @flags: storage for the flags to be saved.
++ *
++ * This function allows bfqg->bfqd to be protected by the
++ * queue lock of the bfqd they reference; the pointer is dereferenced
++ * under RCU, so the storage for bfqd is assured to be safe as long
++ * as the RCU read side critical section does not end.  After the
++ * bfqd->queue->queue_lock is taken the pointer is rechecked, to be
++ * sure that no other writer accessed it.  If we raced with a writer,
++ * the function returns NULL, with the queue unlocked, otherwise it
++ * returns the dereferenced pointer, with the queue locked.
++ */
++static struct bfq_data *bfq_get_bfqd_locked(void **ptr, unsigned long *flags)
++{
++	struct bfq_data *bfqd;
++
++	rcu_read_lock();
++	bfqd = rcu_dereference(*(struct bfq_data **)ptr);
++
++	if (bfqd != NULL) {
++		spin_lock_irqsave(bfqd->queue->queue_lock, *flags);
++		if (ptr == NULL)
++			printk(KERN_CRIT "get_bfqd_locked pointer NULL\n");
++		else if (*ptr == bfqd)
++			goto out;
++		spin_unlock_irqrestore(bfqd->queue->queue_lock, *flags);
++	}
++
++	bfqd = NULL;
++out:
++	rcu_read_unlock();
++	return bfqd;
++}
++
++static void bfq_put_bfqd_unlock(struct bfq_data *bfqd, unsigned long *flags)
++{
++	spin_unlock_irqrestore(bfqd->queue->queue_lock, *flags);
++}
++
++static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio);
++static void bfq_put_queue(struct bfq_queue *bfqq);
++static void bfq_dispatch_insert(struct request_queue *q, struct request *rq);
++static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
++				       struct bio *bio, int is_sync,
++				       struct bfq_io_cq *bic, gfp_t gfp_mask);
++static void bfq_end_wr_async_queues(struct bfq_data *bfqd,
++				    struct bfq_group *bfqg);
++static void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg);
++static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq);
++
++#endif /* _BFQ_H */
+-- 
+2.10.0
+

diff --git a/5003_block-bfq-add-Early-Queue-Merge-EQM-to-BFQ-v7r11-for-4.11.patch b/5003_block-bfq-add-Early-Queue-Merge-EQM-to-BFQ-v7r11-for-4.11.patch
new file mode 100644
index 0000000..8a03246
--- /dev/null
+++ b/5003_block-bfq-add-Early-Queue-Merge-EQM-to-BFQ-v7r11-for-4.11.patch
@@ -0,0 +1,1101 @@
+From d1d10983cb4b593e7970e541c4c2721bbbdc21c8 Mon Sep 17 00:00:00 2001
+From: Mauro Andreolini <mauro.andreolini@unimore.it>
+Date: Sun, 6 Sep 2015 16:09:05 +0200
+Subject: [PATCH 3/4] block, bfq: add Early Queue Merge (EQM) to BFQ-v7r11 for
+ 4.11.0
+
+A set of processes may happen  to  perform interleaved reads, i.e.,requests
+whose union would give rise to a  sequential read  pattern.  There are two
+typical  cases: in the first  case,   processes  read  fixed-size chunks of
+data at a fixed distance from each other, while in the second case processes
+may read variable-size chunks at  variable distances. The latter case occurs
+for  example with  QEMU, which  splits the  I/O generated  by the  guest into
+multiple chunks,  and lets these chunks  be served by a  pool of cooperating
+processes,  iteratively  assigning  the  next  chunk of  I/O  to  the first
+available  process. CFQ  uses actual  queue merging  for the  first type of
+rocesses, whereas it  uses preemption to get a sequential  read pattern out
+of the read requests  performed by the second type of  processes. In the end
+it uses  two different  mechanisms to  achieve the  same goal: boosting the
+throughput with interleaved I/O.
+
+This patch introduces  Early Queue Merge (EQM), a unified mechanism to get a
+sequential  read pattern  with both  types of  processes. The  main idea is
+checking newly arrived requests against the next request of the active queue
+both in case of actual request insert and in case of request merge. By doing
+so, both the types of processes can be handled by just merging their queues.
+EQM is  then simpler and  more compact than the  pair of mechanisms used in
+CFQ.
+
+Finally, EQM  also preserves the  typical low-latency properties of BFQ, by
+properly restoring the weight-raising state of a queue when it gets back to
+a non-merged state.
+
+Signed-off-by: Mauro Andreolini <mauro.andreolini@unimore.it>
+Signed-off-by: Arianna Avanzini <avanzini@google.com>
+Signed-off-by: Paolo Valente <paolo.valente@unimore.it>
+Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
+---
+ block/bfq-cgroup.c  |   5 +
+ block/bfq-iosched.c | 685 +++++++++++++++++++++++++++++++++++++++++++++++++++-
+ block/bfq.h         |  66 +++++
+ 3 files changed, 743 insertions(+), 13 deletions(-)
+
+diff --git a/block/bfq-cgroup.c b/block/bfq-cgroup.c
+index 8b08a57..0367996 100644
+--- a/block/bfq-cgroup.c
++++ b/block/bfq-cgroup.c
+@@ -440,6 +440,7 @@ static void bfq_pd_init(struct blkg_policy_data *pd)
+ 				   */
+ 	bfqg->bfqd = bfqd;
+ 	bfqg->active_entities = 0;
++	bfqg->rq_pos_tree = RB_ROOT;
+ }
+ 
+ static void bfq_pd_free(struct blkg_policy_data *pd)
+@@ -533,6 +534,9 @@ static struct bfq_group *bfq_find_alloc_group(struct bfq_data *bfqd,
+ 	return bfqg;
+ }
+ 
++static void bfq_pos_tree_add_move(struct bfq_data *bfqd,
++				  struct bfq_queue *bfqq);
++
+ /**
+  * bfq_bfqq_move - migrate @bfqq to @bfqg.
+  * @bfqd: queue descriptor.
+@@ -580,6 +584,7 @@ static void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ 	bfqg_get(bfqg);
+ 
+ 	if (busy) {
++		bfq_pos_tree_add_move(bfqd, bfqq);
+ 		if (resume)
+ 			bfq_activate_bfqq(bfqd, bfqq);
+ 	}
+diff --git a/block/bfq-iosched.c b/block/bfq-iosched.c
+index 85e2169..cf3e9b1 100644
+--- a/block/bfq-iosched.c
++++ b/block/bfq-iosched.c
+@@ -295,6 +295,72 @@ static struct request *bfq_choose_req(struct bfq_data *bfqd,
+ 	}
+ }
+ 
++static struct bfq_queue *
++bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
++		     sector_t sector, struct rb_node **ret_parent,
++		     struct rb_node ***rb_link)
++{
++	struct rb_node **p, *parent;
++	struct bfq_queue *bfqq = NULL;
++
++	parent = NULL;
++	p = &root->rb_node;
++	while (*p) {
++		struct rb_node **n;
++
++		parent = *p;
++		bfqq = rb_entry(parent, struct bfq_queue, pos_node);
++
++		/*
++		 * Sort strictly based on sector. Smallest to the left,
++		 * largest to the right.
++		 */
++		if (sector > blk_rq_pos(bfqq->next_rq))
++			n = &(*p)->rb_right;
++		else if (sector < blk_rq_pos(bfqq->next_rq))
++			n = &(*p)->rb_left;
++		else
++			break;
++		p = n;
++		bfqq = NULL;
++	}
++
++	*ret_parent = parent;
++	if (rb_link)
++		*rb_link = p;
++
++	bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
++		(unsigned long long) sector,
++		bfqq ? bfqq->pid : 0);
++
++	return bfqq;
++}
++
++static void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
++{
++	struct rb_node **p, *parent;
++	struct bfq_queue *__bfqq;
++
++	if (bfqq->pos_root) {
++		rb_erase(&bfqq->pos_node, bfqq->pos_root);
++		bfqq->pos_root = NULL;
++	}
++
++	if (bfq_class_idle(bfqq))
++		return;
++	if (!bfqq->next_rq)
++		return;
++
++	bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
++	__bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
++			blk_rq_pos(bfqq->next_rq), &parent, &p);
++	if (!__bfqq) {
++		rb_link_node(&bfqq->pos_node, parent, p);
++		rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
++	} else
++		bfqq->pos_root = NULL;
++}
++
+ /*
+  * Tell whether there are active queues or groups with differentiated weights.
+  */
+@@ -527,6 +593,57 @@ static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
+ 	return dur;
+ }
+ 
++static unsigned int bfq_bfqq_cooperations(struct bfq_queue *bfqq)
++{
++	return bfqq->bic ? bfqq->bic->cooperations : 0;
++}
++
++static void
++bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
++{
++	if (bic->saved_idle_window)
++		bfq_mark_bfqq_idle_window(bfqq);
++	else
++		bfq_clear_bfqq_idle_window(bfqq);
++	if (bic->saved_IO_bound)
++		bfq_mark_bfqq_IO_bound(bfqq);
++	else
++		bfq_clear_bfqq_IO_bound(bfqq);
++	/* Assuming that the flag in_large_burst is already correctly set */
++	if (bic->wr_time_left && bfqq->bfqd->low_latency &&
++	    !bfq_bfqq_in_large_burst(bfqq) &&
++	    bic->cooperations < bfqq->bfqd->bfq_coop_thresh) {
++		/*
++		 * Start a weight raising period with the duration given by
++		 * the raising_time_left snapshot.
++		 */
++		if (bfq_bfqq_busy(bfqq))
++			bfqq->bfqd->wr_busy_queues++;
++		bfqq->wr_coeff = bfqq->bfqd->bfq_wr_coeff;
++		bfqq->wr_cur_max_time = bic->wr_time_left;
++		bfqq->last_wr_start_finish = jiffies;
++		bfqq->entity.prio_changed = 1;
++	}
++	/*
++	 * Clear wr_time_left to prevent bfq_bfqq_save_state() from
++	 * getting confused about the queue's need of a weight-raising
++	 * period.
++	 */
++	bic->wr_time_left = 0;
++}
++
++static int bfqq_process_refs(struct bfq_queue *bfqq)
++{
++	int process_refs, io_refs;
++
++	lockdep_assert_held(bfqq->bfqd->queue->queue_lock);
++
++	io_refs = bfqq->allocated[READ] + bfqq->allocated[WRITE];
++	process_refs = atomic_read(&bfqq->ref) - io_refs - bfqq->entity.on_st;
++	BUG_ON(process_refs < 0);
++	return process_refs;
++}
++
+ /* Empty burst list and add just bfqq (see comments to bfq_handle_burst) */
+ static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+ {
+@@ -763,8 +880,14 @@ static void bfq_add_request(struct request *rq)
+ 	BUG_ON(!next_rq);
+ 	bfqq->next_rq = next_rq;
+ 
++	/*
++	 * Adjust priority tree position, if next_rq changes.
++	 */
++	if (prev != bfqq->next_rq)
++		bfq_pos_tree_add_move(bfqd, bfqq);
++
+ 	if (!bfq_bfqq_busy(bfqq)) {
+-		bool soft_rt, in_burst,
++		bool soft_rt, coop_or_in_burst,
+ 		     idle_for_long_time = time_is_before_jiffies(
+ 						bfqq->budget_timeout +
+ 						bfqd->bfq_wr_min_idle_time);
+@@ -792,11 +915,12 @@ static void bfq_add_request(struct request *rq)
+ 				bfqd->last_ins_in_burst = jiffies;
+ 		}
+ 
+-		in_burst = bfq_bfqq_in_large_burst(bfqq);
++		coop_or_in_burst = bfq_bfqq_in_large_burst(bfqq) ||
++			bfq_bfqq_cooperations(bfqq) >= bfqd->bfq_coop_thresh;
+ 		soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
+-			!in_burst &&
++			!coop_or_in_burst &&
+ 			time_is_before_jiffies(bfqq->soft_rt_next_start);
+-		interactive = !in_burst && idle_for_long_time;
++		interactive = !coop_or_in_burst && idle_for_long_time;
+ 		entity->budget = max_t(unsigned long, bfqq->max_budget,
+ 				       bfq_serv_to_charge(next_rq, bfqq));
+ 
+@@ -815,6 +939,9 @@ static void bfq_add_request(struct request *rq)
+ 		if (!bfqd->low_latency)
+ 			goto add_bfqq_busy;
+ 
++		if (bfq_bfqq_just_split(bfqq))
++			goto set_prio_changed;
++
+ 		/*
+ 		 * If the queue:
+ 		 * - is not being boosted,
+@@ -839,7 +966,7 @@ static void bfq_add_request(struct request *rq)
+ 		} else if (old_wr_coeff > 1) {
+ 			if (interactive)
+ 				bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
+-			else if (in_burst ||
++			else if (coop_or_in_burst ||
+ 				 (bfqq->wr_cur_max_time ==
+ 				  bfqd->bfq_wr_rt_max_time &&
+ 				  !soft_rt)) {
+@@ -904,6 +1031,7 @@ static void bfq_add_request(struct request *rq)
+ 					bfqd->bfq_wr_rt_max_time;
+ 			}
+ 		}
++set_prio_changed:
+ 		if (old_wr_coeff != bfqq->wr_coeff)
+ 			entity->prio_changed = 1;
+ add_bfqq_busy:
+@@ -1046,6 +1174,15 @@ static void bfq_merged_request(struct request_queue *q, struct request *req,
+ 					 bfqd->last_position);
+ 		BUG_ON(!next_rq);
+ 		bfqq->next_rq = next_rq;
++		/*
++		 * If next_rq changes, update both the queue's budget to
++		 * fit the new request and the queue's position in its
++		 * rq_pos_tree.
++		 */
++		if (prev != bfqq->next_rq) {
++			bfq_updated_next_req(bfqd, bfqq);
++			bfq_pos_tree_add_move(bfqd, bfqq);
++		}
+ 	}
+ }
+ 
+@@ -1128,11 +1265,346 @@ static void bfq_end_wr(struct bfq_data *bfqd)
+ 	spin_unlock_irq(bfqd->queue->queue_lock);
+ }
+ 
++static sector_t bfq_io_struct_pos(void *io_struct, bool request)
++{
++	if (request)
++		return blk_rq_pos(io_struct);
++	else
++		return ((struct bio *)io_struct)->bi_iter.bi_sector;
++}
++
++static int bfq_rq_close_to_sector(void *io_struct, bool request,
++				  sector_t sector)
++{
++	return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
++	       BFQQ_SEEK_THR;
++}
++
++static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
++					 struct bfq_queue *bfqq,
++					 sector_t sector)
++{
++	struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
++	struct rb_node *parent, *node;
++	struct bfq_queue *__bfqq;
++
++	if (RB_EMPTY_ROOT(root))
++		return NULL;
++
++	/*
++	 * First, if we find a request starting at the end of the last
++	 * request, choose it.
++	 */
++	__bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
++	if (__bfqq)
++		return __bfqq;
++
++	/*
++	 * If the exact sector wasn't found, the parent of the NULL leaf
++	 * will contain the closest sector (rq_pos_tree sorted by
++	 * next_request position).
++	 */
++	__bfqq = rb_entry(parent, struct bfq_queue, pos_node);
++	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
++		return __bfqq;
++
++	if (blk_rq_pos(__bfqq->next_rq) < sector)
++		node = rb_next(&__bfqq->pos_node);
++	else
++		node = rb_prev(&__bfqq->pos_node);
++	if (!node)
++		return NULL;
++
++	__bfqq = rb_entry(node, struct bfq_queue, pos_node);
++	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
++		return __bfqq;
++
++	return NULL;
++}
++
++static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
++						   struct bfq_queue *cur_bfqq,
++						   sector_t sector)
++{
++	struct bfq_queue *bfqq;
++
++	/*
++	 * We shall notice if some of the queues are cooperating,
++	 * e.g., working closely on the same area of the device. In
++	 * that case, we can group them together and: 1) don't waste
++	 * time idling, and 2) serve the union of their requests in
++	 * the best possible order for throughput.
++	 */
++	bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
++	if (!bfqq || bfqq == cur_bfqq)
++		return NULL;
++
++	return bfqq;
++}
++
++static struct bfq_queue *
++bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
++{
++	int process_refs, new_process_refs;
++	struct bfq_queue *__bfqq;
++
++	/*
++	 * If there are no process references on the new_bfqq, then it is
++	 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
++	 * may have dropped their last reference (not just their last process
++	 * reference).
++	 */
++	if (!bfqq_process_refs(new_bfqq))
++		return NULL;
++
++	/* Avoid a circular list and skip interim queue merges. */
++	while ((__bfqq = new_bfqq->new_bfqq)) {
++		if (__bfqq == bfqq)
++			return NULL;
++		new_bfqq = __bfqq;
++	}
++
++	process_refs = bfqq_process_refs(bfqq);
++	new_process_refs = bfqq_process_refs(new_bfqq);
++	/*
++	 * If the process for the bfqq has gone away, there is no
++	 * sense in merging the queues.
++	 */
++	if (process_refs == 0 || new_process_refs == 0)
++		return NULL;
++
++	bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
++		new_bfqq->pid);
++
++	/*
++	 * Merging is just a redirection: the requests of the process
++	 * owning one of the two queues are redirected to the other queue.
++	 * The latter queue, in its turn, is set as shared if this is the
++	 * first time that the requests of some process are redirected to
++	 * it.
++	 *
++	 * We redirect bfqq to new_bfqq and not the opposite, because we
++	 * are in the context of the process owning bfqq, hence we have
++	 * the io_cq of this process. So we can immediately configure this
++	 * io_cq to redirect the requests of the process to new_bfqq.
++	 *
++	 * NOTE, even if new_bfqq coincides with the in-service queue, the
++	 * io_cq of new_bfqq is not available, because, if the in-service
++	 * queue is shared, bfqd->in_service_bic may not point to the
++	 * io_cq of the in-service queue.
++	 * Redirecting the requests of the process owning bfqq to the
++	 * currently in-service queue is in any case the best option, as
++	 * we feed the in-service queue with new requests close to the
++	 * last request served and, by doing so, hopefully increase the
++	 * throughput.
++	 */
++	bfqq->new_bfqq = new_bfqq;
++	atomic_add(process_refs, &new_bfqq->ref);
++	return new_bfqq;
++}
++
++static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
++					struct bfq_queue *new_bfqq)
++{
++	if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
++	    (bfqq->ioprio_class != new_bfqq->ioprio_class))
++		return false;
++
++	/*
++	 * If either of the queues has already been detected as seeky,
++	 * then merging it with the other queue is unlikely to lead to
++	 * sequential I/O.
++	 */
++	if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
++		return false;
++
++	/*
++	 * Interleaved I/O is known to be done by (some) applications
++	 * only for reads, so it does not make sense to merge async
++	 * queues.
++	 */
++	if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
++		return false;
++
++	return true;
++}
++
++/*
++ * Attempt to schedule a merge of bfqq with the currently in-service queue
++ * or with a close queue among the scheduled queues.
++ * Return NULL if no merge was scheduled, a pointer to the shared bfq_queue
++ * structure otherwise.
++ *
++ * The OOM queue is not allowed to participate to cooperation: in fact, since
++ * the requests temporarily redirected to the OOM queue could be redirected
++ * again to dedicated queues at any time, the state needed to correctly
++ * handle merging with the OOM queue would be quite complex and expensive
++ * to maintain. Besides, in such a critical condition as an out of memory,
++ * the benefits of queue merging may be little relevant, or even negligible.
++ */
++static struct bfq_queue *
++bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++		     void *io_struct, bool request)
++{
++	struct bfq_queue *in_service_bfqq, *new_bfqq;
++
++	if (bfqq->new_bfqq)
++		return bfqq->new_bfqq;
++	if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
++		return NULL;
++	/* If device has only one backlogged bfq_queue, don't search. */
++	if (bfqd->busy_queues == 1)
++		return NULL;
++
++	in_service_bfqq = bfqd->in_service_queue;
++
++	if (!in_service_bfqq || in_service_bfqq == bfqq ||
++	    !bfqd->in_service_bic ||
++	    unlikely(in_service_bfqq == &bfqd->oom_bfqq))
++		goto check_scheduled;
++
++	if (bfq_rq_close_to_sector(io_struct, request, bfqd->last_position) &&
++	    bfqq->entity.parent == in_service_bfqq->entity.parent &&
++	    bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
++		new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
++		if (new_bfqq)
++			return new_bfqq;
++	}
++	/*
++	 * Check whether there is a cooperator among currently scheduled
++	 * queues. The only thing we need is that the bio/request is not
++	 * NULL, as we need it to establish whether a cooperator exists.
++	 */
++check_scheduled:
++	new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
++			bfq_io_struct_pos(io_struct, request));
++
++	BUG_ON(new_bfqq && bfqq->entity.parent != new_bfqq->entity.parent);
++
++	if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
++	    bfq_may_be_close_cooperator(bfqq, new_bfqq))
++		return bfq_setup_merge(bfqq, new_bfqq);
++
++	return NULL;
++}
++
++static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
++{
++	/*
++	 * If !bfqq->bic, the queue is already shared or its requests
++	 * have already been redirected to a shared queue; both idle window
++	 * and weight raising state have already been saved. Do nothing.
++	 */
++	if (!bfqq->bic)
++		return;
++	if (bfqq->bic->wr_time_left)
++		/*
++		 * This is the queue of a just-started process, and would
++		 * deserve weight raising: we set wr_time_left to the full
++		 * weight-raising duration to trigger weight-raising when
++		 * and if the queue is split and the first request of the
++		 * queue is enqueued.
++		 */
++		bfqq->bic->wr_time_left = bfq_wr_duration(bfqq->bfqd);
++	else if (bfqq->wr_coeff > 1) {
++		unsigned long wr_duration =
++			jiffies - bfqq->last_wr_start_finish;
++		/*
++		 * It may happen that a queue's weight raising period lasts
++		 * longer than its wr_cur_max_time, as weight raising is
++		 * handled only when a request is enqueued or dispatched (it
++		 * does not use any timer). If the weight raising period is
++		 * about to end, don't save it.
++		 */
++		if (bfqq->wr_cur_max_time <= wr_duration)
++			bfqq->bic->wr_time_left = 0;
++		else
++			bfqq->bic->wr_time_left =
++				bfqq->wr_cur_max_time - wr_duration;
++		/*
++		 * The bfq_queue is becoming shared or the requests of the
++		 * process owning the queue are being redirected to a shared
++		 * queue. Stop the weight raising period of the queue, as in
++		 * both cases it should not be owned by an interactive or
++		 * soft real-time application.
++		 */
++		bfq_bfqq_end_wr(bfqq);
++	} else
++		bfqq->bic->wr_time_left = 0;
++	bfqq->bic->saved_idle_window = bfq_bfqq_idle_window(bfqq);
++	bfqq->bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
++	bfqq->bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
++	bfqq->bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
++	bfqq->bic->cooperations++;
++	bfqq->bic->failed_cooperations = 0;
++}
++
++static void bfq_get_bic_reference(struct bfq_queue *bfqq)
++{
++	/*
++	 * If bfqq->bic has a non-NULL value, the bic to which it belongs
++	 * is about to begin using a shared bfq_queue.
++	 */
++	if (bfqq->bic)
++		atomic_long_inc(&bfqq->bic->icq.ioc->refcount);
++}
++
++static void
++bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
++		struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
++{
++	bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
++		     (unsigned long) new_bfqq->pid);
++	/* Save weight raising and idle window of the merged queues */
++	bfq_bfqq_save_state(bfqq);
++	bfq_bfqq_save_state(new_bfqq);
++	if (bfq_bfqq_IO_bound(bfqq))
++		bfq_mark_bfqq_IO_bound(new_bfqq);
++	bfq_clear_bfqq_IO_bound(bfqq);
++	/*
++	 * Grab a reference to the bic, to prevent it from being destroyed
++	 * before being possibly touched by a bfq_split_bfqq().
++	 */
++	bfq_get_bic_reference(bfqq);
++	bfq_get_bic_reference(new_bfqq);
++	/*
++	 * Merge queues (that is, let bic redirect its requests to new_bfqq)
++	 */
++	bic_set_bfqq(bic, new_bfqq, 1);
++	bfq_mark_bfqq_coop(new_bfqq);
++	/*
++	 * new_bfqq now belongs to at least two bics (it is a shared queue):
++	 * set new_bfqq->bic to NULL. bfqq either:
++	 * - does not belong to any bic any more, and hence bfqq->bic must
++	 *   be set to NULL, or
++	 * - is a queue whose owning bics have already been redirected to a
++	 *   different queue, hence the queue is destined to not belong to
++	 *   any bic soon and bfqq->bic is already NULL (therefore the next
++	 *   assignment causes no harm).
++	 */
++	new_bfqq->bic = NULL;
++	bfqq->bic = NULL;
++	bfq_put_queue(bfqq);
++}
++
++static void bfq_bfqq_increase_failed_cooperations(struct bfq_queue *bfqq)
++{
++	struct bfq_io_cq *bic = bfqq->bic;
++	struct bfq_data *bfqd = bfqq->bfqd;
++
++	if (bic && bfq_bfqq_cooperations(bfqq) >= bfqd->bfq_coop_thresh) {
++		bic->failed_cooperations++;
++		if (bic->failed_cooperations >= bfqd->bfq_failed_cooperations)
++			bic->cooperations = 0;
++	}
++}
++
+ static int bfq_allow_merge(struct request_queue *q, struct request *rq,
+ 			   struct bio *bio)
+ {
+ 	struct bfq_data *bfqd = q->elevator->elevator_data;
+ 	struct bfq_io_cq *bic;
++	struct bfq_queue *bfqq, *new_bfqq;
+ 
+ 	/*
+ 	 * Disallow merge of a sync bio into an async request.
+@@ -1149,7 +1621,26 @@ static int bfq_allow_merge(struct request_queue *q, struct request *rq,
+ 	if (!bic)
+ 		return 0;
+ 
+-	return bic_to_bfqq(bic, bfq_bio_sync(bio)) == RQ_BFQQ(rq);
++	bfqq = bic_to_bfqq(bic, bfq_bio_sync(bio));
++	/*
++	 * We take advantage of this function to perform an early merge
++	 * of the queues of possible cooperating processes.
++	 */
++	if (bfqq) {
++		new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
++		if (new_bfqq) {
++			bfq_merge_bfqqs(bfqd, bic, bfqq, new_bfqq);
++			/*
++			 * If we get here, the bio will be queued in the
++			 * shared queue, i.e., new_bfqq, so use new_bfqq
++			 * to decide whether bio and rq can be merged.
++			 */
++			bfqq = new_bfqq;
++		} else
++			bfq_bfqq_increase_failed_cooperations(bfqq);
++	}
++
++	return bfqq == RQ_BFQQ(rq);
+ }
+ 
+ static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
+@@ -1350,6 +1841,15 @@ static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+ 
+ 	__bfq_bfqd_reset_in_service(bfqd);
+ 
++	/*
++	 * If this bfqq is shared between multiple processes, check
++	 * to make sure that those processes are still issuing I/Os
++	 * within the mean seek distance. If not, it may be time to
++	 * break the queues apart again.
++	 */
++	if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
++		bfq_mark_bfqq_split_coop(bfqq);
++
+ 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
+ 		/*
+ 		 * Overloading budget_timeout field to store the time
+@@ -1358,8 +1858,13 @@ static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+ 		 */
+ 		bfqq->budget_timeout = jiffies;
+ 		bfq_del_bfqq_busy(bfqd, bfqq, 1);
+-	} else
++	} else {
+ 		bfq_activate_bfqq(bfqd, bfqq);
++		/*
++		 * Resort priority tree of potential close cooperators.
++		 */
++		bfq_pos_tree_add_move(bfqd, bfqq);
++	}
+ }
+ 
+ /**
+@@ -2246,10 +2751,12 @@ static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+ 		/*
+ 		 * If the queue was activated in a burst, or
+ 		 * too much time has elapsed from the beginning
+-		 * of this weight-raising period, then end weight
+-		 * raising.
++		 * of this weight-raising period, or the queue has
++		 * exceeded the acceptable number of cooperations,
++		 * then end weight raising.
+ 		 */
+ 		if (bfq_bfqq_in_large_burst(bfqq) ||
++		    bfq_bfqq_cooperations(bfqq) >= bfqd->bfq_coop_thresh ||
+ 		    time_is_before_jiffies(bfqq->last_wr_start_finish +
+ 					   bfqq->wr_cur_max_time)) {
+ 			bfqq->last_wr_start_finish = jiffies;
+@@ -2478,6 +2985,25 @@ static void bfq_put_queue(struct bfq_queue *bfqq)
+ #endif
+ }
+ 
++static void bfq_put_cooperator(struct bfq_queue *bfqq)
++{
++	struct bfq_queue *__bfqq, *next;
++
++	/*
++	 * If this queue was scheduled to merge with another queue, be
++	 * sure to drop the reference taken on that queue (and others in
++	 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
++	 */
++	__bfqq = bfqq->new_bfqq;
++	while (__bfqq) {
++		if (__bfqq == bfqq)
++			break;
++		next = __bfqq->new_bfqq;
++		bfq_put_queue(__bfqq);
++		__bfqq = next;
++	}
++}
++
+ static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+ {
+ 	if (bfqq == bfqd->in_service_queue) {
+@@ -2488,6 +3014,8 @@ static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+ 	bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq,
+ 		     atomic_read(&bfqq->ref));
+ 
++	bfq_put_cooperator(bfqq);
++
+ 	bfq_put_queue(bfqq);
+ }
+ 
+@@ -2496,6 +3024,25 @@ static void bfq_init_icq(struct io_cq *icq)
+ 	struct bfq_io_cq *bic = icq_to_bic(icq);
+ 
+ 	bic->ttime.last_end_request = jiffies;
++	/*
++	 * A newly created bic indicates that the process has just
++	 * started doing I/O, and is probably mapping into memory its
++	 * executable and libraries: it definitely needs weight raising.
++	 * There is however the possibility that the process performs,
++	 * for a while, I/O close to some other process. EQM intercepts
++	 * this behavior and may merge the queue corresponding to the
++	 * process  with some other queue, BEFORE the weight of the queue
++	 * is raised. Merged queues are not weight-raised (they are assumed
++	 * to belong to processes that benefit only from high throughput).
++	 * If the merge is basically the consequence of an accident, then
++	 * the queue will be split soon and will get back its old weight.
++	 * It is then important to write down somewhere that this queue
++	 * does need weight raising, even if it did not make it to get its
++	 * weight raised before being merged. To this purpose, we overload
++	 * the field raising_time_left and assign 1 to it, to mark the queue
++	 * as needing weight raising.
++	 */
++	bic->wr_time_left = 1;
+ }
+ 
+ static void bfq_exit_icq(struct io_cq *icq)
+@@ -2509,6 +3056,13 @@ static void bfq_exit_icq(struct io_cq *icq)
+ 	}
+ 
+ 	if (bic->bfqq[BLK_RW_SYNC]) {
++		/*
++		 * If the bic is using a shared queue, put the reference
++		 * taken on the io_context when the bic started using a
++		 * shared bfq_queue.
++		 */
++		if (bfq_bfqq_coop(bic->bfqq[BLK_RW_SYNC]))
++			put_io_context(icq->ioc);
+ 		bfq_exit_bfqq(bfqd, bic->bfqq[BLK_RW_SYNC]);
+ 		bic->bfqq[BLK_RW_SYNC] = NULL;
+ 	}
+@@ -2814,6 +3368,10 @@ static void bfq_update_idle_window(struct bfq_data *bfqd,
+ 	if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq))
+ 		return;
+ 
++	/* Idle window just restored, statistics are meaningless. */
++	if (bfq_bfqq_just_split(bfqq))
++		return;
++
+ 	enable_idle = bfq_bfqq_idle_window(bfqq);
+ 
+ 	if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
+@@ -2861,6 +3419,7 @@ static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ 	if (bfqq->entity.service > bfq_max_budget(bfqd) / 8 ||
+ 	    !BFQQ_SEEKY(bfqq))
+ 		bfq_update_idle_window(bfqd, bfqq, bic);
++	bfq_clear_bfqq_just_split(bfqq);
+ 
+ 	bfq_log_bfqq(bfqd, bfqq,
+ 		     "rq_enqueued: idle_window=%d (seeky %d, mean %llu)",
+@@ -2925,12 +3484,47 @@ static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ static void bfq_insert_request(struct request_queue *q, struct request *rq)
+ {
+ 	struct bfq_data *bfqd = q->elevator->elevator_data;
+-	struct bfq_queue *bfqq = RQ_BFQQ(rq);
++	struct bfq_queue *bfqq = RQ_BFQQ(rq), *new_bfqq;
+ 
+ 	assert_spin_locked(bfqd->queue->queue_lock);
+ 
++	/*
++	 * An unplug may trigger a requeue of a request from the device
++	 * driver: make sure we are in process context while trying to
++	 * merge two bfq_queues.
++	 */
++	if (!in_interrupt()) {
++		new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
++		if (new_bfqq) {
++			if (bic_to_bfqq(RQ_BIC(rq), 1) != bfqq)
++				new_bfqq = bic_to_bfqq(RQ_BIC(rq), 1);
++			/*
++			 * Release the request's reference to the old bfqq
++			 * and make sure one is taken to the shared queue.
++			 */
++			new_bfqq->allocated[rq_data_dir(rq)]++;
++			bfqq->allocated[rq_data_dir(rq)]--;
++			atomic_inc(&new_bfqq->ref);
++			bfq_put_queue(bfqq);
++			if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
++				bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
++						bfqq, new_bfqq);
++			rq->elv.priv[1] = new_bfqq;
++			bfqq = new_bfqq;
++		} else
++			bfq_bfqq_increase_failed_cooperations(bfqq);
++	}
++
+ 	bfq_add_request(rq);
+ 
++	/*
++	 * Here a newly-created bfq_queue has already started a weight-raising
++	 * period: clear raising_time_left to prevent bfq_bfqq_save_state()
++	 * from assigning it a full weight-raising period. See the detailed
++	 * comments about this field in bfq_init_icq().
++	 */
++	if (bfqq->bic)
++		bfqq->bic->wr_time_left = 0;
+ 	rq->fifo_time = jiffies + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
+ 	list_add_tail(&rq->queuelist, &bfqq->fifo);
+ 
+@@ -3099,6 +3693,32 @@ static void bfq_put_request(struct request *rq)
+ }
+ 
+ /*
++ * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
++ * was the last process referring to said bfqq.
++ */
++static struct bfq_queue *
++bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
++{
++	bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
++
++	put_io_context(bic->icq.ioc);
++
++	if (bfqq_process_refs(bfqq) == 1) {
++		bfqq->pid = current->pid;
++		bfq_clear_bfqq_coop(bfqq);
++		bfq_clear_bfqq_split_coop(bfqq);
++		return bfqq;
++	}
++
++	bic_set_bfqq(bic, NULL, 1);
++
++	bfq_put_cooperator(bfqq);
++
++	bfq_put_queue(bfqq);
++	return NULL;
++}
++
++/*
+  * Allocate bfq data structures associated with this request.
+  */
+ static int bfq_set_request(struct request_queue *q, struct request *rq,
+@@ -3110,6 +3730,7 @@ static int bfq_set_request(struct request_queue *q, struct request *rq,
+ 	const int is_sync = rq_is_sync(rq);
+ 	struct bfq_queue *bfqq;
+ 	unsigned long flags;
++	bool split = false;
+ 
+ 	might_sleep_if(gfpflags_allow_blocking(gfp_mask));
+ 
+@@ -3122,15 +3743,30 @@ static int bfq_set_request(struct request_queue *q, struct request *rq,
+ 
+ 	bfq_bic_update_cgroup(bic, bio);
+ 
++new_queue:
+ 	bfqq = bic_to_bfqq(bic, is_sync);
+ 	if (!bfqq || bfqq == &bfqd->oom_bfqq) {
+ 		bfqq = bfq_get_queue(bfqd, bio, is_sync, bic, gfp_mask);
+ 		bic_set_bfqq(bic, bfqq, is_sync);
+-		if (is_sync) {
+-			if (bfqd->large_burst)
++		if (split && is_sync) {
++			if ((bic->was_in_burst_list && bfqd->large_burst) ||
++			    bic->saved_in_large_burst)
+ 				bfq_mark_bfqq_in_large_burst(bfqq);
+-			else
++			else {
+ 				bfq_clear_bfqq_in_large_burst(bfqq);
++				if (bic->was_in_burst_list)
++					hlist_add_head(&bfqq->burst_list_node,
++						       &bfqd->burst_list);
++			}
++		}
++	} else {
++		/* If the queue was seeky for too long, break it apart. */
++		if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
++			bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
++			bfqq = bfq_split_bfqq(bic, bfqq);
++			split = true;
++			if (!bfqq)
++				goto new_queue;
+ 		}
+ 	}
+ 
+@@ -3142,6 +3778,26 @@ static int bfq_set_request(struct request_queue *q, struct request *rq,
+ 	rq->elv.priv[0] = bic;
+ 	rq->elv.priv[1] = bfqq;
+ 
++	/*
++	 * If a bfq_queue has only one process reference, it is owned
++	 * by only one bfq_io_cq: we can set the bic field of the
++	 * bfq_queue to the address of that structure. Also, if the
++	 * queue has just been split, mark a flag so that the
++	 * information is available to the other scheduler hooks.
++	 */
++	if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
++		bfqq->bic = bic;
++		if (split) {
++			bfq_mark_bfqq_just_split(bfqq);
++			/*
++			 * If the queue has just been split from a shared
++			 * queue, restore the idle window and the possible
++			 * weight raising period.
++			 */
++			bfq_bfqq_resume_state(bfqq, bic);
++		}
++	}
++
+ 	spin_unlock_irqrestore(q->queue_lock, flags);
+ 
+ 	return 0;
+@@ -3295,6 +3951,7 @@ static void bfq_init_root_group(struct bfq_group *root_group,
+ 	root_group->my_entity = NULL;
+ 	root_group->bfqd = bfqd;
+ #endif
++	root_group->rq_pos_tree = RB_ROOT;
+ 	for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
+ 		root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
+ }
+@@ -3375,6 +4032,8 @@ static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
+ 	bfqd->bfq_timeout[BLK_RW_ASYNC] = bfq_timeout_async;
+ 	bfqd->bfq_timeout[BLK_RW_SYNC] = bfq_timeout_sync;
+ 
++	bfqd->bfq_coop_thresh = 2;
++	bfqd->bfq_failed_cooperations = 7000;
+ 	bfqd->bfq_requests_within_timer = 120;
+ 
+ 	bfqd->bfq_large_burst_thresh = 11;
+diff --git a/block/bfq.h b/block/bfq.h
+index 2bf54ae..fcce855 100644
+--- a/block/bfq.h
++++ b/block/bfq.h
+@@ -183,6 +183,8 @@ struct bfq_group;
+  *                    ioprio_class value.
+  * @new_bfqq: shared bfq_queue if queue is cooperating with
+  *           one or more other queues.
++ * @pos_node: request-position tree member (see bfq_group's @rq_pos_tree).
++ * @pos_root: request-position tree root (see bfq_group's @rq_pos_tree).
+  * @sort_list: sorted list of pending requests.
+  * @next_rq: if fifo isn't expired, next request to serve.
+  * @queued: nr of requests queued in @sort_list.
+@@ -304,6 +306,26 @@ struct bfq_ttime {
+  * @ttime: associated @bfq_ttime struct
+  * @ioprio: per (request_queue, blkcg) ioprio.
+  * @blkcg_id: id of the blkcg the related io_cq belongs to.
++ * @wr_time_left: snapshot of the time left before weight raising ends
++ *                for the sync queue associated to this process; this
++ *		  snapshot is taken to remember this value while the weight
++ *		  raising is suspended because the queue is merged with a
++ *		  shared queue, and is used to set @raising_cur_max_time
++ *		  when the queue is split from the shared queue and its
++ *		  weight is raised again
++ * @saved_idle_window: same purpose as the previous field for the idle
++ *                     window
++ * @saved_IO_bound: same purpose as the previous two fields for the I/O
++ *                  bound classification of a queue
++ * @saved_in_large_burst: same purpose as the previous fields for the
++ *                        value of the field keeping the queue's belonging
++ *                        to a large burst
++ * @was_in_burst_list: true if the queue belonged to a burst list
++ *                     before its merge with another cooperating queue
++ * @cooperations: counter of consecutive successful queue merges underwent
++ *                by any of the process' @bfq_queues
++ * @failed_cooperations: counter of consecutive failed queue merges of any
++ *                       of the process' @bfq_queues
+  */
+ struct bfq_io_cq {
+ 	struct io_cq icq; /* must be the first member */
+@@ -314,6 +336,16 @@ struct bfq_io_cq {
+ #ifdef CONFIG_BFQ_GROUP_IOSCHED
+ 	uint64_t blkcg_id; /* the current blkcg ID */
+ #endif
++
++	unsigned int wr_time_left;
++	bool saved_idle_window;
++	bool saved_IO_bound;
++
++	bool saved_in_large_burst;
++	bool was_in_burst_list;
++
++	unsigned int cooperations;
++	unsigned int failed_cooperations;
+ };
+ 
+ enum bfq_device_speed {
+@@ -557,6 +589,9 @@ enum bfqq_state_flags {
+ 					 * may need softrt-next-start
+ 					 * update
+ 					 */
++	BFQ_BFQQ_FLAG_coop,		/* bfqq is shared */
++	BFQ_BFQQ_FLAG_split_coop,	/* shared bfqq will be split */
++	BFQ_BFQQ_FLAG_just_split,	/* queue has just been split */
+ };
+ 
+ #define BFQ_BFQQ_FNS(name)						\
+@@ -583,6 +618,9 @@ BFQ_BFQQ_FNS(budget_new);
+ BFQ_BFQQ_FNS(IO_bound);
+ BFQ_BFQQ_FNS(in_large_burst);
+ BFQ_BFQQ_FNS(constantly_seeky);
++BFQ_BFQQ_FNS(coop);
++BFQ_BFQQ_FNS(split_coop);
++BFQ_BFQQ_FNS(just_split);
+ BFQ_BFQQ_FNS(softrt_update);
+ #undef BFQ_BFQQ_FNS
+ 
+@@ -675,6 +713,9 @@ struct bfq_group_data {
+  *                   are groups with more than one active @bfq_entity
+  *                   (see the comments to the function
+  *                   bfq_bfqq_must_not_expire()).
++ * @rq_pos_tree: rbtree sorted by next_request position, used when
++ *               determining if two or more queues have interleaving
++ *               requests (see bfq_find_close_cooperator()).
+  *
+  * Each (device, cgroup) pair has its own bfq_group, i.e., for each cgroup
+  * there is a set of bfq_groups, each one collecting the lower-level
+@@ -701,6 +742,8 @@ struct bfq_group {
+ 
+ 	int active_entities;
+ 
++	struct rb_root rq_pos_tree;
++
+ 	struct bfqg_stats stats;
+ 	struct bfqg_stats dead_stats;	/* stats pushed from dead children */
+ };
+@@ -711,6 +754,8 @@ struct bfq_group {
+ 
+ 	struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR];
+ 	struct bfq_queue *async_idle_bfqq;
++
++	struct rb_root rq_pos_tree;
+ };
+ #endif
+ 
+@@ -787,6 +832,27 @@ static void bfq_put_bfqd_unlock(struct bfq_data *bfqd, unsigned long *flags)
+ 	spin_unlock_irqrestore(bfqd->queue->queue_lock, *flags);
+ }
+ 
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++
++static struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
++{
++	struct bfq_entity *group_entity = bfqq->entity.parent;
++
++	if (!group_entity)
++		group_entity = &bfqq->bfqd->root_group->entity;
++
++	return container_of(group_entity, struct bfq_group, entity);
++}
++
++#else
++
++static struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
++{
++	return bfqq->bfqd->root_group;
++}
++
++#endif
++
+ static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio);
+ static void bfq_put_queue(struct bfq_queue *bfqq);
+ static void bfq_dispatch_insert(struct request_queue *q, struct request *rq);
+-- 
+2.10.0
+

diff --git a/5004_blkck-bfq-turn-BFQ-v7r11-for-4.11.0-into-BFQ-v8r11-for-4.patch1 b/5004_blkck-bfq-turn-BFQ-v7r11-for-4.11.0-into-BFQ-v8r11-for-4.patch1
new file mode 100644
index 0000000..01826dc
--- /dev/null
+++ b/5004_blkck-bfq-turn-BFQ-v7r11-for-4.11.0-into-BFQ-v8r11-for-4.patch1
@@ -0,0 +1,9433 @@
+From 4c59741516955aa3cb7f86fef5d9adcd2d67a671 Mon Sep 17 00:00:00 2001
+From: Paolo Valente <paolo.valente@linaro.org>
+Date: Mon, 16 May 2016 11:16:17 +0200
+Subject: [PATCH 4/4] blk, bfq: turn BFQ-v7r11 for 4.11.0 into BFQ-v8r11 for
+ 4.11.0
+
+Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
+---
+ Documentation/block/00-INDEX        |    2 +
+ Documentation/block/bfq-iosched.txt |  530 ++++++
+ Makefile                            |    2 +-
+ block/Kconfig.iosched               |   18 +-
+ block/bfq-cgroup.c                  |  511 +++---
+ block/bfq-iosched.c                 | 3468 ++++++++++++++++++++++-------------
+ block/bfq-sched.c                   | 1400 +++++++++++---
+ block/bfq.h                         |  804 ++++----
+ 8 files changed, 4536 insertions(+), 2199 deletions(-)
+ create mode 100644 Documentation/block/bfq-iosched.txt
+
+diff --git a/Documentation/block/00-INDEX b/Documentation/block/00-INDEX
+index e55103a..8d55b4b 100644
+--- a/Documentation/block/00-INDEX
++++ b/Documentation/block/00-INDEX
+@@ -1,5 +1,7 @@
+ 00-INDEX
+ 	- This file
++bfq-iosched.txt
++	- BFQ IO scheduler and its tunables
+ biodoc.txt
+ 	- Notes on the Generic Block Layer Rewrite in Linux 2.5
+ biovecs.txt
+diff --git a/Documentation/block/bfq-iosched.txt b/Documentation/block/bfq-iosched.txt
+new file mode 100644
+index 0000000..13b5248
+--- /dev/null
++++ b/Documentation/block/bfq-iosched.txt
+@@ -0,0 +1,530 @@
++BFQ (Budget Fair Queueing)
++==========================
++
++BFQ is a proportional-share I/O scheduler, with some extra
++low-latency capabilities. In addition to cgroups support (blkio or io
++controllers), BFQ's main features are:
++- BFQ guarantees a high system and application responsiveness, and a
++  low latency for time-sensitive applications, such as audio or video
++  players;
++- BFQ distributes bandwidth, and not just time, among processes or
++  groups (switching back to time distribution when needed to keep
++  throughput high).
++
++On average CPUs, the current version of BFQ can handle devices
++performing at most ~30K IOPS; at most ~50 KIOPS on faster CPUs. As a
++reference, 30-50 KIOPS correspond to very high bandwidths with
++sequential I/O (e.g., 8-12 GB/s if I/O requests are 256 KB large), and
++to 120-200 MB/s with 4KB random I/O.
++
++The table of contents follow. Impatients can just jump to Section 3.
++
++CONTENTS
++
++1. When may BFQ be useful?
++ 1-1 Personal systems
++ 1-2 Server systems
++2. How does BFQ work?
++3. What are BFQ's tunable?
++4. BFQ group scheduling
++ 4-1 Service guarantees provided
++ 4-2 Interface
++
++1. When may BFQ be useful?
++==========================
++
++BFQ provides the following benefits on personal and server systems.
++
++1-1 Personal systems
++--------------------
++
++Low latency for interactive applications
++
++Regardless of the actual background workload, BFQ guarantees that, for
++interactive tasks, the storage device is virtually as responsive as if
++it was idle. For example, even if one or more of the following
++background workloads are being executed:
++- one or more large files are being read, written or copied,
++- a tree of source files is being compiled,
++- one or more virtual machines are performing I/O,
++- a software update is in progress,
++- indexing daemons are scanning filesystems and updating their
++  databases,
++starting an application or loading a file from within an application
++takes about the same time as if the storage device was idle. As a
++comparison, with CFQ, NOOP or DEADLINE, and in the same conditions,
++applications experience high latencies, or even become unresponsive
++until the background workload terminates (also on SSDs).
++
++Low latency for soft real-time applications
++
++Also soft real-time applications, such as audio and video
++players/streamers, enjoy a low latency and a low drop rate, regardless
++of the background I/O workload. As a consequence, these applications
++do not suffer from almost any glitch due to the background workload.
++
++Higher speed for code-development tasks
++
++If some additional workload happens to be executed in parallel, then
++BFQ executes the I/O-related components of typical code-development
++tasks (compilation, checkout, merge, ...) much more quickly than CFQ,
++NOOP or DEADLINE.
++
++High throughput
++
++On hard disks, BFQ achieves up to 30% higher throughput than CFQ, and
++up to 150% higher throughput than DEADLINE and NOOP, with all the
++sequential workloads considered in our tests. With random workloads,
++and with all the workloads on flash-based devices, BFQ achieves,
++instead, about the same throughput as the other schedulers.
++
++Strong fairness, bandwidth and delay guarantees
++
++BFQ distributes the device throughput, and not just the device time,
++among I/O-bound applications in proportion their weights, with any
++workload and regardless of the device parameters. From these bandwidth
++guarantees, it is possible to compute tight per-I/O-request delay
++guarantees by a simple formula. If not configured for strict service
++guarantees, BFQ switches to time-based resource sharing (only) for
++applications that would otherwise cause a throughput loss.
++
++1-2 Server systems
++------------------
++
++Most benefits for server systems follow from the same service
++properties as above. In particular, regardless of whether additional,
++possibly heavy workloads are being served, BFQ guarantees:
++
++. audio and video-streaming with zero or very low jitter and drop
++  rate;
++
++. fast retrieval of WEB pages and embedded objects;
++
++. real-time recording of data in live-dumping applications (e.g.,
++  packet logging);
++
++. responsiveness in local and remote access to a server.
++
++
++2. How does BFQ work?
++=====================
++
++BFQ is a proportional-share I/O scheduler, whose general structure,
++plus a lot of code, are borrowed from CFQ.
++
++- Each process doing I/O on a device is associated with a weight and a
++  (bfq_)queue.
++
++- BFQ grants exclusive access to the device, for a while, to one queue
++  (process) at a time, and implements this service model by
++  associating every queue with a budget, measured in number of
++  sectors.
++
++  - After a queue is granted access to the device, the budget of the
++    queue is decremented, on each request dispatch, by the size of the
++    request.
++
++  - The in-service queue is expired, i.e., its service is suspended,
++    only if one of the following events occurs: 1) the queue finishes
++    its budget, 2) the queue empties, 3) a "budget timeout" fires.
++
++    - The budget timeout prevents processes doing random I/O from
++      holding the device for too long and dramatically reducing
++      throughput.
++
++    - Actually, as in CFQ, a queue associated with a process issuing
++      sync requests may not be expired immediately when it empties. In
++      contrast, BFQ may idle the device for a short time interval,
++      giving the process the chance to go on being served if it issues
++      a new request in time. Device idling typically boosts the
++      throughput on rotational devices, if processes do synchronous
++      and sequential I/O. In addition, under BFQ, device idling is
++      also instrumental in guaranteeing the desired throughput
++      fraction to processes issuing sync requests (see the description
++      of the slice_idle tunable in this document, or [1, 2], for more
++      details).
++
++      - With respect to idling for service guarantees, if several
++	processes are competing for the device at the same time, but
++	all processes (and groups, after the following commit) have
++	the same weight, then BFQ guarantees the expected throughput
++	distribution without ever idling the device. Throughput is
++	thus as high as possible in this common scenario.
++
++  - If low-latency mode is enabled (default configuration), BFQ
++    executes some special heuristics to detect interactive and soft
++    real-time applications (e.g., video or audio players/streamers),
++    and to reduce their latency. The most important action taken to
++    achieve this goal is to give to the queues associated with these
++    applications more than their fair share of the device
++    throughput. For brevity, we call just "weight-raising" the whole
++    sets of actions taken by BFQ to privilege these queues. In
++    particular, BFQ provides a milder form of weight-raising for
++    interactive applications, and a stronger form for soft real-time
++    applications.
++
++  - BFQ automatically deactivates idling for queues born in a burst of
++    queue creations. In fact, these queues are usually associated with
++    the processes of applications and services that benefit mostly
++    from a high throughput. Examples are systemd during boot, or git
++    grep.
++
++  - As CFQ, BFQ merges queues performing interleaved I/O, i.e.,
++    performing random I/O that becomes mostly sequential if
++    merged. Differently from CFQ, BFQ achieves this goal with a more
++    reactive mechanism, called Early Queue Merge (EQM). EQM is so
++    responsive in detecting interleaved I/O (cooperating processes),
++    that it enables BFQ to achieve a high throughput, by queue
++    merging, even for queues for which CFQ needs a different
++    mechanism, preemption, to get a high throughput. As such EQM is a
++    unified mechanism to achieve a high throughput with interleaved
++    I/O.
++
++  - Queues are scheduled according to a variant of WF2Q+, named
++    B-WF2Q+, and implemented using an augmented rb-tree to preserve an
++    O(log N) overall complexity.  See [2] for more details. B-WF2Q+ is
++    also ready for hierarchical scheduling. However, for a cleaner
++    logical breakdown, the code that enables and completes
++    hierarchical support is provided in the next commit, which focuses
++    exactly on this feature.
++
++  - B-WF2Q+ guarantees a tight deviation with respect to an ideal,
++    perfectly fair, and smooth service. In particular, B-WF2Q+
++    guarantees that each queue receives a fraction of the device
++    throughput proportional to its weight, even if the throughput
++    fluctuates, and regardless of: the device parameters, the current
++    workload and the budgets assigned to the queue.
++
++  - The last, budget-independence, property (although probably
++    counterintuitive in the first place) is definitely beneficial, for
++    the following reasons:
++
++    - First, with any proportional-share scheduler, the maximum
++      deviation with respect to an ideal service is proportional to
++      the maximum budget (slice) assigned to queues. As a consequence,
++      BFQ can keep this deviation tight not only because of the
++      accurate service of B-WF2Q+, but also because BFQ *does not*
++      need to assign a larger budget to a queue to let the queue
++      receive a higher fraction of the device throughput.
++
++    - Second, BFQ is free to choose, for every process (queue), the
++      budget that best fits the needs of the process, or best
++      leverages the I/O pattern of the process. In particular, BFQ
++      updates queue budgets with a simple feedback-loop algorithm that
++      allows a high throughput to be achieved, while still providing
++      tight latency guarantees to time-sensitive applications. When
++      the in-service queue expires, this algorithm computes the next
++      budget of the queue so as to:
++
++      - Let large budgets be eventually assigned to the queues
++	associated with I/O-bound applications performing sequential
++	I/O: in fact, the longer these applications are served once
++	got access to the device, the higher the throughput is.
++
++      - Let small budgets be eventually assigned to the queues
++	associated with time-sensitive applications (which typically
++	perform sporadic and short I/O), because, the smaller the
++	budget assigned to a queue waiting for service is, the sooner
++	B-WF2Q+ will serve that queue (Subsec 3.3 in [2]).
++
++- If several processes are competing for the device at the same time,
++  but all processes and groups have the same weight, then BFQ
++  guarantees the expected throughput distribution without ever idling
++  the device. It uses preemption instead. Throughput is then much
++  higher in this common scenario.
++
++- ioprio classes are served in strict priority order, i.e.,
++  lower-priority queues are not served as long as there are
++  higher-priority queues.  Among queues in the same class, the
++  bandwidth is distributed in proportion to the weight of each
++  queue. A very thin extra bandwidth is however guaranteed to
++  the Idle class, to prevent it from starving.
++
++
++3. What are BFQ's tunable?
++==========================
++
++The tunables back_seek-max, back_seek_penalty, fifo_expire_async and
++fifo_expire_sync below are the same as in CFQ. Their description is
++just copied from that for CFQ. Some considerations in the description
++of slice_idle are copied from CFQ too.
++
++per-process ioprio and weight
++-----------------------------
++
++Unless the cgroups interface is used (see "4. BFQ group scheduling"),
++weights can be assigned to processes only indirectly, through I/O
++priorities, and according to the relation:
++weight = (IOPRIO_BE_NR - ioprio) * 10.
++
++Beware that, if low-latency is set, then BFQ automatically raises the
++weight of the queues associated with interactive and soft real-time
++applications. Unset this tunable if you need/want to control weights.
++
++slice_idle
++----------
++
++This parameter specifies how long BFQ should idle for next I/O
++request, when certain sync BFQ queues become empty. By default
++slice_idle is a non-zero value. Idling has a double purpose: boosting
++throughput and making sure that the desired throughput distribution is
++respected (see the description of how BFQ works, and, if needed, the
++papers referred there).
++
++As for throughput, idling can be very helpful on highly seeky media
++like single spindle SATA/SAS disks where we can cut down on overall
++number of seeks and see improved throughput.
++
++Setting slice_idle to 0 will remove all the idling on queues and one
++should see an overall improved throughput on faster storage devices
++like multiple SATA/SAS disks in hardware RAID configuration.
++
++So depending on storage and workload, it might be useful to set
++slice_idle=0.  In general for SATA/SAS disks and software RAID of
++SATA/SAS disks keeping slice_idle enabled should be useful. For any
++configurations where there are multiple spindles behind single LUN
++(Host based hardware RAID controller or for storage arrays), setting
++slice_idle=0 might end up in better throughput and acceptable
++latencies.
++
++Idling is however necessary to have service guarantees enforced in
++case of differentiated weights or differentiated I/O-request lengths.
++To see why, suppose that a given BFQ queue A must get several I/O
++requests served for each request served for another queue B. Idling
++ensures that, if A makes a new I/O request slightly after becoming
++empty, then no request of B is dispatched in the middle, and thus A
++does not lose the possibility to get more than one request dispatched
++before the next request of B is dispatched. Note that idling
++guarantees the desired differentiated treatment of queues only in
++terms of I/O-request dispatches. To guarantee that the actual service
++order then corresponds to the dispatch order, the strict_guarantees
++tunable must be set too.
++
++There is an important flipside for idling: apart from the above cases
++where it is beneficial also for throughput, idling can severely impact
++throughput. One important case is random workload. Because of this
++issue, BFQ tends to avoid idling as much as possible, when it is not
++beneficial also for throughput. As a consequence of this behavior, and
++of further issues described for the strict_guarantees tunable,
++short-term service guarantees may be occasionally violated. And, in
++some cases, these guarantees may be more important than guaranteeing
++maximum throughput. For example, in video playing/streaming, a very
++low drop rate may be more important than maximum throughput. In these
++cases, consider setting the strict_guarantees parameter.
++
++strict_guarantees
++-----------------
++
++If this parameter is set (default: unset), then BFQ
++
++- always performs idling when the in-service queue becomes empty;
++
++- forces the device to serve one I/O request at a time, by dispatching a
++  new request only if there is no outstanding request.
++
++In the presence of differentiated weights or I/O-request sizes, both
++the above conditions are needed to guarantee that every BFQ queue
++receives its allotted share of the bandwidth. The first condition is
++needed for the reasons explained in the description of the slice_idle
++tunable.  The second condition is needed because all modern storage
++devices reorder internally-queued requests, which may trivially break
++the service guarantees enforced by the I/O scheduler.
++
++Setting strict_guarantees may evidently affect throughput.
++
++back_seek_max
++-------------
++
++This specifies, given in Kbytes, the maximum "distance" for backward seeking.
++The distance is the amount of space from the current head location to the
++sectors that are backward in terms of distance.
++
++This parameter allows the scheduler to anticipate requests in the "backward"
++direction and consider them as being the "next" if they are within this
++distance from the current head location.
++
++back_seek_penalty
++-----------------
++
++This parameter is used to compute the cost of backward seeking. If the
++backward distance of request is just 1/back_seek_penalty from a "front"
++request, then the seeking cost of two requests is considered equivalent.
++
++So scheduler will not bias toward one or the other request (otherwise scheduler
++will bias toward front request). Default value of back_seek_penalty is 2.
++
++fifo_expire_async
++-----------------
++
++This parameter is used to set the timeout of asynchronous requests. Default
++value of this is 248ms.
++
++fifo_expire_sync
++----------------
++
++This parameter is used to set the timeout of synchronous requests. Default
++value of this is 124ms. In case to favor synchronous requests over asynchronous
++one, this value should be decreased relative to fifo_expire_async.
++
++low_latency
++-----------
++
++This parameter is used to enable/disable BFQ's low latency mode. By
++default, low latency mode is enabled. If enabled, interactive and soft
++real-time applications are privileged and experience a lower latency,
++as explained in more detail in the description of how BFQ works.
++
++DO NOT enable this mode if you need full control on bandwidth
++distribution. In fact, if it is enabled, then BFQ automatically
++increases the bandwidth share of privileged applications, as the main
++means to guarantee a lower latency to them.
++
++timeout_sync
++------------
++
++Maximum amount of device time that can be given to a task (queue) once
++it has been selected for service. On devices with costly seeks,
++increasing this time usually increases maximum throughput. On the
++opposite end, increasing this time coarsens the granularity of the
++short-term bandwidth and latency guarantees, especially if the
++following parameter is set to zero.
++
++max_budget
++----------
++
++Maximum amount of service, measured in sectors, that can be provided
++to a BFQ queue once it is set in service (of course within the limits
++of the above timeout). According to what said in the description of
++the algorithm, larger values increase the throughput in proportion to
++the percentage of sequential I/O requests issued. The price of larger
++values is that they coarsen the granularity of short-term bandwidth
++and latency guarantees.
++
++The default value is 0, which enables auto-tuning: BFQ sets max_budget
++to the maximum number of sectors that can be served during
++timeout_sync, according to the estimated peak rate.
++
++weights
++-------
++
++Read-only parameter, used to show the weights of the currently active
++BFQ queues.
++
++
++wr_ tunables
++------------
++
++BFQ exports a few parameters to control/tune the behavior of
++low-latency heuristics.
++
++wr_coeff
++
++Factor by which the weight of a weight-raised queue is multiplied. If
++the queue is deemed soft real-time, then the weight is further
++multiplied by an additional, constant factor.
++
++wr_max_time
++
++Maximum duration of a weight-raising period for an interactive task
++(ms). If set to zero (default value), then this value is computed
++automatically, as a function of the peak rate of the device. In any
++case, when the value of this parameter is read, it always reports the
++current duration, regardless of whether it has been set manually or
++computed automatically.
++
++wr_max_softrt_rate
++
++Maximum service rate below which a queue is deemed to be associated
++with a soft real-time application, and is then weight-raised
++accordingly (sectors/sec).
++
++wr_min_idle_time
++
++Minimum idle period after which interactive weight-raising may be
++reactivated for a queue (in ms).
++
++wr_rt_max_time
++
++Maximum weight-raising duration for soft real-time queues (in ms). The
++start time from which this duration is considered is automatically
++moved forward if the queue is detected to be still soft real-time
++before the current soft real-time weight-raising period finishes.
++
++wr_min_inter_arr_async
++
++Minimum period between I/O request arrivals after which weight-raising
++may be reactivated for an already busy async queue (in ms).
++
++
++4. Group scheduling with BFQ
++============================
++
++BFQ supports both cgroups-v1 and cgroups-v2 io controllers, namely
++blkio and io. In particular, BFQ supports weight-based proportional
++share. To activate cgroups support, set BFQ_GROUP_IOSCHED.
++
++4-1 Service guarantees provided
++-------------------------------
++
++With BFQ, proportional share means true proportional share of the
++device bandwidth, according to group weights. For example, a group
++with weight 200 gets twice the bandwidth, and not just twice the time,
++of a group with weight 100.
++
++BFQ supports hierarchies (group trees) of any depth. Bandwidth is
++distributed among groups and processes in the expected way: for each
++group, the children of the group share the whole bandwidth of the
++group in proportion to their weights. In particular, this implies
++that, for each leaf group, every process of the group receives the
++same share of the whole group bandwidth, unless the ioprio of the
++process is modified.
++
++The resource-sharing guarantee for a group may partially or totally
++switch from bandwidth to time, if providing bandwidth guarantees to
++the group lowers the throughput too much. This switch occurs on a
++per-process basis: if a process of a leaf group causes throughput loss
++if served in such a way to receive its share of the bandwidth, then
++BFQ switches back to just time-based proportional share for that
++process.
++
++4-2 Interface
++-------------
++
++To get proportional sharing of bandwidth with BFQ for a given device,
++BFQ must of course be the active scheduler for that device.
++
++Within each group directory, the names of the files associated with
++BFQ-specific cgroup parameters and stats begin with the "bfq."
++prefix. So, with cgroups-v1 or cgroups-v2, the full prefix for
++BFQ-specific files is "blkio.bfq." or "io.bfq." For example, the group
++parameter to set the weight of a group with BFQ is blkio.bfq.weight
++or io.bfq.weight.
++
++Parameters to set
++-----------------
++
++For each group, there is only the following parameter to set.
++
++weight (namely blkio.bfq.weight or io.bfq-weight): the weight of the
++group inside its parent. Available values: 1..10000 (default 100). The
++linear mapping between ioprio and weights, described at the beginning
++of the tunable section, is still valid, but all weights higher than
++IOPRIO_BE_NR*10 are mapped to ioprio 0.
++
++Recall that, if low-latency is set, then BFQ automatically raises the
++weight of the queues associated with interactive and soft real-time
++applications. Unset this tunable if you need/want to control weights.
++
++
++[1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
++    Scheduler", Proceedings of the First Workshop on Mobile System
++    Technologies (MST-2015), May 2015.
++    http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
++
++[2] P. Valente and M. Andreolini, "Improving Application
++    Responsiveness with the BFQ Disk I/O Scheduler", Proceedings of
++    the 5th Annual International Systems and Storage Conference
++    (SYSTOR '12), June 2012.
++    Slightly extended version:
++    http://algogroup.unimore.it/people/paolo/disk_sched/bfq-v1-suite-
++							results.pdf
+diff --git a/Makefile b/Makefile
+index 4b074a9..4afff93 100644
+--- a/Makefile
++++ b/Makefile
+@@ -1,7 +1,7 @@
+ VERSION = 4
+ PATCHLEVEL = 11
+ SUBLEVEL = 0
+-EXTRAVERSION =
++EXTRAVERSION = -bfq
+ NAME = Fearless Coyote
+ 
+ # *DOCUMENTATION*
+diff --git a/block/Kconfig.iosched b/block/Kconfig.iosched
+index b1ab0ca..99a4226 100644
+--- a/block/Kconfig.iosched
++++ b/block/Kconfig.iosched
+@@ -43,20 +43,20 @@ config IOSCHED_BFQ
+ 	tristate "BFQ I/O scheduler"
+ 	default n
+ 	---help---
+-	  The BFQ I/O scheduler tries to distribute bandwidth among
+-	  all processes according to their weights.
+-	  It aims at distributing the bandwidth as desired, independently of
+-	  the disk parameters and with any workload. It also tries to
+-	  guarantee low latency to interactive and soft real-time
+-	  applications. If compiled built-in (saying Y here), BFQ can
+-	  be configured to support hierarchical scheduling.
++	The BFQ I/O scheduler distributes bandwidth among all
++	processes according to their weights, regardless of the
++	device parameters and with any workload. It also guarantees
++	a low latency to interactive and soft real-time applications.
++	Details in Documentation/block/bfq-iosched.txt
+ 
+ config BFQ_GROUP_IOSCHED
+ 	bool "BFQ hierarchical scheduling support"
+-	depends on CGROUPS && IOSCHED_BFQ=y
++	depends on IOSCHED_BFQ && BLK_CGROUP
+ 	default n
+ 	---help---
+-	  Enable hierarchical scheduling in BFQ, using the blkio controller.
++
++	Enable hierarchical scheduling in BFQ, using the blkio
++	(cgroups-v1) or io (cgroups-v2) controller.
+ 
+ choice
+ 	prompt "Default I/O scheduler"
+diff --git a/block/bfq-cgroup.c b/block/bfq-cgroup.c
+index 0367996..39daaf4 100644
+--- a/block/bfq-cgroup.c
++++ b/block/bfq-cgroup.c
+@@ -7,7 +7,9 @@
+  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
+  *		      Paolo Valente <paolo.valente@unimore.it>
+  *
+- * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
++ * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
++ *
++ * Copyright (C) 2016 Paolo Valente <paolo.valente@linaro.org>
+  *
+  * Licensed under the GPL-2 as detailed in the accompanying COPYING.BFQ
+  * file.
+@@ -163,8 +165,6 @@ static struct bfq_group *blkg_to_bfqg(struct blkcg_gq *blkg)
+ {
+ 	struct blkg_policy_data *pd = blkg_to_pd(blkg, &blkcg_policy_bfq);
+ 
+-	BUG_ON(!pd);
+-
+ 	return pd_to_bfqg(pd);
+ }
+ 
+@@ -208,59 +208,47 @@ static void bfqg_put(struct bfq_group *bfqg)
+ 
+ static void bfqg_stats_update_io_add(struct bfq_group *bfqg,
+ 				     struct bfq_queue *bfqq,
+-				     int rw)
++				     unsigned int op)
+ {
+-	blkg_rwstat_add(&bfqg->stats.queued, rw, 1);
++	blkg_rwstat_add(&bfqg->stats.queued, op, 1);
+ 	bfqg_stats_end_empty_time(&bfqg->stats);
+ 	if (!(bfqq == ((struct bfq_data *)bfqg->bfqd)->in_service_queue))
+ 		bfqg_stats_set_start_group_wait_time(bfqg, bfqq_group(bfqq));
+ }
+ 
+-static void bfqg_stats_update_io_remove(struct bfq_group *bfqg, int rw)
+-{
+-	blkg_rwstat_add(&bfqg->stats.queued, rw, -1);
+-}
+-
+-static void bfqg_stats_update_io_merged(struct bfq_group *bfqg, int rw)
++static void bfqg_stats_update_io_remove(struct bfq_group *bfqg, unsigned int op)
+ {
+-	blkg_rwstat_add(&bfqg->stats.merged, rw, 1);
++	blkg_rwstat_add(&bfqg->stats.queued, op, -1);
+ }
+ 
+-static void bfqg_stats_update_dispatch(struct bfq_group *bfqg,
+-					      uint64_t bytes, int rw)
++static void bfqg_stats_update_io_merged(struct bfq_group *bfqg, unsigned int op)
+ {
+-	blkg_stat_add(&bfqg->stats.sectors, bytes >> 9);
+-	blkg_rwstat_add(&bfqg->stats.serviced, rw, 1);
+-	blkg_rwstat_add(&bfqg->stats.service_bytes, rw, bytes);
++	blkg_rwstat_add(&bfqg->stats.merged, op, 1);
+ }
+ 
+ static void bfqg_stats_update_completion(struct bfq_group *bfqg,
+-			uint64_t start_time, uint64_t io_start_time, int rw)
++			uint64_t start_time, uint64_t io_start_time,
++			unsigned int op)
+ {
+ 	struct bfqg_stats *stats = &bfqg->stats;
+ 	unsigned long long now = sched_clock();
+ 
+ 	if (time_after64(now, io_start_time))
+-		blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
++		blkg_rwstat_add(&stats->service_time, op,
++				now - io_start_time);
+ 	if (time_after64(io_start_time, start_time))
+-		blkg_rwstat_add(&stats->wait_time, rw,
++		blkg_rwstat_add(&stats->wait_time, op,
+ 				io_start_time - start_time);
+ }
+ 
+ /* @stats = 0 */
+ static void bfqg_stats_reset(struct bfqg_stats *stats)
+ {
+-	if (!stats)
+-		return;
+-
+ 	/* queued stats shouldn't be cleared */
+-	blkg_rwstat_reset(&stats->service_bytes);
+-	blkg_rwstat_reset(&stats->serviced);
+ 	blkg_rwstat_reset(&stats->merged);
+ 	blkg_rwstat_reset(&stats->service_time);
+ 	blkg_rwstat_reset(&stats->wait_time);
+ 	blkg_stat_reset(&stats->time);
+-	blkg_stat_reset(&stats->unaccounted_time);
+ 	blkg_stat_reset(&stats->avg_queue_size_sum);
+ 	blkg_stat_reset(&stats->avg_queue_size_samples);
+ 	blkg_stat_reset(&stats->dequeue);
+@@ -270,19 +258,16 @@ static void bfqg_stats_reset(struct bfqg_stats *stats)
+ }
+ 
+ /* @to += @from */
+-static void bfqg_stats_merge(struct bfqg_stats *to, struct bfqg_stats *from)
++static void bfqg_stats_add_aux(struct bfqg_stats *to, struct bfqg_stats *from)
+ {
+ 	if (!to || !from)
+ 		return;
+ 
+ 	/* queued stats shouldn't be cleared */
+-	blkg_rwstat_add_aux(&to->service_bytes, &from->service_bytes);
+-	blkg_rwstat_add_aux(&to->serviced, &from->serviced);
+ 	blkg_rwstat_add_aux(&to->merged, &from->merged);
+ 	blkg_rwstat_add_aux(&to->service_time, &from->service_time);
+ 	blkg_rwstat_add_aux(&to->wait_time, &from->wait_time);
+ 	blkg_stat_add_aux(&from->time, &from->time);
+-	blkg_stat_add_aux(&to->unaccounted_time, &from->unaccounted_time);
+ 	blkg_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
+ 	blkg_stat_add_aux(&to->avg_queue_size_samples,
+ 			  &from->avg_queue_size_samples);
+@@ -311,10 +296,8 @@ static void bfqg_stats_xfer_dead(struct bfq_group *bfqg)
+ 	if (unlikely(!parent))
+ 		return;
+ 
+-	bfqg_stats_merge(&parent->dead_stats, &bfqg->stats);
+-	bfqg_stats_merge(&parent->dead_stats, &bfqg->dead_stats);
++	bfqg_stats_add_aux(&parent->stats, &bfqg->stats);
+ 	bfqg_stats_reset(&bfqg->stats);
+-	bfqg_stats_reset(&bfqg->dead_stats);
+ }
+ 
+ static void bfq_init_entity(struct bfq_entity *entity,
+@@ -329,21 +312,17 @@ static void bfq_init_entity(struct bfq_entity *entity,
+ 		bfqq->ioprio_class = bfqq->new_ioprio_class;
+ 		bfqg_get(bfqg);
+ 	}
+-	entity->parent = bfqg->my_entity;
++	entity->parent = bfqg->my_entity; /* NULL for root group */
+ 	entity->sched_data = &bfqg->sched_data;
+ }
+ 
+ static void bfqg_stats_exit(struct bfqg_stats *stats)
+ {
+-	blkg_rwstat_exit(&stats->service_bytes);
+-	blkg_rwstat_exit(&stats->serviced);
+ 	blkg_rwstat_exit(&stats->merged);
+ 	blkg_rwstat_exit(&stats->service_time);
+ 	blkg_rwstat_exit(&stats->wait_time);
+ 	blkg_rwstat_exit(&stats->queued);
+-	blkg_stat_exit(&stats->sectors);
+ 	blkg_stat_exit(&stats->time);
+-	blkg_stat_exit(&stats->unaccounted_time);
+ 	blkg_stat_exit(&stats->avg_queue_size_sum);
+ 	blkg_stat_exit(&stats->avg_queue_size_samples);
+ 	blkg_stat_exit(&stats->dequeue);
+@@ -354,15 +333,11 @@ static void bfqg_stats_exit(struct bfqg_stats *stats)
+ 
+ static int bfqg_stats_init(struct bfqg_stats *stats, gfp_t gfp)
+ {
+-	if (blkg_rwstat_init(&stats->service_bytes, gfp) ||
+-	    blkg_rwstat_init(&stats->serviced, gfp) ||
+-	    blkg_rwstat_init(&stats->merged, gfp) ||
++	if (blkg_rwstat_init(&stats->merged, gfp) ||
+ 	    blkg_rwstat_init(&stats->service_time, gfp) ||
+ 	    blkg_rwstat_init(&stats->wait_time, gfp) ||
+ 	    blkg_rwstat_init(&stats->queued, gfp) ||
+-	    blkg_stat_init(&stats->sectors, gfp) ||
+ 	    blkg_stat_init(&stats->time, gfp) ||
+-	    blkg_stat_init(&stats->unaccounted_time, gfp) ||
+ 	    blkg_stat_init(&stats->avg_queue_size_sum, gfp) ||
+ 	    blkg_stat_init(&stats->avg_queue_size_samples, gfp) ||
+ 	    blkg_stat_init(&stats->dequeue, gfp) ||
+@@ -386,11 +361,27 @@ static struct bfq_group_data *blkcg_to_bfqgd(struct blkcg *blkcg)
+ 	return cpd_to_bfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_bfq));
+ }
+ 
++static struct blkcg_policy_data *bfq_cpd_alloc(gfp_t gfp)
++{
++	struct bfq_group_data *bgd;
++
++	bgd = kzalloc(sizeof(*bgd), gfp);
++	if (!bgd)
++		return NULL;
++	return &bgd->pd;
++}
++
+ static void bfq_cpd_init(struct blkcg_policy_data *cpd)
+ {
+ 	struct bfq_group_data *d = cpd_to_bfqgd(cpd);
+ 
+-	d->weight = BFQ_DEFAULT_GRP_WEIGHT;
++	d->weight = cgroup_subsys_on_dfl(io_cgrp_subsys) ?
++		CGROUP_WEIGHT_DFL : BFQ_WEIGHT_LEGACY_DFL;
++}
++
++static void bfq_cpd_free(struct blkcg_policy_data *cpd)
++{
++	kfree(cpd_to_bfqgd(cpd));
+ }
+ 
+ static struct blkg_policy_data *bfq_pd_alloc(gfp_t gfp, int node)
+@@ -401,8 +392,7 @@ static struct blkg_policy_data *bfq_pd_alloc(gfp_t gfp, int node)
+ 	if (!bfqg)
+ 		return NULL;
+ 
+-	if (bfqg_stats_init(&bfqg->stats, gfp) ||
+-	    bfqg_stats_init(&bfqg->dead_stats, gfp)) {
++	if (bfqg_stats_init(&bfqg->stats, gfp)) {
+ 		kfree(bfqg);
+ 		return NULL;
+ 	}
+@@ -410,27 +400,20 @@ static struct blkg_policy_data *bfq_pd_alloc(gfp_t gfp, int node)
+ 	return &bfqg->pd;
+ }
+ 
+-static void bfq_group_set_parent(struct bfq_group *bfqg,
+-					struct bfq_group *parent)
++static void bfq_pd_init(struct blkg_policy_data *pd)
+ {
++	struct blkcg_gq *blkg;
++	struct bfq_group *bfqg;
++	struct bfq_data *bfqd;
+ 	struct bfq_entity *entity;
++	struct bfq_group_data *d;
+ 
+-	BUG_ON(!parent);
+-	BUG_ON(!bfqg);
+-	BUG_ON(bfqg == parent);
+-
++	blkg = pd_to_blkg(pd);
++	BUG_ON(!blkg);
++	bfqg = blkg_to_bfqg(blkg);
++	bfqd = blkg->q->elevator->elevator_data;
+ 	entity = &bfqg->entity;
+-	entity->parent = parent->my_entity;
+-	entity->sched_data = &parent->sched_data;
+-}
+-
+-static void bfq_pd_init(struct blkg_policy_data *pd)
+-{
+-	struct blkcg_gq *blkg = pd_to_blkg(pd);
+-	struct bfq_group *bfqg = blkg_to_bfqg(blkg);
+-	struct bfq_data *bfqd = blkg->q->elevator->elevator_data;
+-	struct bfq_entity *entity = &bfqg->entity;
+-	struct bfq_group_data *d = blkcg_to_bfqgd(blkg->blkcg);
++	d = blkcg_to_bfqgd(blkg->blkcg);
+ 
+ 	entity->orig_weight = entity->weight = entity->new_weight = d->weight;
+ 	entity->my_sched_data = &bfqg->sched_data;
+@@ -448,70 +431,53 @@ static void bfq_pd_free(struct blkg_policy_data *pd)
+ 	struct bfq_group *bfqg = pd_to_bfqg(pd);
+ 
+ 	bfqg_stats_exit(&bfqg->stats);
+-	bfqg_stats_exit(&bfqg->dead_stats);
+-
+ 	return kfree(bfqg);
+ }
+ 
+-/* offset delta from bfqg->stats to bfqg->dead_stats */
+-static const int dead_stats_off_delta = offsetof(struct bfq_group, dead_stats) -
+-					offsetof(struct bfq_group, stats);
+-
+-/* to be used by recursive prfill, sums live and dead stats recursively */
+-static u64 bfqg_stat_pd_recursive_sum(struct blkg_policy_data *pd, int off)
++static void bfq_pd_reset_stats(struct blkg_policy_data *pd)
+ {
+-	u64 sum = 0;
++	struct bfq_group *bfqg = pd_to_bfqg(pd);
+ 
+-	sum += blkg_stat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_bfq, off);
+-	sum += blkg_stat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_bfq,
+-				       off + dead_stats_off_delta);
+-	return sum;
++	bfqg_stats_reset(&bfqg->stats);
+ }
+ 
+-/* to be used by recursive prfill, sums live and dead rwstats recursively */
+-static struct blkg_rwstat
+-bfqg_rwstat_pd_recursive_sum(struct blkg_policy_data *pd, int off)
++static void bfq_group_set_parent(struct bfq_group *bfqg,
++					struct bfq_group *parent)
+ {
+-	struct blkg_rwstat a, b;
++	struct bfq_entity *entity;
+ 
+-	a = blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_bfq, off);
+-	b = blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_bfq,
+-				      off + dead_stats_off_delta);
+-	blkg_rwstat_add_aux(&a, &b);
+-	return a;
++	BUG_ON(!parent);
++	BUG_ON(!bfqg);
++	BUG_ON(bfqg == parent);
++
++	entity = &bfqg->entity;
++	entity->parent = parent->my_entity;
++	entity->sched_data = &parent->sched_data;
+ }
+ 
+-static void bfq_pd_reset_stats(struct blkg_policy_data *pd)
++static struct bfq_group *bfq_lookup_bfqg(struct bfq_data *bfqd,
++					 struct blkcg *blkcg)
+ {
+-	struct bfq_group *bfqg = pd_to_bfqg(pd);
++	struct blkcg_gq *blkg;
+ 
+-	bfqg_stats_reset(&bfqg->stats);
+-	bfqg_stats_reset(&bfqg->dead_stats);
++	blkg = blkg_lookup(blkcg, bfqd->queue);
++	if (likely(blkg))
++		return blkg_to_bfqg(blkg);
++	return NULL;
+ }
+ 
+-static struct bfq_group *bfq_find_alloc_group(struct bfq_data *bfqd,
+-					      struct blkcg *blkcg)
++static struct bfq_group *bfq_find_set_group(struct bfq_data *bfqd,
++					    struct blkcg *blkcg)
+ {
+-	struct request_queue *q = bfqd->queue;
+-	struct bfq_group *bfqg = NULL, *parent;
+-	struct bfq_entity *entity = NULL;
++	struct bfq_group *bfqg, *parent;
++	struct bfq_entity *entity;
+ 
+ 	assert_spin_locked(bfqd->queue->queue_lock);
+ 
+-	/* avoid lookup for the common case where there's no blkcg */
+-	if (blkcg == &blkcg_root) {
+-		bfqg = bfqd->root_group;
+-	} else {
+-		struct blkcg_gq *blkg;
+-
+-		blkg = blkg_lookup_create(blkcg, q);
+-		if (!IS_ERR(blkg))
+-			bfqg = blkg_to_bfqg(blkg);
+-		else /* fallback to root_group */
+-			bfqg = bfqd->root_group;
+-	}
++	bfqg = bfq_lookup_bfqg(bfqd, blkcg);
+ 
+-	BUG_ON(!bfqg);
++	if (unlikely(!bfqg))
++		return NULL;
+ 
+ 	/*
+ 	 * Update chain of bfq_groups as we might be handling a leaf group
+@@ -537,11 +503,15 @@ static struct bfq_group *bfq_find_alloc_group(struct bfq_data *bfqd,
+ static void bfq_pos_tree_add_move(struct bfq_data *bfqd,
+ 				  struct bfq_queue *bfqq);
+ 
++static void bfq_bfqq_expire(struct bfq_data *bfqd,
++			    struct bfq_queue *bfqq,
++			    bool compensate,
++			    enum bfqq_expiration reason);
++
+ /**
+  * bfq_bfqq_move - migrate @bfqq to @bfqg.
+  * @bfqd: queue descriptor.
+  * @bfqq: the queue to move.
+- * @entity: @bfqq's entity.
+  * @bfqg: the group to move to.
+  *
+  * Move @bfqq to @bfqg, deactivating it from its old group and reactivating
+@@ -552,26 +522,40 @@ static void bfq_pos_tree_add_move(struct bfq_data *bfqd,
+  * rcu_read_lock()).
+  */
+ static void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+-			  struct bfq_entity *entity, struct bfq_group *bfqg)
++			  struct bfq_group *bfqg)
+ {
+-	int busy, resume;
+-
+-	busy = bfq_bfqq_busy(bfqq);
+-	resume = !RB_EMPTY_ROOT(&bfqq->sort_list);
++	struct bfq_entity *entity = &bfqq->entity;
+ 
+-	BUG_ON(resume && !entity->on_st);
+-	BUG_ON(busy && !resume && entity->on_st &&
++	BUG_ON(!bfq_bfqq_busy(bfqq) && !RB_EMPTY_ROOT(&bfqq->sort_list));
++	BUG_ON(!RB_EMPTY_ROOT(&bfqq->sort_list) && !entity->on_st);
++	BUG_ON(bfq_bfqq_busy(bfqq) && RB_EMPTY_ROOT(&bfqq->sort_list)
++	       && entity->on_st &&
+ 	       bfqq != bfqd->in_service_queue);
++	BUG_ON(!bfq_bfqq_busy(bfqq) && bfqq == bfqd->in_service_queue);
++
++	/* If bfqq is empty, then bfq_bfqq_expire also invokes
++	 * bfq_del_bfqq_busy, thereby removing bfqq and its entity
++	 * from data structures related to current group. Otherwise we
++	 * need to remove bfqq explicitly with bfq_deactivate_bfqq, as
++	 * we do below.
++	 */
++	if (bfqq == bfqd->in_service_queue)
++		bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
++				false, BFQ_BFQQ_PREEMPTED);
++
++	BUG_ON(entity->on_st && !bfq_bfqq_busy(bfqq)
++	    && &bfq_entity_service_tree(entity)->idle !=
++	       entity->tree);
+ 
+-	if (busy) {
+-		BUG_ON(atomic_read(&bfqq->ref) < 2);
++	BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_busy(bfqq));
+ 
+-		if (!resume)
+-			bfq_del_bfqq_busy(bfqd, bfqq, 0);
+-		else
+-			bfq_deactivate_bfqq(bfqd, bfqq, 0);
+-	} else if (entity->on_st)
++	if (bfq_bfqq_busy(bfqq))
++		bfq_deactivate_bfqq(bfqd, bfqq, false, false);
++	else if (entity->on_st) {
++		BUG_ON(&bfq_entity_service_tree(entity)->idle !=
++		       entity->tree);
+ 		bfq_put_idle_entity(bfq_entity_service_tree(entity), entity);
++	}
+ 	bfqg_put(bfqq_group(bfqq));
+ 
+ 	/*
+@@ -583,14 +567,17 @@ static void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ 	entity->sched_data = &bfqg->sched_data;
+ 	bfqg_get(bfqg);
+ 
+-	if (busy) {
++	BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_busy(bfqq));
++	if (bfq_bfqq_busy(bfqq)) {
+ 		bfq_pos_tree_add_move(bfqd, bfqq);
+-		if (resume)
+-			bfq_activate_bfqq(bfqd, bfqq);
++		bfq_activate_bfqq(bfqd, bfqq);
+ 	}
+ 
+ 	if (!bfqd->in_service_queue && !bfqd->rq_in_driver)
+ 		bfq_schedule_dispatch(bfqd);
++	BUG_ON(entity->on_st && !bfq_bfqq_busy(bfqq)
++	       && &bfq_entity_service_tree(entity)->idle !=
++	       entity->tree);
+ }
+ 
+ /**
+@@ -617,7 +604,11 @@ static struct bfq_group *__bfq_bic_change_cgroup(struct bfq_data *bfqd,
+ 
+ 	lockdep_assert_held(bfqd->queue->queue_lock);
+ 
+-	bfqg = bfq_find_alloc_group(bfqd, blkcg);
++	bfqg = bfq_find_set_group(bfqd, blkcg);
++
++	if (unlikely(!bfqg))
++		bfqg = bfqd->root_group;
++
+ 	if (async_bfqq) {
+ 		entity = &async_bfqq->entity;
+ 
+@@ -625,7 +616,8 @@ static struct bfq_group *__bfq_bic_change_cgroup(struct bfq_data *bfqd,
+ 			bic_set_bfqq(bic, NULL, 0);
+ 			bfq_log_bfqq(bfqd, async_bfqq,
+ 				     "bic_change_group: %p %d",
+-				     async_bfqq, atomic_read(&async_bfqq->ref));
++				     async_bfqq,
++				     async_bfqq->ref);
+ 			bfq_put_queue(async_bfqq);
+ 		}
+ 	}
+@@ -633,7 +625,7 @@ static struct bfq_group *__bfq_bic_change_cgroup(struct bfq_data *bfqd,
+ 	if (sync_bfqq) {
+ 		entity = &sync_bfqq->entity;
+ 		if (entity->sched_data != &bfqg->sched_data)
+-			bfq_bfqq_move(bfqd, sync_bfqq, entity, bfqg);
++			bfq_bfqq_move(bfqd, sync_bfqq, bfqg);
+ 	}
+ 
+ 	return bfqg;
+@@ -642,25 +634,23 @@ static struct bfq_group *__bfq_bic_change_cgroup(struct bfq_data *bfqd,
+ static void bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio)
+ {
+ 	struct bfq_data *bfqd = bic_to_bfqd(bic);
+-	struct blkcg *blkcg;
+ 	struct bfq_group *bfqg = NULL;
+-	uint64_t id;
++	uint64_t serial_nr;
+ 
+ 	rcu_read_lock();
+-	blkcg = bio_blkcg(bio);
+-	id = blkcg->css.serial_nr;
+-	rcu_read_unlock();
++	serial_nr = bio_blkcg(bio)->css.serial_nr;
+ 
+ 	/*
+ 	 * Check whether blkcg has changed.  The condition may trigger
+ 	 * spuriously on a newly created cic but there's no harm.
+ 	 */
+-	if (unlikely(!bfqd) || likely(bic->blkcg_id == id))
+-		return;
++	if (unlikely(!bfqd) || likely(bic->blkcg_serial_nr == serial_nr))
++		goto out;
+ 
+-	bfqg = __bfq_bic_change_cgroup(bfqd, bic, blkcg);
+-	BUG_ON(!bfqg);
+-	bic->blkcg_id = id;
++	bfqg = __bfq_bic_change_cgroup(bfqd, bic, bio_blkcg(bio));
++	bic->blkcg_serial_nr = serial_nr;
++out:
++	rcu_read_unlock();
+ }
+ 
+ /**
+@@ -672,7 +662,7 @@ static void bfq_flush_idle_tree(struct bfq_service_tree *st)
+ 	struct bfq_entity *entity = st->first_idle;
+ 
+ 	for (; entity ; entity = st->first_idle)
+-		__bfq_deactivate_entity(entity, 0);
++		__bfq_deactivate_entity(entity, false);
+ }
+ 
+ /**
+@@ -686,7 +676,7 @@ static void bfq_reparent_leaf_entity(struct bfq_data *bfqd,
+ 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
+ 
+ 	BUG_ON(!bfqq);
+-	bfq_bfqq_move(bfqd, bfqq, entity, bfqd->root_group);
++	bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
+ }
+ 
+ /**
+@@ -717,11 +707,12 @@ static void bfq_reparent_active_entities(struct bfq_data *bfqd,
+ }
+ 
+ /**
+- * bfq_destroy_group - destroy @bfqg.
+- * @bfqg: the group being destroyed.
++ * bfq_pd_offline - deactivate the entity associated with @pd,
++ *		    and reparent its children entities.
++ * @pd: descriptor of the policy going offline.
+  *
+- * Destroy @bfqg, making sure that it is not referenced from its parent.
+- * blkio already grabs the queue_lock for us, so no need to use RCU-based magic
++ * blkio already grabs the queue_lock for us, so no need to use
++ * RCU-based magic
+  */
+ static void bfq_pd_offline(struct blkg_policy_data *pd)
+ {
+@@ -776,10 +767,15 @@ static void bfq_pd_offline(struct blkg_policy_data *pd)
+ 	BUG_ON(bfqg->sched_data.next_in_service);
+ 	BUG_ON(bfqg->sched_data.in_service_entity);
+ 
+-	__bfq_deactivate_entity(entity, 0);
++	__bfq_deactivate_entity(entity, false);
+ 	bfq_put_async_queues(bfqd, bfqg);
+-	BUG_ON(entity->tree);
+ 
++	/*
++	 * @blkg is going offline and will be ignored by
++	 * blkg_[rw]stat_recursive_sum().  Transfer stats to the parent so
++	 * that they don't get lost.  If IOs complete after this point, the
++	 * stats for them will be lost.  Oh well...
++	 */
+ 	bfqg_stats_xfer_dead(bfqg);
+ }
+ 
+@@ -789,46 +785,35 @@ static void bfq_end_wr_async(struct bfq_data *bfqd)
+ 
+ 	list_for_each_entry(blkg, &bfqd->queue->blkg_list, q_node) {
+ 		struct bfq_group *bfqg = blkg_to_bfqg(blkg);
++		BUG_ON(!bfqg);
+ 
+ 		bfq_end_wr_async_queues(bfqd, bfqg);
+ 	}
+ 	bfq_end_wr_async_queues(bfqd, bfqd->root_group);
+ }
+ 
+-static u64 bfqio_cgroup_weight_read(struct cgroup_subsys_state *css,
+-				       struct cftype *cftype)
+-{
+-	struct blkcg *blkcg = css_to_blkcg(css);
+-	struct bfq_group_data *bfqgd = blkcg_to_bfqgd(blkcg);
+-	int ret = -EINVAL;
+-
+-	spin_lock_irq(&blkcg->lock);
+-	ret = bfqgd->weight;
+-	spin_unlock_irq(&blkcg->lock);
+-
+-	return ret;
+-}
+-
+-static int bfqio_cgroup_weight_read_dfl(struct seq_file *sf, void *v)
++static int bfq_io_show_weight(struct seq_file *sf, void *v)
+ {
+ 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
+ 	struct bfq_group_data *bfqgd = blkcg_to_bfqgd(blkcg);
++	unsigned int val = 0;
+ 
+-	spin_lock_irq(&blkcg->lock);
+-	seq_printf(sf, "%u\n", bfqgd->weight);
+-	spin_unlock_irq(&blkcg->lock);
++	if (bfqgd)
++		val = bfqgd->weight;
++
++	seq_printf(sf, "%u\n", val);
+ 
+ 	return 0;
+ }
+ 
+-static int bfqio_cgroup_weight_write(struct cgroup_subsys_state *css,
+-					struct cftype *cftype,
+-					u64 val)
++static int bfq_io_set_weight_legacy(struct cgroup_subsys_state *css,
++				    struct cftype *cftype,
++				    u64 val)
+ {
+ 	struct blkcg *blkcg = css_to_blkcg(css);
+ 	struct bfq_group_data *bfqgd = blkcg_to_bfqgd(blkcg);
+ 	struct blkcg_gq *blkg;
+-	int ret = -EINVAL;
++	int ret = -ERANGE;
+ 
+ 	if (val < BFQ_MIN_WEIGHT || val > BFQ_MAX_WEIGHT)
+ 		return ret;
+@@ -873,13 +858,18 @@ static int bfqio_cgroup_weight_write(struct cgroup_subsys_state *css,
+ 	return ret;
+ }
+ 
+-static ssize_t bfqio_cgroup_weight_write_dfl(struct kernfs_open_file *of,
+-					     char *buf, size_t nbytes,
+-					     loff_t off)
++static ssize_t bfq_io_set_weight(struct kernfs_open_file *of,
++				 char *buf, size_t nbytes,
++				 loff_t off)
+ {
++	u64 weight;
+ 	/* First unsigned long found in the file is used */
+-	return bfqio_cgroup_weight_write(of_css(of), NULL,
+-					 simple_strtoull(strim(buf), NULL, 0));
++	int ret = kstrtoull(strim(buf), 0, &weight);
++
++	if (ret)
++		return ret;
++
++	return bfq_io_set_weight_legacy(of_css(of), NULL, weight);
+ }
+ 
+ static int bfqg_print_stat(struct seq_file *sf, void *v)
+@@ -899,16 +889,17 @@ static int bfqg_print_rwstat(struct seq_file *sf, void *v)
+ static u64 bfqg_prfill_stat_recursive(struct seq_file *sf,
+ 				      struct blkg_policy_data *pd, int off)
+ {
+-	u64 sum = bfqg_stat_pd_recursive_sum(pd, off);
+-
++	u64 sum = blkg_stat_recursive_sum(pd_to_blkg(pd),
++					  &blkcg_policy_bfq, off);
+ 	return __blkg_prfill_u64(sf, pd, sum);
+ }
+ 
+ static u64 bfqg_prfill_rwstat_recursive(struct seq_file *sf,
+ 					struct blkg_policy_data *pd, int off)
+ {
+-	struct blkg_rwstat sum = bfqg_rwstat_pd_recursive_sum(pd, off);
+-
++	struct blkg_rwstat sum = blkg_rwstat_recursive_sum(pd_to_blkg(pd),
++							   &blkcg_policy_bfq,
++							   off);
+ 	return __blkg_prfill_rwstat(sf, pd, &sum);
+ }
+ 
+@@ -928,6 +919,41 @@ static int bfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
+ 	return 0;
+ }
+ 
++static u64 bfqg_prfill_sectors(struct seq_file *sf, struct blkg_policy_data *pd,
++			       int off)
++{
++	u64 sum = blkg_rwstat_total(&pd->blkg->stat_bytes);
++
++	return __blkg_prfill_u64(sf, pd, sum >> 9);
++}
++
++static int bfqg_print_stat_sectors(struct seq_file *sf, void *v)
++{
++	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
++			  bfqg_prfill_sectors, &blkcg_policy_bfq, 0, false);
++	return 0;
++}
++
++static u64 bfqg_prfill_sectors_recursive(struct seq_file *sf,
++					 struct blkg_policy_data *pd, int off)
++{
++	struct blkg_rwstat tmp = blkg_rwstat_recursive_sum(pd->blkg, NULL,
++					offsetof(struct blkcg_gq, stat_bytes));
++	u64 sum = atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_READ]) +
++		atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_WRITE]);
++
++	return __blkg_prfill_u64(sf, pd, sum >> 9);
++}
++
++static int bfqg_print_stat_sectors_recursive(struct seq_file *sf, void *v)
++{
++	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
++			  bfqg_prfill_sectors_recursive, &blkcg_policy_bfq, 0,
++			  false);
++	return 0;
++}
++
++
+ static u64 bfqg_prfill_avg_queue_size(struct seq_file *sf,
+ 				      struct blkg_policy_data *pd, int off)
+ {
+@@ -964,38 +990,15 @@ bfq_create_group_hierarchy(struct bfq_data *bfqd, int node)
+ 	return blkg_to_bfqg(bfqd->queue->root_blkg);
+ }
+ 
+-static struct blkcg_policy_data *bfq_cpd_alloc(gfp_t gfp)
+-{
+-	struct bfq_group_data *bgd;
+-
+-	bgd = kzalloc(sizeof(*bgd), GFP_KERNEL);
+-	if (!bgd)
+-		return NULL;
+-	return &bgd->pd;
+-}
+-
+-static void bfq_cpd_free(struct blkcg_policy_data *cpd)
+-{
+-	kfree(cpd_to_bfqgd(cpd));
+-}
+-
+-static struct cftype bfqio_files_dfl[] = {
++static struct cftype bfq_blkcg_legacy_files[] = {
+ 	{
+-		.name = "weight",
++		.name = "bfq.weight",
+ 		.flags = CFTYPE_NOT_ON_ROOT,
+-		.seq_show = bfqio_cgroup_weight_read_dfl,
+-		.write = bfqio_cgroup_weight_write_dfl,
++		.seq_show = bfq_io_show_weight,
++		.write_u64 = bfq_io_set_weight_legacy,
+ 	},
+-	{} /* terminate */
+-};
+ 
+-static struct cftype bfqio_files[] = {
+-	{
+-		.name = "bfq.weight",
+-		.read_u64 = bfqio_cgroup_weight_read,
+-		.write_u64 = bfqio_cgroup_weight_write,
+-	},
+-	/* statistics, cover only the tasks in the bfqg */
++	/* statistics, covers only the tasks in the bfqg */
+ 	{
+ 		.name = "bfq.time",
+ 		.private = offsetof(struct bfq_group, stats.time),
+@@ -1003,18 +1006,17 @@ static struct cftype bfqio_files[] = {
+ 	},
+ 	{
+ 		.name = "bfq.sectors",
+-		.private = offsetof(struct bfq_group, stats.sectors),
+-		.seq_show = bfqg_print_stat,
++		.seq_show = bfqg_print_stat_sectors,
+ 	},
+ 	{
+ 		.name = "bfq.io_service_bytes",
+-		.private = offsetof(struct bfq_group, stats.service_bytes),
+-		.seq_show = bfqg_print_rwstat,
++		.private = (unsigned long)&blkcg_policy_bfq,
++		.seq_show = blkg_print_stat_bytes,
+ 	},
+ 	{
+ 		.name = "bfq.io_serviced",
+-		.private = offsetof(struct bfq_group, stats.serviced),
+-		.seq_show = bfqg_print_rwstat,
++		.private = (unsigned long)&blkcg_policy_bfq,
++		.seq_show = blkg_print_stat_ios,
+ 	},
+ 	{
+ 		.name = "bfq.io_service_time",
+@@ -1045,18 +1047,17 @@ static struct cftype bfqio_files[] = {
+ 	},
+ 	{
+ 		.name = "bfq.sectors_recursive",
+-		.private = offsetof(struct bfq_group, stats.sectors),
+-		.seq_show = bfqg_print_stat_recursive,
++		.seq_show = bfqg_print_stat_sectors_recursive,
+ 	},
+ 	{
+ 		.name = "bfq.io_service_bytes_recursive",
+-		.private = offsetof(struct bfq_group, stats.service_bytes),
+-		.seq_show = bfqg_print_rwstat_recursive,
++		.private = (unsigned long)&blkcg_policy_bfq,
++		.seq_show = blkg_print_stat_bytes_recursive,
+ 	},
+ 	{
+ 		.name = "bfq.io_serviced_recursive",
+-		.private = offsetof(struct bfq_group, stats.serviced),
+-		.seq_show = bfqg_print_rwstat_recursive,
++		.private = (unsigned long)&blkcg_policy_bfq,
++		.seq_show = blkg_print_stat_ios_recursive,
+ 	},
+ 	{
+ 		.name = "bfq.io_service_time_recursive",
+@@ -1102,31 +1103,42 @@ static struct cftype bfqio_files[] = {
+ 		.private = offsetof(struct bfq_group, stats.dequeue),
+ 		.seq_show = bfqg_print_stat,
+ 	},
+-	{
+-		.name = "bfq.unaccounted_time",
+-		.private = offsetof(struct bfq_group, stats.unaccounted_time),
+-		.seq_show = bfqg_print_stat,
+-	},
+ 	{ }	/* terminate */
+ };
+ 
+-static struct blkcg_policy blkcg_policy_bfq = {
+-	.dfl_cftypes            = bfqio_files_dfl,
+-	.legacy_cftypes		= bfqio_files,
+-
+-	.pd_alloc_fn		= bfq_pd_alloc,
+-	.pd_init_fn		= bfq_pd_init,
+-	.pd_offline_fn		= bfq_pd_offline,
+-	.pd_free_fn		= bfq_pd_free,
+-	.pd_reset_stats_fn	= bfq_pd_reset_stats,
+-
+-	.cpd_alloc_fn		= bfq_cpd_alloc,
+-	.cpd_init_fn		= bfq_cpd_init,
+-	.cpd_bind_fn		= bfq_cpd_init,
+-	.cpd_free_fn		= bfq_cpd_free,
++static struct cftype bfq_blkg_files[] = {
++	{
++		.name = "bfq.weight",
++		.flags = CFTYPE_NOT_ON_ROOT,
++		.seq_show = bfq_io_show_weight,
++		.write = bfq_io_set_weight,
++	},
++	{} /* terminate */
+ };
+ 
+-#else
++#else /* CONFIG_BFQ_GROUP_IOSCHED */
++
++static inline void bfqg_stats_update_io_add(struct bfq_group *bfqg,
++			struct bfq_queue *bfqq, unsigned int op) { }
++static inline void
++bfqg_stats_update_io_remove(struct bfq_group *bfqg, unsigned int op) { }
++static inline void
++bfqg_stats_update_io_merged(struct bfq_group *bfqg, unsigned int op) { }
++static inline void bfqg_stats_update_completion(struct bfq_group *bfqg,
++			uint64_t start_time, uint64_t io_start_time,
++			unsigned int op) { }
++static inline void
++bfqg_stats_set_start_group_wait_time(struct bfq_group *bfqg,
++				     struct bfq_group *curr_bfqg) { }
++static inline void bfqg_stats_end_empty_time(struct bfqg_stats *stats) { }
++static inline void bfqg_stats_update_dequeue(struct bfq_group *bfqg) { }
++static inline void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg) { }
++static inline void bfqg_stats_update_idle_time(struct bfq_group *bfqg) { }
++static inline void bfqg_stats_set_start_idle_time(struct bfq_group *bfqg) { }
++static inline void bfqg_stats_update_avg_queue_size(struct bfq_group *bfqg) { }
++
++static void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++			  struct bfq_group *bfqg) {}
+ 
+ static void bfq_init_entity(struct bfq_entity *entity,
+ 			    struct bfq_group *bfqg)
+@@ -1142,35 +1154,22 @@ static void bfq_init_entity(struct bfq_entity *entity,
+ 	entity->sched_data = &bfqg->sched_data;
+ }
+ 
+-static struct bfq_group *
+-bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio)
+-{
+-	struct bfq_data *bfqd = bic_to_bfqd(bic);
+-
+-	return bfqd->root_group;
+-}
+-
+-static void bfq_bfqq_move(struct bfq_data *bfqd,
+-			  struct bfq_queue *bfqq,
+-			  struct bfq_entity *entity,
+-			  struct bfq_group *bfqg)
+-{
+-}
++static void bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio) {}
+ 
+ static void bfq_end_wr_async(struct bfq_data *bfqd)
+ {
+ 	bfq_end_wr_async_queues(bfqd, bfqd->root_group);
+ }
+ 
+-static void bfq_disconnect_groups(struct bfq_data *bfqd)
++static struct bfq_group *bfq_find_set_group(struct bfq_data *bfqd,
++					    struct blkcg *blkcg)
+ {
+-	bfq_put_async_queues(bfqd, bfqd->root_group);
++	return bfqd->root_group;
+ }
+ 
+-static struct bfq_group *bfq_find_alloc_group(struct bfq_data *bfqd,
+-					      struct blkcg *blkcg)
++static struct bfq_group *bfqq_group(struct bfq_queue *bfqq)
+ {
+-	return bfqd->root_group;
++	return bfqq->bfqd->root_group;
+ }
+ 
+ static struct bfq_group *
+diff --git a/block/bfq-iosched.c b/block/bfq-iosched.c
+index cf3e9b1..a56888e 100644
+--- a/block/bfq-iosched.c
++++ b/block/bfq-iosched.c
+@@ -1,5 +1,5 @@
+ /*
+- * Budget Fair Queueing (BFQ) disk scheduler.
++ * Budget Fair Queueing (BFQ) I/O scheduler.
+  *
+  * Based on ideas and code from CFQ:
+  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
+@@ -7,25 +7,34 @@
+  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
+  *		      Paolo Valente <paolo.valente@unimore.it>
+  *
+- * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
++ * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
++ *
++ * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
+  *
+  * Licensed under the GPL-2 as detailed in the accompanying COPYING.BFQ
+  * file.
+  *
+- * BFQ is a proportional-share storage-I/O scheduling algorithm based on
+- * the slice-by-slice service scheme of CFQ. But BFQ assigns budgets,
+- * measured in number of sectors, to processes instead of time slices. The
+- * device is not granted to the in-service process for a given time slice,
+- * but until it has exhausted its assigned budget. This change from the time
+- * to the service domain allows BFQ to distribute the device throughput
+- * among processes as desired, without any distortion due to ZBR, workload
+- * fluctuations or other factors. BFQ uses an ad hoc internal scheduler,
+- * called B-WF2Q+, to schedule processes according to their budgets. More
+- * precisely, BFQ schedules queues associated to processes. Thanks to the
+- * accurate policy of B-WF2Q+, BFQ can afford to assign high budgets to
+- * I/O-bound processes issuing sequential requests (to boost the
+- * throughput), and yet guarantee a low latency to interactive and soft
+- * real-time applications.
++ * BFQ is a proportional-share I/O scheduler, with some extra
++ * low-latency capabilities. BFQ also supports full hierarchical
++ * scheduling through cgroups. Next paragraphs provide an introduction
++ * on BFQ inner workings. Details on BFQ benefits and usage can be
++ * found in Documentation/block/bfq-iosched.txt.
++ *
++ * BFQ is a proportional-share storage-I/O scheduling algorithm based
++ * on the slice-by-slice service scheme of CFQ. But BFQ assigns
++ * budgets, measured in number of sectors, to processes instead of
++ * time slices. The device is not granted to the in-service process
++ * for a given time slice, but until it has exhausted its assigned
++ * budget. This change from the time to the service domain enables BFQ
++ * to distribute the device throughput among processes as desired,
++ * without any distortion due to throughput fluctuations, or to device
++ * internal queueing. BFQ uses an ad hoc internal scheduler, called
++ * B-WF2Q+, to schedule processes according to their budgets. More
++ * precisely, BFQ schedules queues associated with processes. Thanks to
++ * the accurate policy of B-WF2Q+, BFQ can afford to assign high
++ * budgets to I/O-bound processes issuing sequential requests (to
++ * boost the throughput), and yet guarantee a low latency to
++ * interactive and soft real-time applications.
+  *
+  * BFQ is described in [1], where also a reference to the initial, more
+  * theoretical paper on BFQ can be found. The interested reader can find
+@@ -40,10 +49,10 @@
+  * H-WF2Q+, while the augmented tree used to implement B-WF2Q+ with O(log N)
+  * complexity derives from the one introduced with EEVDF in [3].
+  *
+- * [1] P. Valente and M. Andreolini, ``Improving Application Responsiveness
+- *     with the BFQ Disk I/O Scheduler'',
+- *     Proceedings of the 5th Annual International Systems and Storage
+- *     Conference (SYSTOR '12), June 2012.
++ * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
++ *   Scheduler", Proceedings of the First Workshop on Mobile System
++ *   Technologies (MST-2015), May 2015.
++ *   http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
+  *
+  * http://algogroup.unimo.it/people/paolo/disk_sched/bf1-v1-suite-results.pdf
+  *
+@@ -67,27 +76,26 @@
+ #include <linux/jiffies.h>
+ #include <linux/rbtree.h>
+ #include <linux/ioprio.h>
+-#include "bfq.h"
+ #include "blk.h"
++#include "bfq.h"
+ 
+-/* Expiration time of sync (0) and async (1) requests, in jiffies. */
+-static const int bfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
++/* Expiration time of sync (0) and async (1) requests, in ns. */
++static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
+ 
+ /* Maximum backwards seek, in KiB. */
+-static const int bfq_back_max = 16 * 1024;
++static const int bfq_back_max = (16 * 1024);
+ 
+ /* Penalty of a backwards seek, in number of sectors. */
+ static const int bfq_back_penalty = 2;
+ 
+-/* Idling period duration, in jiffies. */
+-static int bfq_slice_idle = HZ / 125;
++/* Idling period duration, in ns. */
++static u32 bfq_slice_idle = (NSEC_PER_SEC / 125);
+ 
+ /* Minimum number of assigned budgets for which stats are safe to compute. */
+ static const int bfq_stats_min_budgets = 194;
+ 
+ /* Default maximum budget values, in sectors and number of requests. */
+-static const int bfq_default_max_budget = 16 * 1024;
+-static const int bfq_max_budget_async_rq = 4;
++static const int bfq_default_max_budget = (16 * 1024);
+ 
+ /*
+  * Async to sync throughput distribution is controlled as follows:
+@@ -97,23 +105,28 @@ static const int bfq_max_budget_async_rq = 4;
+ static const int bfq_async_charge_factor = 10;
+ 
+ /* Default timeout values, in jiffies, approximating CFQ defaults. */
+-static const int bfq_timeout_sync = HZ / 8;
+-static int bfq_timeout_async = HZ / 25;
++static const int bfq_timeout = (HZ / 8);
+ 
+-struct kmem_cache *bfq_pool;
++static struct kmem_cache *bfq_pool;
+ 
+-/* Below this threshold (in ms), we consider thinktime immediate. */
+-#define BFQ_MIN_TT		2
++/* Below this threshold (in ns), we consider thinktime immediate. */
++#define BFQ_MIN_TT		(2 * NSEC_PER_MSEC)
+ 
+ /* hw_tag detection: parallel requests threshold and min samples needed. */
+ #define BFQ_HW_QUEUE_THRESHOLD	4
+ #define BFQ_HW_QUEUE_SAMPLES	32
+ 
+-#define BFQQ_SEEK_THR	 (sector_t)(8 * 1024)
+-#define BFQQ_SEEKY(bfqq) ((bfqq)->seek_mean > BFQQ_SEEK_THR)
++#define BFQQ_SEEK_THR		(sector_t)(8 * 100)
++#define BFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
++#define BFQQ_CLOSE_THR		(sector_t)(8 * 1024)
++#define BFQQ_SEEKY(bfqq)	(hweight32(bfqq->seek_history) > 32/8)
+ 
+-/* Min samples used for peak rate estimation (for autotuning). */
+-#define BFQ_PEAK_RATE_SAMPLES	32
++/* Min number of samples required to perform peak-rate update */
++#define BFQ_RATE_MIN_SAMPLES	32
++/* Min observation time interval required to perform a peak-rate update (ns) */
++#define BFQ_RATE_MIN_INTERVAL	(300*NSEC_PER_MSEC)
++/* Target observation time interval for a peak-rate update (ns) */
++#define BFQ_RATE_REF_INTERVAL	NSEC_PER_SEC
+ 
+ /* Shift used for peak rate fixed precision calculations. */
+ #define BFQ_RATE_SHIFT		16
+@@ -141,16 +154,24 @@ struct kmem_cache *bfq_pool;
+  * The device's speed class is dynamically (re)detected in
+  * bfq_update_peak_rate() every time the estimated peak rate is updated.
+  *
+- * In the following definitions, R_slow[0]/R_fast[0] and T_slow[0]/T_fast[0]
+- * are the reference values for a slow/fast rotational device, whereas
+- * R_slow[1]/R_fast[1] and T_slow[1]/T_fast[1] are the reference values for
+- * a slow/fast non-rotational device. Finally, device_speed_thresh are the
+- * thresholds used to switch between speed classes.
++ * In the following definitions, R_slow[0]/R_fast[0] and
++ * T_slow[0]/T_fast[0] are the reference values for a slow/fast
++ * rotational device, whereas R_slow[1]/R_fast[1] and
++ * T_slow[1]/T_fast[1] are the reference values for a slow/fast
++ * non-rotational device. Finally, device_speed_thresh are the
++ * thresholds used to switch between speed classes. The reference
++ * rates are not the actual peak rates of the devices used as a
++ * reference, but slightly lower values. The reason for using these
++ * slightly lower values is that the peak-rate estimator tends to
++ * yield slightly lower values than the actual peak rate (it can yield
++ * the actual peak rate only if there is only one process doing I/O,
++ * and the process does sequential I/O).
++ *
+  * Both the reference peak rates and the thresholds are measured in
+  * sectors/usec, left-shifted by BFQ_RATE_SHIFT.
+  */
+-static int R_slow[2] = {1536, 10752};
+-static int R_fast[2] = {17415, 34791};
++static int R_slow[2] = {1000, 10700};
++static int R_fast[2] = {14000, 33000};
+ /*
+  * To improve readability, a conversion function is used to initialize the
+  * following arrays, which entails that they can be initialized only in a
+@@ -178,18 +199,6 @@ static void bfq_schedule_dispatch(struct bfq_data *bfqd);
+ #define bfq_sample_valid(samples)	((samples) > 80)
+ 
+ /*
+- * We regard a request as SYNC, if either it's a read or has the SYNC bit
+- * set (in which case it could also be a direct WRITE).
+- */
+-static int bfq_bio_sync(struct bio *bio)
+-{
+-	if (bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC))
+-		return 1;
+-
+-	return 0;
+-}
+-
+-/*
+  * Scheduler run of queue, if there are requests pending and no one in the
+  * driver that will restart queueing.
+  */
+@@ -409,11 +418,7 @@ static bool bfq_differentiated_weights(struct bfq_data *bfqd)
+  */
+ static bool bfq_symmetric_scenario(struct bfq_data *bfqd)
+ {
+-	return
+-#ifdef CONFIG_BFQ_GROUP_IOSCHED
+-		!bfqd->active_numerous_groups &&
+-#endif
+-		!bfq_differentiated_weights(bfqd);
++	return !bfq_differentiated_weights(bfqd);
+ }
+ 
+ /*
+@@ -469,6 +474,22 @@ static void bfq_weights_tree_add(struct bfq_data *bfqd,
+ 
+ 	entity->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
+ 					 GFP_ATOMIC);
++
++	/*
++	 * In the unlucky event of an allocation failure, we just
++	 * exit. This will cause the weight of entity to not be
++	 * considered in bfq_differentiated_weights, which, in its
++	 * turn, causes the scenario to be deemed wrongly symmetric in
++	 * case entity's weight would have been the only weight making
++	 * the scenario asymmetric. On the bright side, no unbalance
++	 * will however occur when entity becomes inactive again (the
++	 * invocation of this function is triggered by an activation
++	 * of entity). In fact, bfq_weights_tree_remove does nothing
++	 * if !entity->weight_counter.
++	 */
++	if (unlikely(!entity->weight_counter))
++		return;
++
+ 	entity->weight_counter->weight = entity->weight;
+ 	rb_link_node(&entity->weight_counter->weights_node, parent, new);
+ 	rb_insert_color(&entity->weight_counter->weights_node, root);
+@@ -505,13 +526,45 @@ static void bfq_weights_tree_remove(struct bfq_data *bfqd,
+ 	entity->weight_counter = NULL;
+ }
+ 
++/*
++ * Return expired entry, or NULL to just start from scratch in rbtree.
++ */
++static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
++				      struct request *last)
++{
++	struct request *rq;
++
++	if (bfq_bfqq_fifo_expire(bfqq))
++		return NULL;
++
++	bfq_mark_bfqq_fifo_expire(bfqq);
++
++	rq = rq_entry_fifo(bfqq->fifo.next);
++
++	if (rq == last || ktime_get_ns() < rq->fifo_time)
++		return NULL;
++
++	bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
++	BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
++	return rq;
++}
++
+ static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
+ 					struct bfq_queue *bfqq,
+ 					struct request *last)
+ {
+ 	struct rb_node *rbnext = rb_next(&last->rb_node);
+ 	struct rb_node *rbprev = rb_prev(&last->rb_node);
+-	struct request *next = NULL, *prev = NULL;
++	struct request *next, *prev = NULL;
++
++	BUG_ON(list_empty(&bfqq->fifo));
++
++	/* Follow expired path, else get first next available. */
++	next = bfq_check_fifo(bfqq, last);
++	if (next) {
++		BUG_ON(next == last);
++		return next;
++	}
+ 
+ 	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
+ 
+@@ -533,9 +586,19 @@ static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
+ static unsigned long bfq_serv_to_charge(struct request *rq,
+ 					struct bfq_queue *bfqq)
+ {
+-	return blk_rq_sectors(rq) *
+-		(1 + ((!bfq_bfqq_sync(bfqq)) * (bfqq->wr_coeff == 1) *
+-		bfq_async_charge_factor));
++	if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1)
++		return blk_rq_sectors(rq);
++
++	/*
++	 * If there are no weight-raised queues, then amplify service
++	 * by just the async charge factor; otherwise amplify service
++	 * by twice the async charge factor, to further reduce latency
++	 * for weight-raised queues.
++	 */
++	if (bfqq->bfqd->wr_busy_queues == 0)
++		return blk_rq_sectors(rq) * bfq_async_charge_factor;
++
++	return blk_rq_sectors(rq) * 2 * bfq_async_charge_factor;
+ }
+ 
+ /**
+@@ -576,7 +639,7 @@ static void bfq_updated_next_req(struct bfq_data *bfqd,
+ 		entity->budget = new_budget;
+ 		bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
+ 					 new_budget);
+-		bfq_activate_bfqq(bfqd, bfqq);
++		bfq_requeue_bfqq(bfqd, bfqq);
+ 	}
+ }
+ 
+@@ -590,12 +653,23 @@ static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
+ 	dur = bfqd->RT_prod;
+ 	do_div(dur, bfqd->peak_rate);
+ 
+-	return dur;
+-}
++	/*
++	 * Limit duration between 3 and 13 seconds. Tests show that
++	 * higher values than 13 seconds often yield the opposite of
++	 * the desired result, i.e., worsen responsiveness by letting
++	 * non-interactive and non-soft-real-time applications
++	 * preserve weight raising for a too long time interval.
++	 *
++	 * On the other end, lower values than 3 seconds make it
++	 * difficult for most interactive tasks to complete their jobs
++	 * before weight-raising finishes.
++	 */
++	if (dur > msecs_to_jiffies(13000))
++		dur = msecs_to_jiffies(13000);
++	else if (dur < msecs_to_jiffies(3000))
++		dur = msecs_to_jiffies(3000);
+ 
+-static unsigned int bfq_bfqq_cooperations(struct bfq_queue *bfqq)
+-{
+-	return bfqq->bic ? bfqq->bic->cooperations : 0;
++	return dur;
+ }
+ 
+ static void
+@@ -605,31 +679,31 @@ bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
+ 		bfq_mark_bfqq_idle_window(bfqq);
+ 	else
+ 		bfq_clear_bfqq_idle_window(bfqq);
++
+ 	if (bic->saved_IO_bound)
+ 		bfq_mark_bfqq_IO_bound(bfqq);
+ 	else
+ 		bfq_clear_bfqq_IO_bound(bfqq);
+-	/* Assuming that the flag in_large_burst is already correctly set */
+-	if (bic->wr_time_left && bfqq->bfqd->low_latency &&
+-	    !bfq_bfqq_in_large_burst(bfqq) &&
+-	    bic->cooperations < bfqq->bfqd->bfq_coop_thresh) {
+-		/*
+-		 * Start a weight raising period with the duration given by
+-		 * the raising_time_left snapshot.
+-		 */
+-		if (bfq_bfqq_busy(bfqq))
+-			bfqq->bfqd->wr_busy_queues++;
+-		bfqq->wr_coeff = bfqq->bfqd->bfq_wr_coeff;
+-		bfqq->wr_cur_max_time = bic->wr_time_left;
+-		bfqq->last_wr_start_finish = jiffies;
+-		bfqq->entity.prio_changed = 1;
++
++	bfqq->wr_coeff = bic->saved_wr_coeff;
++	bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
++	BUG_ON(time_is_after_jiffies(bfqq->wr_start_at_switch_to_srt));
++	bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
++	bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
++	BUG_ON(time_is_after_jiffies(bfqq->last_wr_start_finish));
++
++	if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
++	    time_is_before_jiffies(bfqq->last_wr_start_finish +
++				   bfqq->wr_cur_max_time))) {
++		bfq_log_bfqq(bfqq->bfqd, bfqq,
++			     "resume state: switching off wr (%lu + %lu < %lu)",
++			     bfqq->last_wr_start_finish, bfqq->wr_cur_max_time,
++			     jiffies);
++
++		bfqq->wr_coeff = 1;
+ 	}
+-	/*
+-	 * Clear wr_time_left to prevent bfq_bfqq_save_state() from
+-	 * getting confused about the queue's need of a weight-raising
+-	 * period.
+-	 */
+-	bic->wr_time_left = 0;
++	/* make sure weight will be updated, however we got here */
++	bfqq->entity.prio_changed = 1;
+ }
+ 
+ static int bfqq_process_refs(struct bfq_queue *bfqq)
+@@ -639,7 +713,7 @@ static int bfqq_process_refs(struct bfq_queue *bfqq)
+ 	lockdep_assert_held(bfqq->bfqd->queue->queue_lock);
+ 
+ 	io_refs = bfqq->allocated[READ] + bfqq->allocated[WRITE];
+-	process_refs = atomic_read(&bfqq->ref) - io_refs - bfqq->entity.on_st;
++	process_refs = bfqq->ref - io_refs - bfqq->entity.on_st;
+ 	BUG_ON(process_refs < 0);
+ 	return process_refs;
+ }
+@@ -654,6 +728,7 @@ static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+ 		hlist_del_init(&item->burst_list_node);
+ 	hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
+ 	bfqd->burst_size = 1;
++	bfqd->burst_parent_entity = bfqq->entity.parent;
+ }
+ 
+ /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
+@@ -662,6 +737,10 @@ static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+ 	/* Increment burst size to take into account also bfqq */
+ 	bfqd->burst_size++;
+ 
++	bfq_log_bfqq(bfqd, bfqq, "add_to_burst %d", bfqd->burst_size);
++
++	BUG_ON(bfqd->burst_size > bfqd->bfq_large_burst_thresh);
++
+ 	if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
+ 		struct bfq_queue *pos, *bfqq_item;
+ 		struct hlist_node *n;
+@@ -671,15 +750,19 @@ static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+ 		 * other to consider this burst as large.
+ 		 */
+ 		bfqd->large_burst = true;
++		bfq_log_bfqq(bfqd, bfqq, "add_to_burst: large burst started");
+ 
+ 		/*
+ 		 * We can now mark all queues in the burst list as
+ 		 * belonging to a large burst.
+ 		 */
+ 		hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
+-				     burst_list_node)
++				     burst_list_node) {
+ 			bfq_mark_bfqq_in_large_burst(bfqq_item);
++			bfq_log_bfqq(bfqd, bfqq_item, "marked in large burst");
++		}
+ 		bfq_mark_bfqq_in_large_burst(bfqq);
++		bfq_log_bfqq(bfqd, bfqq, "marked in large burst");
+ 
+ 		/*
+ 		 * From now on, and until the current burst finishes, any
+@@ -691,67 +774,79 @@ static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+ 		hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
+ 					  burst_list_node)
+ 			hlist_del_init(&pos->burst_list_node);
+-	} else /* burst not yet large: add bfqq to the burst list */
++	} else /*
++		* Burst not yet large: add bfqq to the burst list. Do
++		* not increment the ref counter for bfqq, because bfqq
++		* is removed from the burst list before freeing bfqq
++		* in put_queue.
++		*/
+ 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
+ }
+ 
+ /*
+- * If many queues happen to become active shortly after each other, then,
+- * to help the processes associated to these queues get their job done as
+- * soon as possible, it is usually better to not grant either weight-raising
+- * or device idling to these queues. In this comment we describe, firstly,
+- * the reasons why this fact holds, and, secondly, the next function, which
+- * implements the main steps needed to properly mark these queues so that
+- * they can then be treated in a different way.
++ * If many queues belonging to the same group happen to be created
++ * shortly after each other, then the processes associated with these
++ * queues have typically a common goal. In particular, bursts of queue
++ * creations are usually caused by services or applications that spawn
++ * many parallel threads/processes. Examples are systemd during boot,
++ * or git grep. To help these processes get their job done as soon as
++ * possible, it is usually better to not grant either weight-raising
++ * or device idling to their queues.
+  *
+- * As for the terminology, we say that a queue becomes active, i.e.,
+- * switches from idle to backlogged, either when it is created (as a
+- * consequence of the arrival of an I/O request), or, if already existing,
+- * when a new request for the queue arrives while the queue is idle.
+- * Bursts of activations, i.e., activations of different queues occurring
+- * shortly after each other, are typically caused by services or applications
+- * that spawn or reactivate many parallel threads/processes. Examples are
+- * systemd during boot or git grep.
++ * In this comment we describe, firstly, the reasons why this fact
++ * holds, and, secondly, the next function, which implements the main
++ * steps needed to properly mark these queues so that they can then be
++ * treated in a different way.
+  *
+- * These services or applications benefit mostly from a high throughput:
+- * the quicker the requests of the activated queues are cumulatively served,
+- * the sooner the target job of these queues gets completed. As a consequence,
+- * weight-raising any of these queues, which also implies idling the device
+- * for it, is almost always counterproductive: in most cases it just lowers
+- * throughput.
++ * The above services or applications benefit mostly from a high
++ * throughput: the quicker the requests of the activated queues are
++ * cumulatively served, the sooner the target job of these queues gets
++ * completed. As a consequence, weight-raising any of these queues,
++ * which also implies idling the device for it, is almost always
++ * counterproductive. In most cases it just lowers throughput.
+  *
+- * On the other hand, a burst of activations may be also caused by the start
+- * of an application that does not consist in a lot of parallel I/O-bound
+- * threads. In fact, with a complex application, the burst may be just a
+- * consequence of the fact that several processes need to be executed to
+- * start-up the application. To start an application as quickly as possible,
+- * the best thing to do is to privilege the I/O related to the application
+- * with respect to all other I/O. Therefore, the best strategy to start as
+- * quickly as possible an application that causes a burst of activations is
+- * to weight-raise all the queues activated during the burst. This is the
++ * On the other hand, a burst of queue creations may be caused also by
++ * the start of an application that does not consist of a lot of
++ * parallel I/O-bound threads. In fact, with a complex application,
++ * several short processes may need to be executed to start-up the
++ * application. In this respect, to start an application as quickly as
++ * possible, the best thing to do is in any case to privilege the I/O
++ * related to the application with respect to all other
++ * I/O. Therefore, the best strategy to start as quickly as possible
++ * an application that causes a burst of queue creations is to
++ * weight-raise all the queues created during the burst. This is the
+  * exact opposite of the best strategy for the other type of bursts.
+  *
+- * In the end, to take the best action for each of the two cases, the two
+- * types of bursts need to be distinguished. Fortunately, this seems
+- * relatively easy to do, by looking at the sizes of the bursts. In
+- * particular, we found a threshold such that bursts with a larger size
+- * than that threshold are apparently caused only by services or commands
+- * such as systemd or git grep. For brevity, hereafter we call just 'large'
+- * these bursts. BFQ *does not* weight-raise queues whose activations occur
+- * in a large burst. In addition, for each of these queues BFQ performs or
+- * does not perform idling depending on which choice boosts the throughput
+- * most. The exact choice depends on the device and request pattern at
++ * In the end, to take the best action for each of the two cases, the
++ * two types of bursts need to be distinguished. Fortunately, this
++ * seems relatively easy, by looking at the sizes of the bursts. In
++ * particular, we found a threshold such that only bursts with a
++ * larger size than that threshold are apparently caused by
++ * services or commands such as systemd or git grep. For brevity,
++ * hereafter we call just 'large' these bursts. BFQ *does not*
++ * weight-raise queues whose creation occurs in a large burst. In
++ * addition, for each of these queues BFQ performs or does not perform
++ * idling depending on which choice boosts the throughput more. The
++ * exact choice depends on the device and request pattern at
+  * hand.
+  *
+- * Turning back to the next function, it implements all the steps needed
+- * to detect the occurrence of a large burst and to properly mark all the
+- * queues belonging to it (so that they can then be treated in a different
+- * way). This goal is achieved by maintaining a special "burst list" that
+- * holds, temporarily, the queues that belong to the burst in progress. The
+- * list is then used to mark these queues as belonging to a large burst if
+- * the burst does become large. The main steps are the following.
++ * Unfortunately, false positives may occur while an interactive task
++ * is starting (e.g., an application is being started). The
++ * consequence is that the queues associated with the task do not
++ * enjoy weight raising as expected. Fortunately these false positives
++ * are very rare. They typically occur if some service happens to
++ * start doing I/O exactly when the interactive task starts.
++ *
++ * Turning back to the next function, it implements all the steps
++ * needed to detect the occurrence of a large burst and to properly
++ * mark all the queues belonging to it (so that they can then be
++ * treated in a different way). This goal is achieved by maintaining a
++ * "burst list" that holds, temporarily, the queues that belong to the
++ * burst in progress. The list is then used to mark these queues as
++ * belonging to a large burst if the burst does become large. The main
++ * steps are the following.
+  *
+- * . when the very first queue is activated, the queue is inserted into the
++ * . when the very first queue is created, the queue is inserted into the
+  *   list (as it could be the first queue in a possible burst)
+  *
+  * . if the current burst has not yet become large, and a queue Q that does
+@@ -772,13 +867,13 @@ static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+  *
+  *     . the device enters a large-burst mode
+  *
+- * . if a queue Q that does not belong to the burst is activated while
++ * . if a queue Q that does not belong to the burst is created while
+  *   the device is in large-burst mode and shortly after the last time
+  *   at which a queue either entered the burst list or was marked as
+  *   belonging to the current large burst, then Q is immediately marked
+  *   as belonging to a large burst.
+  *
+- * . if a queue Q that does not belong to the burst is activated a while
++ * . if a queue Q that does not belong to the burst is created a while
+  *   later, i.e., not shortly after, than the last time at which a queue
+  *   either entered the burst list or was marked as belonging to the
+  *   current large burst, then the current burst is deemed as finished and:
+@@ -791,52 +886,44 @@ static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+  *          in a possible new burst (then the burst list contains just Q
+  *          after this step).
+  */
+-static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+-			     bool idle_for_long_time)
++static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+ {
+ 	/*
+-	 * If bfqq happened to be activated in a burst, but has been idle
+-	 * for at least as long as an interactive queue, then we assume
+-	 * that, in the overall I/O initiated in the burst, the I/O
+-	 * associated to bfqq is finished. So bfqq does not need to be
+-	 * treated as a queue belonging to a burst anymore. Accordingly,
+-	 * we reset bfqq's in_large_burst flag if set, and remove bfqq
+-	 * from the burst list if it's there. We do not decrement instead
+-	 * burst_size, because the fact that bfqq does not need to belong
+-	 * to the burst list any more does not invalidate the fact that
+-	 * bfqq may have been activated during the current burst.
+-	 */
+-	if (idle_for_long_time) {
+-		hlist_del_init(&bfqq->burst_list_node);
+-		bfq_clear_bfqq_in_large_burst(bfqq);
+-	}
+-
+-	/*
+ 	 * If bfqq is already in the burst list or is part of a large
+-	 * burst, then there is nothing else to do.
++	 * burst, or finally has just been split, then there is
++	 * nothing else to do.
+ 	 */
+ 	if (!hlist_unhashed(&bfqq->burst_list_node) ||
+-	    bfq_bfqq_in_large_burst(bfqq))
++	    bfq_bfqq_in_large_burst(bfqq) ||
++	    time_is_after_eq_jiffies(bfqq->split_time +
++				     msecs_to_jiffies(10)))
+ 		return;
+ 
+ 	/*
+-	 * If bfqq's activation happens late enough, then the current
+-	 * burst is finished, and related data structures must be reset.
++	 * If bfqq's creation happens late enough, or bfqq belongs to
++	 * a different group than the burst group, then the current
++	 * burst is finished, and related data structures must be
++	 * reset.
+ 	 *
+-	 * In this respect, consider the special case where bfqq is the very
+-	 * first queue being activated. In this case, last_ins_in_burst is
+-	 * not yet significant when we get here. But it is easy to verify
+-	 * that, whether or not the following condition is true, bfqq will
+-	 * end up being inserted into the burst list. In particular the
+-	 * list will happen to contain only bfqq. And this is exactly what
+-	 * has to happen, as bfqq may be the first queue in a possible
++	 * In this respect, consider the special case where bfqq is
++	 * the very first queue created after BFQ is selected for this
++	 * device. In this case, last_ins_in_burst and
++	 * burst_parent_entity are not yet significant when we get
++	 * here. But it is easy to verify that, whether or not the
++	 * following condition is true, bfqq will end up being
++	 * inserted into the burst list. In particular the list will
++	 * happen to contain only bfqq. And this is exactly what has
++	 * to happen, as bfqq may be the first queue of the first
+ 	 * burst.
+ 	 */
+ 	if (time_is_before_jiffies(bfqd->last_ins_in_burst +
+-	    bfqd->bfq_burst_interval)) {
++	    bfqd->bfq_burst_interval) ||
++	    bfqq->entity.parent != bfqd->burst_parent_entity) {
+ 		bfqd->large_burst = false;
+ 		bfq_reset_burst_list(bfqd, bfqq);
+-		return;
++		bfq_log_bfqq(bfqd, bfqq,
++			"handle_burst: late activation or different group");
++		goto end;
+ 	}
+ 
+ 	/*
+@@ -845,8 +932,9 @@ static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ 	 * bfqq as belonging to this large burst immediately.
+ 	 */
+ 	if (bfqd->large_burst) {
++		bfq_log_bfqq(bfqd, bfqq, "handle_burst: marked in burst");
+ 		bfq_mark_bfqq_in_large_burst(bfqq);
+-		return;
++		goto end;
+ 	}
+ 
+ 	/*
+@@ -855,25 +943,489 @@ static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ 	 * queue. Then we add bfqq to the burst.
+ 	 */
+ 	bfq_add_to_burst(bfqd, bfqq);
++end:
++	/*
++	 * At this point, bfqq either has been added to the current
++	 * burst or has caused the current burst to terminate and a
++	 * possible new burst to start. In particular, in the second
++	 * case, bfqq has become the first queue in the possible new
++	 * burst.  In both cases last_ins_in_burst needs to be moved
++	 * forward.
++	 */
++	bfqd->last_ins_in_burst = jiffies;
++
++}
++
++static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
++{
++	struct bfq_entity *entity = &bfqq->entity;
++
++	return entity->budget - entity->service;
++}
++
++/*
++ * If enough samples have been computed, return the current max budget
++ * stored in bfqd, which is dynamically updated according to the
++ * estimated disk peak rate; otherwise return the default max budget
++ */
++static int bfq_max_budget(struct bfq_data *bfqd)
++{
++	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
++		return bfq_default_max_budget;
++	else
++		return bfqd->bfq_max_budget;
++}
++
++/*
++ * Return min budget, which is a fraction of the current or default
++ * max budget (trying with 1/32)
++ */
++static int bfq_min_budget(struct bfq_data *bfqd)
++{
++	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
++		return bfq_default_max_budget / 32;
++	else
++		return bfqd->bfq_max_budget / 32;
++}
++
++static void bfq_bfqq_expire(struct bfq_data *bfqd,
++			    struct bfq_queue *bfqq,
++			    bool compensate,
++			    enum bfqq_expiration reason);
++
++/*
++ * The next function, invoked after the input queue bfqq switches from
++ * idle to busy, updates the budget of bfqq. The function also tells
++ * whether the in-service queue should be expired, by returning
++ * true. The purpose of expiring the in-service queue is to give bfqq
++ * the chance to possibly preempt the in-service queue, and the reason
++ * for preempting the in-service queue is to achieve one of the two
++ * goals below.
++ *
++ * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
++ * expired because it has remained idle. In particular, bfqq may have
++ * expired for one of the following two reasons:
++ *
++ * - BFQ_BFQQ_NO_MORE_REQUEST bfqq did not enjoy any device idling and
++ *   did not make it to issue a new request before its last request
++ *   was served;
++ *
++ * - BFQ_BFQQ_TOO_IDLE bfqq did enjoy device idling, but did not issue
++ *   a new request before the expiration of the idling-time.
++ *
++ * Even if bfqq has expired for one of the above reasons, the process
++ * associated with the queue may be however issuing requests greedily,
++ * and thus be sensitive to the bandwidth it receives (bfqq may have
++ * remained idle for other reasons: CPU high load, bfqq not enjoying
++ * idling, I/O throttling somewhere in the path from the process to
++ * the I/O scheduler, ...). But if, after every expiration for one of
++ * the above two reasons, bfqq has to wait for the service of at least
++ * one full budget of another queue before being served again, then
++ * bfqq is likely to get a much lower bandwidth or resource time than
++ * its reserved ones. To address this issue, two countermeasures need
++ * to be taken.
++ *
++ * First, the budget and the timestamps of bfqq need to be updated in
++ * a special way on bfqq reactivation: they need to be updated as if
++ * bfqq did not remain idle and did not expire. In fact, if they are
++ * computed as if bfqq expired and remained idle until reactivation,
++ * then the process associated with bfqq is treated as if, instead of
++ * being greedy, it stopped issuing requests when bfqq remained idle,
++ * and restarts issuing requests only on this reactivation. In other
++ * words, the scheduler does not help the process recover the "service
++ * hole" between bfqq expiration and reactivation. As a consequence,
++ * the process receives a lower bandwidth than its reserved one. In
++ * contrast, to recover this hole, the budget must be updated as if
++ * bfqq was not expired at all before this reactivation, i.e., it must
++ * be set to the value of the remaining budget when bfqq was
++ * expired. Along the same line, timestamps need to be assigned the
++ * value they had the last time bfqq was selected for service, i.e.,
++ * before last expiration. Thus timestamps need to be back-shifted
++ * with respect to their normal computation (see [1] for more details
++ * on this tricky aspect).
++ *
++ * Secondly, to allow the process to recover the hole, the in-service
++ * queue must be expired too, to give bfqq the chance to preempt it
++ * immediately. In fact, if bfqq has to wait for a full budget of the
++ * in-service queue to be completed, then it may become impossible to
++ * let the process recover the hole, even if the back-shifted
++ * timestamps of bfqq are lower than those of the in-service queue. If
++ * this happens for most or all of the holes, then the process may not
++ * receive its reserved bandwidth. In this respect, it is worth noting
++ * that, being the service of outstanding requests unpreemptible, a
++ * little fraction of the holes may however be unrecoverable, thereby
++ * causing a little loss of bandwidth.
++ *
++ * The last important point is detecting whether bfqq does need this
++ * bandwidth recovery. In this respect, the next function deems the
++ * process associated with bfqq greedy, and thus allows it to recover
++ * the hole, if: 1) the process is waiting for the arrival of a new
++ * request (which implies that bfqq expired for one of the above two
++ * reasons), and 2) such a request has arrived soon. The first
++ * condition is controlled through the flag non_blocking_wait_rq,
++ * while the second through the flag arrived_in_time. If both
++ * conditions hold, then the function computes the budget in the
++ * above-described special way, and signals that the in-service queue
++ * should be expired. Timestamp back-shifting is done later in
++ * __bfq_activate_entity.
++ *
++ * 2. Reduce latency. Even if timestamps are not backshifted to let
++ * the process associated with bfqq recover a service hole, bfqq may
++ * however happen to have, after being (re)activated, a lower finish
++ * timestamp than the in-service queue.  That is, the next budget of
++ * bfqq may have to be completed before the one of the in-service
++ * queue. If this is the case, then preempting the in-service queue
++ * allows this goal to be achieved, apart from the unpreemptible,
++ * outstanding requests mentioned above.
++ *
++ * Unfortunately, regardless of which of the above two goals one wants
++ * to achieve, service trees need first to be updated to know whether
++ * the in-service queue must be preempted. To have service trees
++ * correctly updated, the in-service queue must be expired and
++ * rescheduled, and bfqq must be scheduled too. This is one of the
++ * most costly operations (in future versions, the scheduling
++ * mechanism may be re-designed in such a way to make it possible to
++ * know whether preemption is needed without needing to update service
++ * trees). In addition, queue preemptions almost always cause random
++ * I/O, and thus loss of throughput. Because of these facts, the next
++ * function adopts the following simple scheme to avoid both costly
++ * operations and too frequent preemptions: it requests the expiration
++ * of the in-service queue (unconditionally) only for queues that need
++ * to recover a hole, or that either are weight-raised or deserve to
++ * be weight-raised.
++ */
++static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
++						struct bfq_queue *bfqq,
++						bool arrived_in_time,
++						bool wr_or_deserves_wr)
++{
++	struct bfq_entity *entity = &bfqq->entity;
++
++	if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) {
++		/*
++		 * We do not clear the flag non_blocking_wait_rq here, as
++		 * the latter is used in bfq_activate_bfqq to signal
++		 * that timestamps need to be back-shifted (and is
++		 * cleared right after).
++		 */
++
++		/*
++		 * In next assignment we rely on that either
++		 * entity->service or entity->budget are not updated
++		 * on expiration if bfqq is empty (see
++		 * __bfq_bfqq_recalc_budget). Thus both quantities
++		 * remain unchanged after such an expiration, and the
++		 * following statement therefore assigns to
++		 * entity->budget the remaining budget on such an
++		 * expiration. For clarity, entity->service is not
++		 * updated on expiration in any case, and, in normal
++		 * operation, is reset only when bfqq is selected for
++		 * service (see bfq_get_next_queue).
++		 */
++		BUG_ON(bfqq->max_budget < 0);
++		entity->budget = min_t(unsigned long,
++				       bfq_bfqq_budget_left(bfqq),
++				       bfqq->max_budget);
++
++		BUG_ON(entity->budget < 0);
++		return true;
++	}
++
++	BUG_ON(bfqq->max_budget < 0);
++	entity->budget = max_t(unsigned long, bfqq->max_budget,
++			       bfq_serv_to_charge(bfqq->next_rq, bfqq));
++	BUG_ON(entity->budget < 0);
++
++	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
++	return wr_or_deserves_wr;
++}
++
++static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
++					     struct bfq_queue *bfqq,
++					     unsigned int old_wr_coeff,
++					     bool wr_or_deserves_wr,
++					     bool interactive,
++					     bool in_burst,
++					     bool soft_rt)
++{
++	if (old_wr_coeff == 1 && wr_or_deserves_wr) {
++		/* start a weight-raising period */
++		if (interactive) {
++			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
++			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
++		} else {
++			bfqq->wr_start_at_switch_to_srt = jiffies;
++			bfqq->wr_coeff = bfqd->bfq_wr_coeff *
++				BFQ_SOFTRT_WEIGHT_FACTOR;
++			bfqq->wr_cur_max_time =
++				bfqd->bfq_wr_rt_max_time;
++		}
++		/*
++		 * If needed, further reduce budget to make sure it is
++		 * close to bfqq's backlog, so as to reduce the
++		 * scheduling-error component due to a too large
++		 * budget. Do not care about throughput consequences,
++		 * but only about latency. Finally, do not assign a
++		 * too small budget either, to avoid increasing
++		 * latency by causing too frequent expirations.
++		 */
++		bfqq->entity.budget = min_t(unsigned long,
++					    bfqq->entity.budget,
++					    2 * bfq_min_budget(bfqd));
++
++		bfq_log_bfqq(bfqd, bfqq,
++			     "wrais starting at %lu, rais_max_time %u",
++			     jiffies,
++			     jiffies_to_msecs(bfqq->wr_cur_max_time));
++	} else if (old_wr_coeff > 1) {
++		if (interactive) { /* update wr coeff and duration */
++			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
++			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
++		} else if (in_burst) {
++			bfqq->wr_coeff = 1;
++			bfq_log_bfqq(bfqd, bfqq,
++				     "wrais ending at %lu, rais_max_time %u",
++				     jiffies,
++				     jiffies_to_msecs(bfqq->
++						      wr_cur_max_time));
++		} else if (soft_rt) {
++			/*
++			 * The application is now or still meeting the
++			 * requirements for being deemed soft rt.  We
++			 * can then correctly and safely (re)charge
++			 * the weight-raising duration for the
++			 * application with the weight-raising
++			 * duration for soft rt applications.
++			 *
++			 * In particular, doing this recharge now, i.e.,
++			 * before the weight-raising period for the
++			 * application finishes, reduces the probability
++			 * of the following negative scenario:
++			 * 1) the weight of a soft rt application is
++			 *    raised at startup (as for any newly
++			 *    created application),
++			 * 2) since the application is not interactive,
++			 *    at a certain time weight-raising is
++			 *    stopped for the application,
++			 * 3) at that time the application happens to
++			 *    still have pending requests, and hence
++			 *    is destined to not have a chance to be
++			 *    deemed soft rt before these requests are
++			 *    completed (see the comments to the
++			 *    function bfq_bfqq_softrt_next_start()
++			 *    for details on soft rt detection),
++			 * 4) these pending requests experience a high
++			 *    latency because the application is not
++			 *    weight-raised while they are pending.
++			 */
++			if (bfqq->wr_cur_max_time !=
++				bfqd->bfq_wr_rt_max_time) {
++				bfqq->wr_start_at_switch_to_srt =
++					bfqq->last_wr_start_finish;
++                BUG_ON(time_is_after_jiffies(bfqq->last_wr_start_finish));
++
++				bfqq->wr_cur_max_time =
++					bfqd->bfq_wr_rt_max_time;
++				bfqq->wr_coeff = bfqd->bfq_wr_coeff *
++					BFQ_SOFTRT_WEIGHT_FACTOR;
++				bfq_log_bfqq(bfqd, bfqq,
++					     "switching to soft_rt wr");
++			} else
++				bfq_log_bfqq(bfqd, bfqq,
++					"moving forward soft_rt wr duration");
++			bfqq->last_wr_start_finish = jiffies;
++		}
++	}
++}
++
++static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
++					struct bfq_queue *bfqq)
++{
++	return bfqq->dispatched == 0 &&
++		time_is_before_jiffies(
++			bfqq->budget_timeout +
++			bfqd->bfq_wr_min_idle_time);
++}
++
++static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
++					     struct bfq_queue *bfqq,
++					     int old_wr_coeff,
++					     struct request *rq,
++					     bool *interactive)
++{
++	bool soft_rt, in_burst,	wr_or_deserves_wr,
++		bfqq_wants_to_preempt,
++		idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
++		/*
++		 * See the comments on
++		 * bfq_bfqq_update_budg_for_activation for
++		 * details on the usage of the next variable.
++		 */
++		arrived_in_time =  ktime_get_ns() <=
++			RQ_BIC(rq)->ttime.last_end_request +
++			bfqd->bfq_slice_idle * 3;
++
++	bfq_log_bfqq(bfqd, bfqq,
++		     "bfq_add_request non-busy: "
++		     "jiffies %lu, in_time %d, idle_long %d busyw %d "
++		     "wr_coeff %u",
++		     jiffies, arrived_in_time,
++		     idle_for_long_time,
++		     bfq_bfqq_non_blocking_wait_rq(bfqq),
++		     old_wr_coeff);
++
++	BUG_ON(bfqq->entity.budget < bfqq->entity.service);
++
++	BUG_ON(bfqq == bfqd->in_service_queue);
++	bfqg_stats_update_io_add(bfqq_group(RQ_BFQQ(rq)), bfqq, rq->cmd_flags);
++
++	/*
++	 * bfqq deserves to be weight-raised if:
++	 * - it is sync,
++	 * - it does not belong to a large burst,
++	 * - it has been idle for enough time or is soft real-time,
++	 * - is linked to a bfq_io_cq (it is not shared in any sense)
++	 */
++	in_burst = bfq_bfqq_in_large_burst(bfqq);
++	soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
++		!in_burst &&
++		time_is_before_jiffies(bfqq->soft_rt_next_start);
++	*interactive =
++		!in_burst &&
++		idle_for_long_time;
++	wr_or_deserves_wr = bfqd->low_latency &&
++		(bfqq->wr_coeff > 1 ||
++		 (bfq_bfqq_sync(bfqq) &&
++		  bfqq->bic && (*interactive || soft_rt)));
++
++	bfq_log_bfqq(bfqd, bfqq,
++		     "bfq_add_request: "
++		     "in_burst %d, "
++		     "soft_rt %d (next %lu), inter %d, bic %p",
++		     bfq_bfqq_in_large_burst(bfqq), soft_rt,
++		     bfqq->soft_rt_next_start,
++		     *interactive,
++		     bfqq->bic);
++
++	/*
++	 * Using the last flag, update budget and check whether bfqq
++	 * may want to preempt the in-service queue.
++	 */
++	bfqq_wants_to_preempt =
++		bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
++						    arrived_in_time,
++						    wr_or_deserves_wr);
++
++	/*
++	 * If bfqq happened to be activated in a burst, but has been
++	 * idle for much more than an interactive queue, then we
++	 * assume that, in the overall I/O initiated in the burst, the
++	 * I/O associated with bfqq is finished. So bfqq does not need
++	 * to be treated as a queue belonging to a burst
++	 * anymore. Accordingly, we reset bfqq's in_large_burst flag
++	 * if set, and remove bfqq from the burst list if it's
++	 * there. We do not decrement burst_size, because the fact
++	 * that bfqq does not need to belong to the burst list any
++	 * more does not invalidate the fact that bfqq was created in
++	 * a burst.
++	 */
++	if (likely(!bfq_bfqq_just_created(bfqq)) &&
++	    idle_for_long_time &&
++	    time_is_before_jiffies(
++		    bfqq->budget_timeout +
++		    msecs_to_jiffies(10000))) {
++		hlist_del_init(&bfqq->burst_list_node);
++		bfq_clear_bfqq_in_large_burst(bfqq);
++	}
++
++	bfq_clear_bfqq_just_created(bfqq);
++
++	if (!bfq_bfqq_IO_bound(bfqq)) {
++		if (arrived_in_time) {
++			bfqq->requests_within_timer++;
++			if (bfqq->requests_within_timer >=
++			    bfqd->bfq_requests_within_timer)
++				bfq_mark_bfqq_IO_bound(bfqq);
++		} else
++			bfqq->requests_within_timer = 0;
++		bfq_log_bfqq(bfqd, bfqq, "requests in time %d",
++			     bfqq->requests_within_timer);
++	}
++
++	if (bfqd->low_latency) {
++		if (unlikely(time_is_after_jiffies(bfqq->split_time)))
++			/* wraparound */
++			bfqq->split_time =
++				jiffies - bfqd->bfq_wr_min_idle_time - 1;
++
++		if (time_is_before_jiffies(bfqq->split_time +
++					   bfqd->bfq_wr_min_idle_time)) {
++			bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
++							 old_wr_coeff,
++							 wr_or_deserves_wr,
++							 *interactive,
++							 in_burst,
++							 soft_rt);
++
++			if (old_wr_coeff != bfqq->wr_coeff)
++				bfqq->entity.prio_changed = 1;
++		}
++	}
++
++	bfqq->last_idle_bklogged = jiffies;
++	bfqq->service_from_backlogged = 0;
++	bfq_clear_bfqq_softrt_update(bfqq);
++
++	bfq_add_bfqq_busy(bfqd, bfqq);
++
++	/*
++	 * Expire in-service queue only if preemption may be needed
++	 * for guarantees. In this respect, the function
++	 * next_queue_may_preempt just checks a simple, necessary
++	 * condition, and not a sufficient condition based on
++	 * timestamps. In fact, for the latter condition to be
++	 * evaluated, timestamps would need first to be updated, and
++	 * this operation is quite costly (see the comments on the
++	 * function bfq_bfqq_update_budg_for_activation).
++	 */
++	if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
++	    bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
++	    next_queue_may_preempt(bfqd)) {
++		struct bfq_queue *in_serv =
++			bfqd->in_service_queue;
++		BUG_ON(in_serv == bfqq);
++
++		bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
++				false, BFQ_BFQQ_PREEMPTED);
++	}
+ }
+ 
+ static void bfq_add_request(struct request *rq)
+ {
+ 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
+-	struct bfq_entity *entity = &bfqq->entity;
+ 	struct bfq_data *bfqd = bfqq->bfqd;
+ 	struct request *next_rq, *prev;
+-	unsigned long old_wr_coeff = bfqq->wr_coeff;
++	unsigned int old_wr_coeff = bfqq->wr_coeff;
+ 	bool interactive = false;
+ 
+-	bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
++	bfq_log_bfqq(bfqd, bfqq, "add_request: size %u %s",
++		     blk_rq_sectors(rq), rq_is_sync(rq) ? "S" : "A");
++
++	if (bfqq->wr_coeff > 1) /* queue is being weight-raised */
++		bfq_log_bfqq(bfqd, bfqq,
++			"raising period dur %u/%u msec, old coeff %u, w %d(%d)",
++			jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
++			jiffies_to_msecs(bfqq->wr_cur_max_time),
++			bfqq->wr_coeff,
++			bfqq->entity.weight, bfqq->entity.orig_weight);
++
+ 	bfqq->queued[rq_is_sync(rq)]++;
+ 	bfqd->queued++;
+ 
+ 	elv_rb_add(&bfqq->sort_list, rq);
+ 
+ 	/*
+-	 * Check if this request is a better next-serve candidate.
++	 * Check if this request is a better next-to-serve candidate.
+ 	 */
+ 	prev = bfqq->next_rq;
+ 	next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
+@@ -886,160 +1438,10 @@ static void bfq_add_request(struct request *rq)
+ 	if (prev != bfqq->next_rq)
+ 		bfq_pos_tree_add_move(bfqd, bfqq);
+ 
+-	if (!bfq_bfqq_busy(bfqq)) {
+-		bool soft_rt, coop_or_in_burst,
+-		     idle_for_long_time = time_is_before_jiffies(
+-						bfqq->budget_timeout +
+-						bfqd->bfq_wr_min_idle_time);
+-
+-#ifdef CONFIG_BFQ_GROUP_IOSCHED
+-		bfqg_stats_update_io_add(bfqq_group(RQ_BFQQ(rq)), bfqq,
+-					 rq->cmd_flags);
+-#endif
+-		if (bfq_bfqq_sync(bfqq)) {
+-			bool already_in_burst =
+-			   !hlist_unhashed(&bfqq->burst_list_node) ||
+-			   bfq_bfqq_in_large_burst(bfqq);
+-			bfq_handle_burst(bfqd, bfqq, idle_for_long_time);
+-			/*
+-			 * If bfqq was not already in the current burst,
+-			 * then, at this point, bfqq either has been
+-			 * added to the current burst or has caused the
+-			 * current burst to terminate. In particular, in
+-			 * the second case, bfqq has become the first
+-			 * queue in a possible new burst.
+-			 * In both cases last_ins_in_burst needs to be
+-			 * moved forward.
+-			 */
+-			if (!already_in_burst)
+-				bfqd->last_ins_in_burst = jiffies;
+-		}
+-
+-		coop_or_in_burst = bfq_bfqq_in_large_burst(bfqq) ||
+-			bfq_bfqq_cooperations(bfqq) >= bfqd->bfq_coop_thresh;
+-		soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
+-			!coop_or_in_burst &&
+-			time_is_before_jiffies(bfqq->soft_rt_next_start);
+-		interactive = !coop_or_in_burst && idle_for_long_time;
+-		entity->budget = max_t(unsigned long, bfqq->max_budget,
+-				       bfq_serv_to_charge(next_rq, bfqq));
+-
+-		if (!bfq_bfqq_IO_bound(bfqq)) {
+-			if (time_before(jiffies,
+-					RQ_BIC(rq)->ttime.last_end_request +
+-					bfqd->bfq_slice_idle)) {
+-				bfqq->requests_within_timer++;
+-				if (bfqq->requests_within_timer >=
+-				    bfqd->bfq_requests_within_timer)
+-					bfq_mark_bfqq_IO_bound(bfqq);
+-			} else
+-				bfqq->requests_within_timer = 0;
+-		}
+-
+-		if (!bfqd->low_latency)
+-			goto add_bfqq_busy;
+-
+-		if (bfq_bfqq_just_split(bfqq))
+-			goto set_prio_changed;
+-
+-		/*
+-		 * If the queue:
+-		 * - is not being boosted,
+-		 * - has been idle for enough time,
+-		 * - is not a sync queue or is linked to a bfq_io_cq (it is
+-		 *   shared "for its nature" or it is not shared and its
+-		 *   requests have not been redirected to a shared queue)
+-		 * start a weight-raising period.
+-		 */
+-		if (old_wr_coeff == 1 && (interactive || soft_rt) &&
+-		    (!bfq_bfqq_sync(bfqq) || bfqq->bic)) {
+-			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
+-			if (interactive)
+-				bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
+-			else
+-				bfqq->wr_cur_max_time =
+-					bfqd->bfq_wr_rt_max_time;
+-			bfq_log_bfqq(bfqd, bfqq,
+-				     "wrais starting at %lu, rais_max_time %u",
+-				     jiffies,
+-				     jiffies_to_msecs(bfqq->wr_cur_max_time));
+-		} else if (old_wr_coeff > 1) {
+-			if (interactive)
+-				bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
+-			else if (coop_or_in_burst ||
+-				 (bfqq->wr_cur_max_time ==
+-				  bfqd->bfq_wr_rt_max_time &&
+-				  !soft_rt)) {
+-				bfqq->wr_coeff = 1;
+-				bfq_log_bfqq(bfqd, bfqq,
+-					"wrais ending at %lu, rais_max_time %u",
+-					jiffies,
+-					jiffies_to_msecs(bfqq->
+-						wr_cur_max_time));
+-			} else if (time_before(
+-					bfqq->last_wr_start_finish +
+-					bfqq->wr_cur_max_time,
+-					jiffies +
+-					bfqd->bfq_wr_rt_max_time) &&
+-				   soft_rt) {
+-				/*
+-				 *
+-				 * The remaining weight-raising time is lower
+-				 * than bfqd->bfq_wr_rt_max_time, which means
+-				 * that the application is enjoying weight
+-				 * raising either because deemed soft-rt in
+-				 * the near past, or because deemed interactive
+-				 * a long ago.
+-				 * In both cases, resetting now the current
+-				 * remaining weight-raising time for the
+-				 * application to the weight-raising duration
+-				 * for soft rt applications would not cause any
+-				 * latency increase for the application (as the
+-				 * new duration would be higher than the
+-				 * remaining time).
+-				 *
+-				 * In addition, the application is now meeting
+-				 * the requirements for being deemed soft rt.
+-				 * In the end we can correctly and safely
+-				 * (re)charge the weight-raising duration for
+-				 * the application with the weight-raising
+-				 * duration for soft rt applications.
+-				 *
+-				 * In particular, doing this recharge now, i.e.,
+-				 * before the weight-raising period for the
+-				 * application finishes, reduces the probability
+-				 * of the following negative scenario:
+-				 * 1) the weight of a soft rt application is
+-				 *    raised at startup (as for any newly
+-				 *    created application),
+-				 * 2) since the application is not interactive,
+-				 *    at a certain time weight-raising is
+-				 *    stopped for the application,
+-				 * 3) at that time the application happens to
+-				 *    still have pending requests, and hence
+-				 *    is destined to not have a chance to be
+-				 *    deemed soft rt before these requests are
+-				 *    completed (see the comments to the
+-				 *    function bfq_bfqq_softrt_next_start()
+-				 *    for details on soft rt detection),
+-				 * 4) these pending requests experience a high
+-				 *    latency because the application is not
+-				 *    weight-raised while they are pending.
+-				 */
+-				bfqq->last_wr_start_finish = jiffies;
+-				bfqq->wr_cur_max_time =
+-					bfqd->bfq_wr_rt_max_time;
+-			}
+-		}
+-set_prio_changed:
+-		if (old_wr_coeff != bfqq->wr_coeff)
+-			entity->prio_changed = 1;
+-add_bfqq_busy:
+-		bfqq->last_idle_bklogged = jiffies;
+-		bfqq->service_from_backlogged = 0;
+-		bfq_clear_bfqq_softrt_update(bfqq);
+-		bfq_add_bfqq_busy(bfqd, bfqq);
+-	} else {
++	if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
++		bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
++						 rq, &interactive);
++	else {
+ 		if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
+ 		    time_is_before_jiffies(
+ 				bfqq->last_wr_start_finish +
+@@ -1048,21 +1450,48 @@ static void bfq_add_request(struct request *rq)
+ 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
+ 
+ 			bfqd->wr_busy_queues++;
+-			entity->prio_changed = 1;
++			bfqq->entity.prio_changed = 1;
+ 			bfq_log_bfqq(bfqd, bfqq,
+-			    "non-idle wrais starting at %lu, rais_max_time %u",
+-			    jiffies,
+-			    jiffies_to_msecs(bfqq->wr_cur_max_time));
++				     "non-idle wrais starting, "
++				     "wr_max_time %u wr_busy %d",
++				     jiffies_to_msecs(bfqq->wr_cur_max_time),
++				     bfqd->wr_busy_queues);
+ 		}
+ 		if (prev != bfqq->next_rq)
+ 			bfq_updated_next_req(bfqd, bfqq);
+ 	}
+ 
+-	if (bfqd->low_latency &&
+-		(old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
+-		bfqq->last_wr_start_finish = jiffies;
+-}
+-
++	/*
++	 * Assign jiffies to last_wr_start_finish in the following
++	 * cases:
++	 *
++	 * . if bfqq is not going to be weight-raised, because, for
++	 *   non weight-raised queues, last_wr_start_finish stores the
++	 *   arrival time of the last request; as of now, this piece
++	 *   of information is used only for deciding whether to
++	 *   weight-raise async queues
++	 *
++	 * . if bfqq is not weight-raised, because, if bfqq is now
++	 *   switching to weight-raised, then last_wr_start_finish
++	 *   stores the time when weight-raising starts
++	 *
++	 * . if bfqq is interactive, because, regardless of whether
++	 *   bfqq is currently weight-raised, the weight-raising
++	 *   period must start or restart (this case is considered
++	 *   separately because it is not detected by the above
++	 *   conditions, if bfqq is already weight-raised)
++	 *
++	 * last_wr_start_finish has to be updated also if bfqq is soft
++	 * real-time, because the weight-raising period is constantly
++	 * restarted on idle-to-busy transitions for these queues, but
++	 * this is already done in bfq_bfqq_handle_idle_busy_switch if
++	 * needed.
++	 */
++	if (bfqd->low_latency &&
++		(old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
++		bfqq->last_wr_start_finish = jiffies;
++}
++
+ static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
+ 					  struct bio *bio)
+ {
+@@ -1074,21 +1503,31 @@ static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
+ 	if (!bic)
+ 		return NULL;
+ 
+-	bfqq = bic_to_bfqq(bic, bfq_bio_sync(bio));
++	bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
+ 	if (bfqq)
+ 		return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
+ 
+ 	return NULL;
+ }
+ 
++static sector_t get_sdist(sector_t last_pos, struct request *rq)
++{
++	sector_t sdist = 0;
++
++	if (last_pos) {
++		if (last_pos < blk_rq_pos(rq))
++			sdist = blk_rq_pos(rq) - last_pos;
++		else
++			sdist = last_pos - blk_rq_pos(rq);
++	}
++
++	return sdist;
++}
++
+ static void bfq_activate_request(struct request_queue *q, struct request *rq)
+ {
+ 	struct bfq_data *bfqd = q->elevator->elevator_data;
+-
+ 	bfqd->rq_in_driver++;
+-	bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
+-	bfq_log(bfqd, "activate_request: new bfqd->last_position %llu",
+-		(unsigned long long) bfqd->last_position);
+ }
+ 
+ static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
+@@ -1105,6 +1544,9 @@ static void bfq_remove_request(struct request *rq)
+ 	struct bfq_data *bfqd = bfqq->bfqd;
+ 	const int sync = rq_is_sync(rq);
+ 
++	BUG_ON(bfqq->entity.service > bfqq->entity.budget &&
++	       bfqq == bfqd->in_service_queue);
++
+ 	if (bfqq->next_rq == rq) {
+ 		bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
+ 		bfq_updated_next_req(bfqd, bfqq);
+@@ -1118,8 +1560,29 @@ static void bfq_remove_request(struct request *rq)
+ 	elv_rb_del(&bfqq->sort_list, rq);
+ 
+ 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
+-		if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue)
+-			bfq_del_bfqq_busy(bfqd, bfqq, 1);
++		bfqq->next_rq = NULL;
++
++		BUG_ON(bfqq->entity.budget < 0);
++
++		if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
++			BUG_ON(bfqq->ref < 2); /* referred by rq and on tree */
++			bfq_del_bfqq_busy(bfqd, bfqq, false);
++			/*
++			 * bfqq emptied. In normal operation, when
++			 * bfqq is empty, bfqq->entity.service and
++			 * bfqq->entity.budget must contain,
++			 * respectively, the service received and the
++			 * budget used last time bfqq emptied. These
++			 * facts do not hold in this case, as at least
++			 * this last removal occurred while bfqq is
++			 * not in service. To avoid inconsistencies,
++			 * reset both bfqq->entity.service and
++			 * bfqq->entity.budget, if bfqq has still a
++			 * process that may issue I/O requests to it.
++			 */
++			bfqq->entity.budget = bfqq->entity.service = 0;
++		}
++
+ 		/*
+ 		 * Remove queue from request-position tree as it is empty.
+ 		 */
+@@ -1133,19 +1596,17 @@ static void bfq_remove_request(struct request *rq)
+ 		BUG_ON(bfqq->meta_pending == 0);
+ 		bfqq->meta_pending--;
+ 	}
+-#ifdef CONFIG_BFQ_GROUP_IOSCHED
+ 	bfqg_stats_update_io_remove(bfqq_group(bfqq), rq->cmd_flags);
+-#endif
+ }
+ 
+-static int bfq_merge(struct request_queue *q, struct request **req,
+-		     struct bio *bio)
++static enum elv_merge bfq_merge(struct request_queue *q, struct request **req,
++				struct bio *bio)
+ {
+ 	struct bfq_data *bfqd = q->elevator->elevator_data;
+ 	struct request *__rq;
+ 
+ 	__rq = bfq_find_rq_fmerge(bfqd, bio);
+-	if (__rq && elv_rq_merge_ok(__rq, bio)) {
++	if (__rq && elv_bio_merge_ok(__rq, bio)) {
+ 		*req = __rq;
+ 		return ELEVATOR_FRONT_MERGE;
+ 	}
+@@ -1154,7 +1615,7 @@ static int bfq_merge(struct request_queue *q, struct request **req,
+ }
+ 
+ static void bfq_merged_request(struct request_queue *q, struct request *req,
+-			       int type)
++			       enum elv_merge type)
+ {
+ 	if (type == ELEVATOR_FRONT_MERGE &&
+ 	    rb_prev(&req->rb_node) &&
+@@ -1190,7 +1651,7 @@ static void bfq_merged_request(struct request_queue *q, struct request *req,
+ static void bfq_bio_merged(struct request_queue *q, struct request *req,
+ 			   struct bio *bio)
+ {
+-	bfqg_stats_update_io_merged(bfqq_group(RQ_BFQQ(req)), bio->bi_rw);
++	bfqg_stats_update_io_merged(bfqq_group(RQ_BFQQ(req)), bio->bi_opf);
+ }
+ #endif
+ 
+@@ -1210,7 +1671,7 @@ static void bfq_merged_requests(struct request_queue *q, struct request *rq,
+ 	 */
+ 	if (bfqq == next_bfqq &&
+ 	    !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
+-	    time_before(next->fifo_time, rq->fifo_time)) {
++	    next->fifo_time < rq->fifo_time) {
+ 		list_del_init(&rq->queuelist);
+ 		list_replace_init(&next->queuelist, &rq->queuelist);
+ 		rq->fifo_time = next->fifo_time;
+@@ -1220,21 +1681,30 @@ static void bfq_merged_requests(struct request_queue *q, struct request *rq,
+ 		bfqq->next_rq = rq;
+ 
+ 	bfq_remove_request(next);
+-#ifdef CONFIG_BFQ_GROUP_IOSCHED
+ 	bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
+-#endif
+ }
+ 
+ /* Must be called with bfqq != NULL */
+ static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
+ {
+ 	BUG_ON(!bfqq);
++
+ 	if (bfq_bfqq_busy(bfqq))
+ 		bfqq->bfqd->wr_busy_queues--;
+ 	bfqq->wr_coeff = 1;
+ 	bfqq->wr_cur_max_time = 0;
+-	/* Trigger a weight change on the next activation of the queue */
++	bfqq->last_wr_start_finish = jiffies;
++	/*
++	 * Trigger a weight change on the next invocation of
++	 * __bfq_entity_update_weight_prio.
++	 */
+ 	bfqq->entity.prio_changed = 1;
++	bfq_log_bfqq(bfqq->bfqd, bfqq,
++		     "end_wr: wrais ending at %lu, rais_max_time %u",
++		     bfqq->last_wr_start_finish,
++		     jiffies_to_msecs(bfqq->wr_cur_max_time));
++	bfq_log_bfqq(bfqq->bfqd, bfqq, "end_wr: wr_busy %d",
++		     bfqq->bfqd->wr_busy_queues);
+ }
+ 
+ static void bfq_end_wr_async_queues(struct bfq_data *bfqd,
+@@ -1277,7 +1747,7 @@ static int bfq_rq_close_to_sector(void *io_struct, bool request,
+ 				  sector_t sector)
+ {
+ 	return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
+-	       BFQQ_SEEK_THR;
++	       BFQQ_CLOSE_THR;
+ }
+ 
+ static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
+@@ -1399,7 +1869,7 @@ bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
+ 	 * throughput.
+ 	 */
+ 	bfqq->new_bfqq = new_bfqq;
+-	atomic_add(process_refs, &new_bfqq->ref);
++	new_bfqq->ref += process_refs;
+ 	return new_bfqq;
+ }
+ 
+@@ -1430,9 +1900,23 @@ static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
+ }
+ 
+ /*
+- * Attempt to schedule a merge of bfqq with the currently in-service queue
+- * or with a close queue among the scheduled queues.
+- * Return NULL if no merge was scheduled, a pointer to the shared bfq_queue
++ * If this function returns true, then bfqq cannot be merged. The idea
++ * is that true cooperation happens very early after processes start
++ * to do I/O. Usually, late cooperations are just accidental false
++ * positives. In case bfqq is weight-raised, such false positives
++ * would evidently degrade latency guarantees for bfqq.
++ */
++static bool wr_from_too_long(struct bfq_queue *bfqq)
++{
++	return bfqq->wr_coeff > 1 &&
++		time_is_before_jiffies(bfqq->last_wr_start_finish +
++				       msecs_to_jiffies(100));
++}
++
++/*
++ * Attempt to schedule a merge of bfqq with the currently in-service
++ * queue or with a close queue among the scheduled queues.  Return
++ * NULL if no merge was scheduled, a pointer to the shared bfq_queue
+  * structure otherwise.
+  *
+  * The OOM queue is not allowed to participate to cooperation: in fact, since
+@@ -1441,6 +1925,18 @@ static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
+  * handle merging with the OOM queue would be quite complex and expensive
+  * to maintain. Besides, in such a critical condition as an out of memory,
+  * the benefits of queue merging may be little relevant, or even negligible.
++ *
++ * Weight-raised queues can be merged only if their weight-raising
++ * period has just started. In fact cooperating processes are usually
++ * started together. Thus, with this filter we avoid false positives
++ * that would jeopardize low-latency guarantees.
++ *
++ * WARNING: queue merging may impair fairness among non-weight raised
++ * queues, for at least two reasons: 1) the original weight of a
++ * merged queue may change during the merged state, 2) even being the
++ * weight the same, a merged queue may be bloated with many more
++ * requests than the ones produced by its originally-associated
++ * process.
+  */
+ static struct bfq_queue *
+ bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+@@ -1450,16 +1946,32 @@ bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ 
+ 	if (bfqq->new_bfqq)
+ 		return bfqq->new_bfqq;
+-	if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
++
++	if (io_struct && wr_from_too_long(bfqq) &&
++	    likely(bfqq != &bfqd->oom_bfqq))
++		bfq_log_bfqq(bfqd, bfqq,
++			     "would have looked for coop, but bfq%d wr",
++			bfqq->pid);
++
++	if (!io_struct ||
++	    wr_from_too_long(bfqq) ||
++	    unlikely(bfqq == &bfqd->oom_bfqq))
+ 		return NULL;
+-	/* If device has only one backlogged bfq_queue, don't search. */
++
++	/* If there is only one backlogged queue, don't search. */
+ 	if (bfqd->busy_queues == 1)
+ 		return NULL;
+ 
+ 	in_service_bfqq = bfqd->in_service_queue;
+ 
++	if (in_service_bfqq && in_service_bfqq != bfqq &&
++	    bfqd->in_service_bic && wr_from_too_long(in_service_bfqq)
++	    && likely(in_service_bfqq == &bfqd->oom_bfqq))
++		bfq_log_bfqq(bfqd, bfqq,
++		"would have tried merge with in-service-queue, but wr");
++
+ 	if (!in_service_bfqq || in_service_bfqq == bfqq ||
+-	    !bfqd->in_service_bic ||
++	    !bfqd->in_service_bic || wr_from_too_long(in_service_bfqq) ||
+ 	    unlikely(in_service_bfqq == &bfqd->oom_bfqq))
+ 		goto check_scheduled;
+ 
+@@ -1481,7 +1993,15 @@ bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ 
+ 	BUG_ON(new_bfqq && bfqq->entity.parent != new_bfqq->entity.parent);
+ 
+-	if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
++	if (new_bfqq && wr_from_too_long(new_bfqq) &&
++	    likely(new_bfqq != &bfqd->oom_bfqq) &&
++	    bfq_may_be_close_cooperator(bfqq, new_bfqq))
++		bfq_log_bfqq(bfqd, bfqq,
++			     "would have merged with bfq%d, but wr",
++			     new_bfqq->pid);
++
++	if (new_bfqq && !wr_from_too_long(new_bfqq) &&
++	    likely(new_bfqq != &bfqd->oom_bfqq) &&
+ 	    bfq_may_be_close_cooperator(bfqq, new_bfqq))
+ 		return bfq_setup_merge(bfqq, new_bfqq);
+ 
+@@ -1490,53 +2010,25 @@ bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ 
+ static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
+ {
++	struct bfq_io_cq *bic = bfqq->bic;
++
+ 	/*
+ 	 * If !bfqq->bic, the queue is already shared or its requests
+ 	 * have already been redirected to a shared queue; both idle window
+ 	 * and weight raising state have already been saved. Do nothing.
+ 	 */
+-	if (!bfqq->bic)
++	if (!bic)
+ 		return;
+-	if (bfqq->bic->wr_time_left)
+-		/*
+-		 * This is the queue of a just-started process, and would
+-		 * deserve weight raising: we set wr_time_left to the full
+-		 * weight-raising duration to trigger weight-raising when
+-		 * and if the queue is split and the first request of the
+-		 * queue is enqueued.
+-		 */
+-		bfqq->bic->wr_time_left = bfq_wr_duration(bfqq->bfqd);
+-	else if (bfqq->wr_coeff > 1) {
+-		unsigned long wr_duration =
+-			jiffies - bfqq->last_wr_start_finish;
+-		/*
+-		 * It may happen that a queue's weight raising period lasts
+-		 * longer than its wr_cur_max_time, as weight raising is
+-		 * handled only when a request is enqueued or dispatched (it
+-		 * does not use any timer). If the weight raising period is
+-		 * about to end, don't save it.
+-		 */
+-		if (bfqq->wr_cur_max_time <= wr_duration)
+-			bfqq->bic->wr_time_left = 0;
+-		else
+-			bfqq->bic->wr_time_left =
+-				bfqq->wr_cur_max_time - wr_duration;
+-		/*
+-		 * The bfq_queue is becoming shared or the requests of the
+-		 * process owning the queue are being redirected to a shared
+-		 * queue. Stop the weight raising period of the queue, as in
+-		 * both cases it should not be owned by an interactive or
+-		 * soft real-time application.
+-		 */
+-		bfq_bfqq_end_wr(bfqq);
+-	} else
+-		bfqq->bic->wr_time_left = 0;
+-	bfqq->bic->saved_idle_window = bfq_bfqq_idle_window(bfqq);
+-	bfqq->bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
+-	bfqq->bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
+-	bfqq->bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
+-	bfqq->bic->cooperations++;
+-	bfqq->bic->failed_cooperations = 0;
++
++	bic->saved_idle_window = bfq_bfqq_idle_window(bfqq);
++	bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
++	bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
++	bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
++	bic->saved_wr_coeff = bfqq->wr_coeff;
++	bic->saved_wr_start_at_switch_to_srt = bfqq->wr_start_at_switch_to_srt;
++	bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
++	bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
++	BUG_ON(time_is_after_jiffies(bfqq->last_wr_start_finish));
+ }
+ 
+ static void bfq_get_bic_reference(struct bfq_queue *bfqq)
+@@ -1561,6 +2053,41 @@ bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
+ 	if (bfq_bfqq_IO_bound(bfqq))
+ 		bfq_mark_bfqq_IO_bound(new_bfqq);
+ 	bfq_clear_bfqq_IO_bound(bfqq);
++
++	/*
++	 * If bfqq is weight-raised, then let new_bfqq inherit
++	 * weight-raising. To reduce false positives, neglect the case
++	 * where bfqq has just been created, but has not yet made it
++	 * to be weight-raised (which may happen because EQM may merge
++	 * bfqq even before bfq_add_request is executed for the first
++	 * time for bfqq). Handling this case would however be very
++	 * easy, thanks to the flag just_created.
++	 */
++	if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
++		new_bfqq->wr_coeff = bfqq->wr_coeff;
++		new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
++		new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
++		new_bfqq->wr_start_at_switch_to_srt =
++			bfqq->wr_start_at_switch_to_srt;
++		if (bfq_bfqq_busy(new_bfqq))
++			bfqd->wr_busy_queues++;
++		new_bfqq->entity.prio_changed = 1;
++		bfq_log_bfqq(bfqd, new_bfqq,
++			     "wr start after merge with %d, rais_max_time %u",
++			     bfqq->pid,
++			     jiffies_to_msecs(bfqq->wr_cur_max_time));
++	}
++
++	if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
++		bfqq->wr_coeff = 1;
++		bfqq->entity.prio_changed = 1;
++		if (bfq_bfqq_busy(bfqq))
++			bfqd->wr_busy_queues--;
++	}
++
++	bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
++		     bfqd->wr_busy_queues);
++
+ 	/*
+ 	 * Grab a reference to the bic, to prevent it from being destroyed
+ 	 * before being possibly touched by a bfq_split_bfqq().
+@@ -1584,33 +2111,23 @@ bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
+ 	 */
+ 	new_bfqq->bic = NULL;
+ 	bfqq->bic = NULL;
++	/* release process reference to bfqq */
+ 	bfq_put_queue(bfqq);
+ }
+ 
+-static void bfq_bfqq_increase_failed_cooperations(struct bfq_queue *bfqq)
+-{
+-	struct bfq_io_cq *bic = bfqq->bic;
+-	struct bfq_data *bfqd = bfqq->bfqd;
+-
+-	if (bic && bfq_bfqq_cooperations(bfqq) >= bfqd->bfq_coop_thresh) {
+-		bic->failed_cooperations++;
+-		if (bic->failed_cooperations >= bfqd->bfq_failed_cooperations)
+-			bic->cooperations = 0;
+-	}
+-}
+-
+-static int bfq_allow_merge(struct request_queue *q, struct request *rq,
+-			   struct bio *bio)
++static int bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
++			       struct bio *bio)
+ {
+ 	struct bfq_data *bfqd = q->elevator->elevator_data;
++	bool is_sync = op_is_sync(bio->bi_opf);
+ 	struct bfq_io_cq *bic;
+ 	struct bfq_queue *bfqq, *new_bfqq;
+ 
+ 	/*
+ 	 * Disallow merge of a sync bio into an async request.
+ 	 */
+-	if (bfq_bio_sync(bio) && !rq_is_sync(rq))
+-		return 0;
++	if (is_sync && !rq_is_sync(rq))
++		return false;
+ 
+ 	/*
+ 	 * Lookup the bfqq that this bio will be queued with. Allow
+@@ -1619,9 +2136,9 @@ static int bfq_allow_merge(struct request_queue *q, struct request *rq,
+ 	 */
+ 	bic = bfq_bic_lookup(bfqd, current->io_context);
+ 	if (!bic)
+-		return 0;
++		return false;
+ 
+-	bfqq = bic_to_bfqq(bic, bfq_bio_sync(bio));
++	bfqq = bic_to_bfqq(bic, is_sync);
+ 	/*
+ 	 * We take advantage of this function to perform an early merge
+ 	 * of the queues of possible cooperating processes.
+@@ -1636,30 +2153,111 @@ static int bfq_allow_merge(struct request_queue *q, struct request *rq,
+ 			 * to decide whether bio and rq can be merged.
+ 			 */
+ 			bfqq = new_bfqq;
+-		} else
+-			bfq_bfqq_increase_failed_cooperations(bfqq);
++		}
+ 	}
+ 
+ 	return bfqq == RQ_BFQQ(rq);
+ }
+ 
++static int bfq_allow_rq_merge(struct request_queue *q, struct request *rq,
++			      struct request *next)
++{
++	return RQ_BFQQ(rq) == RQ_BFQQ(next);
++}
++
++/*
++ * Set the maximum time for the in-service queue to consume its
++ * budget. This prevents seeky processes from lowering the throughput.
++ * In practice, a time-slice service scheme is used with seeky
++ * processes.
++ */
++static void bfq_set_budget_timeout(struct bfq_data *bfqd,
++				   struct bfq_queue *bfqq)
++{
++	unsigned int timeout_coeff;
++
++	if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
++		timeout_coeff = 1;
++	else
++		timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
++
++	bfqd->last_budget_start = ktime_get();
++
++	bfqq->budget_timeout = jiffies +
++		bfqd->bfq_timeout * timeout_coeff;
++
++	bfq_log_bfqq(bfqd, bfqq, "set budget_timeout %u",
++		jiffies_to_msecs(bfqd->bfq_timeout * timeout_coeff));
++}
++
+ static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
+ 				       struct bfq_queue *bfqq)
+ {
+ 	if (bfqq) {
+-#ifdef CONFIG_BFQ_GROUP_IOSCHED
+ 		bfqg_stats_update_avg_queue_size(bfqq_group(bfqq));
+-#endif
+ 		bfq_mark_bfqq_must_alloc(bfqq);
+-		bfq_mark_bfqq_budget_new(bfqq);
+ 		bfq_clear_bfqq_fifo_expire(bfqq);
+ 
+ 		bfqd->budgets_assigned = (bfqd->budgets_assigned*7 + 256) / 8;
+ 
++		BUG_ON(bfqq == bfqd->in_service_queue);
++		BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list));
++
++		if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
++		    bfqq->wr_coeff > 1 &&
++		    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
++		    time_is_before_jiffies(bfqq->budget_timeout)) {
++			/*
++			 * For soft real-time queues, move the start
++			 * of the weight-raising period forward by the
++			 * time the queue has not received any
++			 * service. Otherwise, a relatively long
++			 * service delay is likely to cause the
++			 * weight-raising period of the queue to end,
++			 * because of the short duration of the
++			 * weight-raising period of a soft real-time
++			 * queue.  It is worth noting that this move
++			 * is not so dangerous for the other queues,
++			 * because soft real-time queues are not
++			 * greedy.
++			 *
++			 * To not add a further variable, we use the
++			 * overloaded field budget_timeout to
++			 * determine for how long the queue has not
++			 * received service, i.e., how much time has
++			 * elapsed since the queue expired. However,
++			 * this is a little imprecise, because
++			 * budget_timeout is set to jiffies if bfqq
++			 * not only expires, but also remains with no
++			 * request.
++			 */
++			if (time_after(bfqq->budget_timeout,
++				       bfqq->last_wr_start_finish))
++				bfqq->last_wr_start_finish +=
++					jiffies - bfqq->budget_timeout;
++			else
++				bfqq->last_wr_start_finish = jiffies;
++
++			if (time_is_after_jiffies(bfqq->last_wr_start_finish)) {
++			       pr_crit(
++			       "BFQ WARNING:last %lu budget %lu jiffies %lu",
++			       bfqq->last_wr_start_finish,
++			       bfqq->budget_timeout,
++			       jiffies);
++			       pr_crit("diff %lu", jiffies -
++				       max_t(unsigned long,
++					     bfqq->last_wr_start_finish,
++					     bfqq->budget_timeout));
++			       bfqq->last_wr_start_finish = jiffies;
++			}
++		}
++
++		bfq_set_budget_timeout(bfqd, bfqq);
+ 		bfq_log_bfqq(bfqd, bfqq,
+ 			     "set_in_service_queue, cur-budget = %d",
+ 			     bfqq->entity.budget);
+-	}
++	} else
++		bfq_log(bfqd, "set_in_service_queue: NULL");
+ 
+ 	bfqd->in_service_queue = bfqq;
+ }
+@@ -1675,36 +2273,11 @@ static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
+ 	return bfqq;
+ }
+ 
+-/*
+- * If enough samples have been computed, return the current max budget
+- * stored in bfqd, which is dynamically updated according to the
+- * estimated disk peak rate; otherwise return the default max budget
+- */
+-static int bfq_max_budget(struct bfq_data *bfqd)
+-{
+-	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
+-		return bfq_default_max_budget;
+-	else
+-		return bfqd->bfq_max_budget;
+-}
+-
+-/*
+- * Return min budget, which is a fraction of the current or default
+- * max budget (trying with 1/32)
+- */
+-static int bfq_min_budget(struct bfq_data *bfqd)
+-{
+-	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
+-		return bfq_default_max_budget / 32;
+-	else
+-		return bfqd->bfq_max_budget / 32;
+-}
+-
+ static void bfq_arm_slice_timer(struct bfq_data *bfqd)
+ {
+ 	struct bfq_queue *bfqq = bfqd->in_service_queue;
+ 	struct bfq_io_cq *bic;
+-	unsigned long sl;
++	u32 sl;
+ 
+ 	BUG_ON(!RB_EMPTY_ROOT(&bfqq->sort_list));
+ 
+@@ -1728,119 +2301,366 @@ static void bfq_arm_slice_timer(struct bfq_data *bfqd)
+ 	sl = bfqd->bfq_slice_idle;
+ 	/*
+ 	 * Unless the queue is being weight-raised or the scenario is
+-	 * asymmetric, grant only minimum idle time if the queue either
+-	 * has been seeky for long enough or has already proved to be
+-	 * constantly seeky.
++	 * asymmetric, grant only minimum idle time if the queue
++	 * is seeky. A long idling is preserved for a weight-raised
++	 * queue, or, more in general, in an asymemtric scenario,
++	 * because a long idling is needed for guaranteeing to a queue
++	 * its reserved share of the throughput (in particular, it is
++	 * needed if the queue has a higher weight than some other
++	 * queue).
+ 	 */
+-	if (bfq_sample_valid(bfqq->seek_samples) &&
+-	    ((BFQQ_SEEKY(bfqq) && bfqq->entity.service >
+-				  bfq_max_budget(bfqq->bfqd) / 8) ||
+-	      bfq_bfqq_constantly_seeky(bfqq)) && bfqq->wr_coeff == 1 &&
++	if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
+ 	    bfq_symmetric_scenario(bfqd))
+-		sl = min(sl, msecs_to_jiffies(BFQ_MIN_TT));
+-	else if (bfqq->wr_coeff > 1)
+-		sl = sl * 3;
++		sl = min_t(u32, sl, BFQ_MIN_TT);
++
+ 	bfqd->last_idling_start = ktime_get();
+-	mod_timer(&bfqd->idle_slice_timer, jiffies + sl);
+-#ifdef CONFIG_BFQ_GROUP_IOSCHED
++	hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
++		      HRTIMER_MODE_REL);
+ 	bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
+-#endif
+-	bfq_log(bfqd, "arm idle: %u/%u ms",
+-		jiffies_to_msecs(sl), jiffies_to_msecs(bfqd->bfq_slice_idle));
++	bfq_log(bfqd, "arm idle: %ld/%ld ms",
++		sl / NSEC_PER_MSEC, bfqd->bfq_slice_idle / NSEC_PER_MSEC);
+ }
+ 
+ /*
+- * Set the maximum time for the in-service queue to consume its
+- * budget. This prevents seeky processes from lowering the disk
+- * throughput (always guaranteed with a time slice scheme as in CFQ).
++ * In autotuning mode, max_budget is dynamically recomputed as the
++ * amount of sectors transferred in timeout at the estimated peak
++ * rate. This enables BFQ to utilize a full timeslice with a full
++ * budget, even if the in-service queue is served at peak rate. And
++ * this maximises throughput with sequential workloads.
+  */
+-static void bfq_set_budget_timeout(struct bfq_data *bfqd)
++static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
+ {
+-	struct bfq_queue *bfqq = bfqd->in_service_queue;
+-	unsigned int timeout_coeff;
++	return (u64)bfqd->peak_rate * USEC_PER_MSEC *
++		jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
++}
+ 
+-	if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
+-		timeout_coeff = 1;
+-	else
+-		timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
++/*
++ * Update parameters related to throughput and responsiveness, as a
++ * function of the estimated peak rate. See comments on
++ * bfq_calc_max_budget(), and on T_slow and T_fast arrays.
++ */
++static void update_thr_responsiveness_params(struct bfq_data *bfqd)
++{
++	int dev_type = blk_queue_nonrot(bfqd->queue);
++
++	if (bfqd->bfq_user_max_budget == 0) {
++		bfqd->bfq_max_budget =
++			bfq_calc_max_budget(bfqd);
++		BUG_ON(bfqd->bfq_max_budget < 0);
++		bfq_log(bfqd, "new max_budget = %d",
++			bfqd->bfq_max_budget);
++	}
+ 
+-	bfqd->last_budget_start = ktime_get();
++	if (bfqd->device_speed == BFQ_BFQD_FAST &&
++	    bfqd->peak_rate < device_speed_thresh[dev_type]) {
++		bfqd->device_speed = BFQ_BFQD_SLOW;
++		bfqd->RT_prod = R_slow[dev_type] *
++			T_slow[dev_type];
++	} else if (bfqd->device_speed == BFQ_BFQD_SLOW &&
++		   bfqd->peak_rate > device_speed_thresh[dev_type]) {
++		bfqd->device_speed = BFQ_BFQD_FAST;
++		bfqd->RT_prod = R_fast[dev_type] *
++			T_fast[dev_type];
++	}
+ 
+-	bfq_clear_bfqq_budget_new(bfqq);
+-	bfqq->budget_timeout = jiffies +
+-		bfqd->bfq_timeout[bfq_bfqq_sync(bfqq)] * timeout_coeff;
++	bfq_log(bfqd,
++"dev_type %s dev_speed_class = %s (%llu sects/sec), thresh %llu setcs/sec",
++		dev_type == 0 ? "ROT" : "NONROT",
++		bfqd->device_speed == BFQ_BFQD_FAST ? "FAST" : "SLOW",
++		bfqd->device_speed == BFQ_BFQD_FAST ?
++		(USEC_PER_SEC*(u64)R_fast[dev_type])>>BFQ_RATE_SHIFT :
++		(USEC_PER_SEC*(u64)R_slow[dev_type])>>BFQ_RATE_SHIFT,
++		(USEC_PER_SEC*(u64)device_speed_thresh[dev_type])>>
++		BFQ_RATE_SHIFT);
++}
+ 
+-	bfq_log_bfqq(bfqd, bfqq, "set budget_timeout %u",
+-		jiffies_to_msecs(bfqd->bfq_timeout[bfq_bfqq_sync(bfqq)] *
+-		timeout_coeff));
++static void bfq_reset_rate_computation(struct bfq_data *bfqd, struct request *rq)
++{
++	if (rq != NULL) { /* new rq dispatch now, reset accordingly */
++		bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns() ;
++		bfqd->peak_rate_samples = 1;
++		bfqd->sequential_samples = 0;
++		bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
++			blk_rq_sectors(rq);
++	} else /* no new rq dispatched, just reset the number of samples */
++		bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
++
++	bfq_log(bfqd,
++		"reset_rate_computation at end, sample %u/%u tot_sects %llu",
++		bfqd->peak_rate_samples, bfqd->sequential_samples,
++		bfqd->tot_sectors_dispatched);
+ }
+ 
+-/*
+- * Move request from internal lists to the request queue dispatch list.
+- */
+-static void bfq_dispatch_insert(struct request_queue *q, struct request *rq)
++static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
+ {
+-	struct bfq_data *bfqd = q->elevator->elevator_data;
+-	struct bfq_queue *bfqq = RQ_BFQQ(rq);
++	u32 rate, weight, divisor;
+ 
+ 	/*
+-	 * For consistency, the next instruction should have been executed
+-	 * after removing the request from the queue and dispatching it.
+-	 * We execute instead this instruction before bfq_remove_request()
+-	 * (and hence introduce a temporary inconsistency), for efficiency.
+-	 * In fact, in a forced_dispatch, this prevents two counters related
+-	 * to bfqq->dispatched to risk to be uselessly decremented if bfqq
+-	 * is not in service, and then to be incremented again after
+-	 * incrementing bfqq->dispatched.
++	 * For the convergence property to hold (see comments on
++	 * bfq_update_peak_rate()) and for the assessment to be
++	 * reliable, a minimum number of samples must be present, and
++	 * a minimum amount of time must have elapsed. If not so, do
++	 * not compute new rate. Just reset parameters, to get ready
++	 * for a new evaluation attempt.
+ 	 */
+-	bfqq->dispatched++;
+-	bfq_remove_request(rq);
+-	elv_dispatch_sort(q, rq);
++	if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
++	    bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL) {
++		bfq_log(bfqd,
++	"update_rate_reset: only resetting, delta_first %lluus samples %d",
++			bfqd->delta_from_first>>10, bfqd->peak_rate_samples);
++		goto reset_computation;
++	}
+ 
+-	if (bfq_bfqq_sync(bfqq))
+-		bfqd->sync_flight++;
+-#ifdef CONFIG_BFQ_GROUP_IOSCHED
+-	bfqg_stats_update_dispatch(bfqq_group(bfqq), blk_rq_bytes(rq),
+-				   rq->cmd_flags);
+-#endif
++	/*
++	 * If a new request completion has occurred after last
++	 * dispatch, then, to approximate the rate at which requests
++	 * have been served by the device, it is more precise to
++	 * extend the observation interval to the last completion.
++	 */
++	bfqd->delta_from_first =
++		max_t(u64, bfqd->delta_from_first,
++		      bfqd->last_completion - bfqd->first_dispatch);
++
++	BUG_ON(bfqd->delta_from_first == 0);
++	/*
++	 * Rate computed in sects/usec, and not sects/nsec, for
++	 * precision issues.
++	 */
++	rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
++			div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
++
++	bfq_log(bfqd,
++"update_rate_reset: tot_sects %llu delta_first %lluus rate %llu sects/s (%d)",
++		bfqd->tot_sectors_dispatched, bfqd->delta_from_first>>10,
++		((USEC_PER_SEC*(u64)rate)>>BFQ_RATE_SHIFT),
++		rate > 20<<BFQ_RATE_SHIFT);
++
++	/*
++	 * Peak rate not updated if:
++	 * - the percentage of sequential dispatches is below 3/4 of the
++	 *   total, and rate is below the current estimated peak rate
++	 * - rate is unreasonably high (> 20M sectors/sec)
++	 */
++	if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
++	     rate <= bfqd->peak_rate) ||
++		rate > 20<<BFQ_RATE_SHIFT) {
++		bfq_log(bfqd,
++		"update_rate_reset: goto reset, samples %u/%u rate/peak %llu/%llu",
++		bfqd->peak_rate_samples, bfqd->sequential_samples,
++		((USEC_PER_SEC*(u64)rate)>>BFQ_RATE_SHIFT),
++		((USEC_PER_SEC*(u64)bfqd->peak_rate)>>BFQ_RATE_SHIFT));
++		goto reset_computation;
++	} else {
++		bfq_log(bfqd,
++		"update_rate_reset: do update, samples %u/%u rate/peak %llu/%llu",
++		bfqd->peak_rate_samples, bfqd->sequential_samples,
++		((USEC_PER_SEC*(u64)rate)>>BFQ_RATE_SHIFT),
++		((USEC_PER_SEC*(u64)bfqd->peak_rate)>>BFQ_RATE_SHIFT));
++	}
++
++	/*
++	 * We have to update the peak rate, at last! To this purpose,
++	 * we use a low-pass filter. We compute the smoothing constant
++	 * of the filter as a function of the 'weight' of the new
++	 * measured rate.
++	 *
++	 * As can be seen in next formulas, we define this weight as a
++	 * quantity proportional to how sequential the workload is,
++	 * and to how long the observation time interval is.
++	 *
++	 * The weight runs from 0 to 8. The maximum value of the
++	 * weight, 8, yields the minimum value for the smoothing
++	 * constant. At this minimum value for the smoothing constant,
++	 * the measured rate contributes for half of the next value of
++	 * the estimated peak rate.
++	 *
++	 * So, the first step is to compute the weight as a function
++	 * of how sequential the workload is. Note that the weight
++	 * cannot reach 9, because bfqd->sequential_samples cannot
++	 * become equal to bfqd->peak_rate_samples, which, in its
++	 * turn, holds true because bfqd->sequential_samples is not
++	 * incremented for the first sample.
++	 */
++	weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
++
++	/*
++	 * Second step: further refine the weight as a function of the
++	 * duration of the observation interval.
++	 */
++	weight = min_t(u32, 8,
++		       div_u64(weight * bfqd->delta_from_first,
++			       BFQ_RATE_REF_INTERVAL));
++
++	/*
++	 * Divisor ranging from 10, for minimum weight, to 2, for
++	 * maximum weight.
++	 */
++	divisor = 10 - weight;
++	BUG_ON(divisor == 0);
++
++	/*
++	 * Finally, update peak rate:
++	 *
++	 * peak_rate = peak_rate * (divisor-1) / divisor  +  rate / divisor
++	 */
++	bfqd->peak_rate *= divisor-1;
++	bfqd->peak_rate /= divisor;
++	rate /= divisor; /* smoothing constant alpha = 1/divisor */
++
++	bfq_log(bfqd,
++		"update_rate_reset: divisor %d tmp_peak_rate %llu tmp_rate %u",
++		divisor,
++		((USEC_PER_SEC*(u64)bfqd->peak_rate)>>BFQ_RATE_SHIFT),
++		(u32)((USEC_PER_SEC*(u64)rate)>>BFQ_RATE_SHIFT));
++
++	BUG_ON(bfqd->peak_rate == 0);
++	BUG_ON(bfqd->peak_rate > 20<<BFQ_RATE_SHIFT);
++
++	bfqd->peak_rate += rate;
++	update_thr_responsiveness_params(bfqd);
++	BUG_ON(bfqd->peak_rate > 20<<BFQ_RATE_SHIFT);
++
++reset_computation:
++	bfq_reset_rate_computation(bfqd, rq);
+ }
+ 
+ /*
+- * Return expired entry, or NULL to just start from scratch in rbtree.
++ * Update the read/write peak rate (the main quantity used for
++ * auto-tuning, see update_thr_responsiveness_params()).
++ *
++ * It is not trivial to estimate the peak rate (correctly): because of
++ * the presence of sw and hw queues between the scheduler and the
++ * device components that finally serve I/O requests, it is hard to
++ * say exactly when a given dispatched request is served inside the
++ * device, and for how long. As a consequence, it is hard to know
++ * precisely at what rate a given set of requests is actually served
++ * by the device.
++ *
++ * On the opposite end, the dispatch time of any request is trivially
++ * available, and, from this piece of information, the "dispatch rate"
++ * of requests can be immediately computed. So, the idea in the next
++ * function is to use what is known, namely request dispatch times
++ * (plus, when useful, request completion times), to estimate what is
++ * unknown, namely in-device request service rate.
++ *
++ * The main issue is that, because of the above facts, the rate at
++ * which a certain set of requests is dispatched over a certain time
++ * interval can vary greatly with respect to the rate at which the
++ * same requests are then served. But, since the size of any
++ * intermediate queue is limited, and the service scheme is lossless
++ * (no request is silently dropped), the following obvious convergence
++ * property holds: the number of requests dispatched MUST become
++ * closer and closer to the number of requests completed as the
++ * observation interval grows. This is the key property used in
++ * the next function to estimate the peak service rate as a function
++ * of the observed dispatch rate. The function assumes to be invoked
++ * on every request dispatch.
+  */
+-static struct request *bfq_check_fifo(struct bfq_queue *bfqq)
++static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
+ {
+-	struct request *rq = NULL;
++	u64 now_ns = ktime_get_ns();
++
++	if (bfqd->peak_rate_samples == 0) { /* first dispatch */
++		bfq_log(bfqd,
++		"update_peak_rate: goto reset, samples %d",
++				bfqd->peak_rate_samples) ;
++		bfq_reset_rate_computation(bfqd, rq);
++		goto update_last_values; /* will add one sample */
++	}
+ 
+-	if (bfq_bfqq_fifo_expire(bfqq))
+-		return NULL;
++	/*
++	 * Device idle for very long: the observation interval lasting
++	 * up to this dispatch cannot be a valid observation interval
++	 * for computing a new peak rate (similarly to the late-
++	 * completion event in bfq_completed_request()). Go to
++	 * update_rate_and_reset to have the following three steps
++	 * taken:
++	 * - close the observation interval at the last (previous)
++	 *   request dispatch or completion
++	 * - compute rate, if possible, for that observation interval
++	 * - start a new observation interval with this dispatch
++	 */
++	if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
++	    bfqd->rq_in_driver == 0) {
++		bfq_log(bfqd,
++"update_peak_rate: jumping to updating&resetting delta_last %lluus samples %d",
++			(now_ns - bfqd->last_dispatch)>>10,
++			bfqd->peak_rate_samples) ;
++		goto update_rate_and_reset;
++	}
+ 
+-	bfq_mark_bfqq_fifo_expire(bfqq);
++	/* Update sampling information */
++	bfqd->peak_rate_samples++;
+ 
+-	if (list_empty(&bfqq->fifo))
+-		return NULL;
++	if ((bfqd->rq_in_driver > 0 ||
++		now_ns - bfqd->last_completion < BFQ_MIN_TT)
++	     && get_sdist(bfqd->last_position, rq) < BFQQ_SEEK_THR)
++		bfqd->sequential_samples++;
+ 
+-	rq = rq_entry_fifo(bfqq->fifo.next);
++	bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
+ 
+-	if (time_before(jiffies, rq->fifo_time))
+-		return NULL;
++	/* Reset max observed rq size every 32 dispatches */
++	if (likely(bfqd->peak_rate_samples % 32))
++		bfqd->last_rq_max_size =
++			max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
++	else
++		bfqd->last_rq_max_size = blk_rq_sectors(rq);
+ 
+-	return rq;
++	bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
++
++	bfq_log(bfqd,
++	"update_peak_rate: added samples %u/%u tot_sects %llu delta_first %lluus",
++		bfqd->peak_rate_samples, bfqd->sequential_samples,
++		bfqd->tot_sectors_dispatched,
++		bfqd->delta_from_first>>10);
++
++	/* Target observation interval not yet reached, go on sampling */
++	if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
++		goto update_last_values;
++
++update_rate_and_reset:
++	bfq_update_rate_reset(bfqd, rq);
++update_last_values:
++	bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
++	bfqd->last_dispatch = now_ns;
++
++	bfq_log(bfqd,
++	"update_peak_rate: delta_first %lluus last_pos %llu peak_rate %llu",
++		(now_ns - bfqd->first_dispatch)>>10,
++		(unsigned long long) bfqd->last_position,
++		((USEC_PER_SEC*(u64)bfqd->peak_rate)>>BFQ_RATE_SHIFT));
++	bfq_log(bfqd,
++	"update_peak_rate: samples at end %d", bfqd->peak_rate_samples);
+ }
+ 
+-static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
++/*
++ * Move request from internal lists to the dispatch list of the request queue
++ */
++static void bfq_dispatch_insert(struct request_queue *q, struct request *rq)
+ {
+-	struct bfq_entity *entity = &bfqq->entity;
++	struct bfq_queue *bfqq = RQ_BFQQ(rq);
+ 
+-	return entity->budget - entity->service;
++	/*
++	 * For consistency, the next instruction should have been executed
++	 * after removing the request from the queue and dispatching it.
++	 * We execute instead this instruction before bfq_remove_request()
++	 * (and hence introduce a temporary inconsistency), for efficiency.
++	 * In fact, in a forced_dispatch, this prevents two counters related
++	 * to bfqq->dispatched to risk to be uselessly decremented if bfqq
++	 * is not in service, and then to be incremented again after
++	 * incrementing bfqq->dispatched.
++	 */
++	bfqq->dispatched++;
++	bfq_update_peak_rate(q->elevator->elevator_data, rq);
++
++	bfq_remove_request(rq);
++	elv_dispatch_sort(q, rq);
+ }
+ 
+ static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+ {
+ 	BUG_ON(bfqq != bfqd->in_service_queue);
+ 
+-	__bfq_bfqd_reset_in_service(bfqd);
+-
+ 	/*
+ 	 * If this bfqq is shared between multiple processes, check
+ 	 * to make sure that those processes are still issuing I/Os
+@@ -1851,20 +2671,30 @@ static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+ 		bfq_mark_bfqq_split_coop(bfqq);
+ 
+ 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
+-		/*
+-		 * Overloading budget_timeout field to store the time
+-		 * at which the queue remains with no backlog; used by
+-		 * the weight-raising mechanism.
+-		 */
+-		bfqq->budget_timeout = jiffies;
+-		bfq_del_bfqq_busy(bfqd, bfqq, 1);
++		if (bfqq->dispatched == 0)
++			/*
++			 * Overloading budget_timeout field to store
++			 * the time at which the queue remains with no
++			 * backlog and no outstanding request; used by
++			 * the weight-raising mechanism.
++			 */
++			bfqq->budget_timeout = jiffies;
++
++		bfq_del_bfqq_busy(bfqd, bfqq, true);
+ 	} else {
+-		bfq_activate_bfqq(bfqd, bfqq);
++		bfq_requeue_bfqq(bfqd, bfqq);
+ 		/*
+ 		 * Resort priority tree of potential close cooperators.
+ 		 */
+ 		bfq_pos_tree_add_move(bfqd, bfqq);
+ 	}
++
++	/*
++	 * All in-service entities must have been properly deactivated
++	 * or requeued before executing the next function, which
++	 * resets all in-service entites as no more in service.
++	 */
++	__bfq_bfqd_reset_in_service(bfqd);
+ }
+ 
+ /**
+@@ -1883,10 +2713,19 @@ static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
+ 	struct request *next_rq;
+ 	int budget, min_budget;
+ 
+-	budget = bfqq->max_budget;
++	BUG_ON(bfqq != bfqd->in_service_queue);
++
+ 	min_budget = bfq_min_budget(bfqd);
+ 
+-	BUG_ON(bfqq != bfqd->in_service_queue);
++	if (bfqq->wr_coeff == 1)
++		budget = bfqq->max_budget;
++	else /*
++	      * Use a constant, low budget for weight-raised queues,
++	      * to help achieve a low latency. Keep it slightly higher
++	      * than the minimum possible budget, to cause a little
++	      * bit fewer expirations.
++	      */
++		budget = 2 * min_budget;
+ 
+ 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
+ 		bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
+@@ -1895,7 +2734,7 @@ static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
+ 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
+ 		bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
+ 
+-	if (bfq_bfqq_sync(bfqq)) {
++	if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
+ 		switch (reason) {
+ 		/*
+ 		 * Caveat: in all the following cases we trade latency
+@@ -1937,14 +2776,10 @@ static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
+ 			break;
+ 		case BFQ_BFQQ_BUDGET_TIMEOUT:
+ 			/*
+-			 * We double the budget here because: 1) it
+-			 * gives the chance to boost the throughput if
+-			 * this is not a seeky process (which may have
+-			 * bumped into this timeout because of, e.g.,
+-			 * ZBR), 2) together with charge_full_budget
+-			 * it helps give seeky processes higher
+-			 * timestamps, and hence be served less
+-			 * frequently.
++			 * We double the budget here because it gives
++			 * the chance to boost the throughput if this
++			 * is not a seeky process (and has bumped into
++			 * this timeout because of, e.g., ZBR).
+ 			 */
+ 			budget = min(budget * 2, bfqd->bfq_max_budget);
+ 			break;
+@@ -1961,17 +2796,49 @@ static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
+ 			budget = min(budget * 4, bfqd->bfq_max_budget);
+ 			break;
+ 		case BFQ_BFQQ_NO_MORE_REQUESTS:
+-		       /*
+-			* Leave the budget unchanged.
+-			*/
++			/*
++			 * For queues that expire for this reason, it
++			 * is particularly important to keep the
++			 * budget close to the actual service they
++			 * need. Doing so reduces the timestamp
++			 * misalignment problem described in the
++			 * comments in the body of
++			 * __bfq_activate_entity. In fact, suppose
++			 * that a queue systematically expires for
++			 * BFQ_BFQQ_NO_MORE_REQUESTS and presents a
++			 * new request in time to enjoy timestamp
++			 * back-shifting. The larger the budget of the
++			 * queue is with respect to the service the
++			 * queue actually requests in each service
++			 * slot, the more times the queue can be
++			 * reactivated with the same virtual finish
++			 * time. It follows that, even if this finish
++			 * time is pushed to the system virtual time
++			 * to reduce the consequent timestamp
++			 * misalignment, the queue unjustly enjoys for
++			 * many re-activations a lower finish time
++			 * than all newly activated queues.
++			 *
++			 * The service needed by bfqq is measured
++			 * quite precisely by bfqq->entity.service.
++			 * Since bfqq does not enjoy device idling,
++			 * bfqq->entity.service is equal to the number
++			 * of sectors that the process associated with
++			 * bfqq requested to read/write before waiting
++			 * for request completions, or blocking for
++			 * other reasons.
++			 */
++			budget = max_t(int, bfqq->entity.service, min_budget);
++			break;
+ 		default:
+ 			return;
+ 		}
+-	} else
++	} else if (!bfq_bfqq_sync(bfqq))
+ 		/*
+-		 * Async queues get always the maximum possible budget
+-		 * (their ability to dispatch is limited by
+-		 * @bfqd->bfq_max_budget_async_rq).
++		 * Async queues get always the maximum possible
++		 * budget, as for them we do not care about latency
++		 * (in addition, their ability to dispatch is limited
++		 * by the charging factor).
+ 		 */
+ 		budget = bfqd->bfq_max_budget;
+ 
+@@ -1982,160 +2849,120 @@ static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
+ 		bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
+ 
+ 	/*
+-	 * Make sure that we have enough budget for the next request.
+-	 * Since the finish time of the bfqq must be kept in sync with
+-	 * the budget, be sure to call __bfq_bfqq_expire() after the
++	 * If there is still backlog, then assign a new budget, making
++	 * sure that it is large enough for the next request.  Since
++	 * the finish time of bfqq must be kept in sync with the
++	 * budget, be sure to call __bfq_bfqq_expire() *after* this
+ 	 * update.
++	 *
++	 * If there is no backlog, then no need to update the budget;
++	 * it will be updated on the arrival of a new request.
+ 	 */
+ 	next_rq = bfqq->next_rq;
+-	if (next_rq)
++	if (next_rq) {
++		BUG_ON(reason == BFQ_BFQQ_TOO_IDLE ||
++		       reason == BFQ_BFQQ_NO_MORE_REQUESTS);
+ 		bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
+ 					    bfq_serv_to_charge(next_rq, bfqq));
+-	else
+-		bfqq->entity.budget = bfqq->max_budget;
++		BUG_ON(!bfq_bfqq_busy(bfqq));
++		BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list));
++	}
+ 
+ 	bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
+ 			next_rq ? blk_rq_sectors(next_rq) : 0,
+ 			bfqq->entity.budget);
+ }
+ 
+-static unsigned long bfq_calc_max_budget(u64 peak_rate, u64 timeout)
+-{
+-	unsigned long max_budget;
+-
+-	/*
+-	 * The max_budget calculated when autotuning is equal to the
+-	 * amount of sectors transfered in timeout_sync at the
+-	 * estimated peak rate.
+-	 */
+-	max_budget = (unsigned long)(peak_rate * 1000 *
+-				     timeout >> BFQ_RATE_SHIFT);
+-
+-	return max_budget;
+-}
+-
+ /*
+- * In addition to updating the peak rate, checks whether the process
+- * is "slow", and returns 1 if so. This slow flag is used, in addition
+- * to the budget timeout, to reduce the amount of service provided to
+- * seeky processes, and hence reduce their chances to lower the
+- * throughput. See the code for more details.
++ * Return true if the process associated with bfqq is "slow". The slow
++ * flag is used, in addition to the budget timeout, to reduce the
++ * amount of service provided to seeky processes, and thus reduce
++ * their chances to lower the throughput. More details in the comments
++ * on the function bfq_bfqq_expire().
++ *
++ * An important observation is in order: as discussed in the comments
++ * on the function bfq_update_peak_rate(), with devices with internal
++ * queues, it is hard if ever possible to know when and for how long
++ * an I/O request is processed by the device (apart from the trivial
++ * I/O pattern where a new request is dispatched only after the
++ * previous one has been completed). This makes it hard to evaluate
++ * the real rate at which the I/O requests of each bfq_queue are
++ * served.  In fact, for an I/O scheduler like BFQ, serving a
++ * bfq_queue means just dispatching its requests during its service
++ * slot (i.e., until the budget of the queue is exhausted, or the
++ * queue remains idle, or, finally, a timeout fires). But, during the
++ * service slot of a bfq_queue, around 100 ms at most, the device may
++ * be even still processing requests of bfq_queues served in previous
++ * service slots. On the opposite end, the requests of the in-service
++ * bfq_queue may be completed after the service slot of the queue
++ * finishes.
++ *
++ * Anyway, unless more sophisticated solutions are used
++ * (where possible), the sum of the sizes of the requests dispatched
++ * during the service slot of a bfq_queue is probably the only
++ * approximation available for the service received by the bfq_queue
++ * during its service slot. And this sum is the quantity used in this
++ * function to evaluate the I/O speed of a process.
+  */
+-static bool bfq_update_peak_rate(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+-				 bool compensate, enum bfqq_expiration reason)
++static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++				 bool compensate, enum bfqq_expiration reason,
++				 unsigned long *delta_ms)
+ {
+-	u64 bw, usecs, expected, timeout;
+-	ktime_t delta;
+-	int update = 0;
++	ktime_t delta_ktime;
++	u32 delta_usecs;
++	bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
+ 
+-	if (!bfq_bfqq_sync(bfqq) || bfq_bfqq_budget_new(bfqq))
++	if (!bfq_bfqq_sync(bfqq))
+ 		return false;
+ 
+ 	if (compensate)
+-		delta = bfqd->last_idling_start;
++		delta_ktime = bfqd->last_idling_start;
+ 	else
+-		delta = ktime_get();
+-	delta = ktime_sub(delta, bfqd->last_budget_start);
+-	usecs = ktime_to_us(delta);
+-
+-	/* Don't trust short/unrealistic values. */
+-	if (usecs < 100 || usecs >= LONG_MAX)
+-		return false;
+-
+-	/*
+-	 * Calculate the bandwidth for the last slice.  We use a 64 bit
+-	 * value to store the peak rate, in sectors per usec in fixed
+-	 * point math.  We do so to have enough precision in the estimate
+-	 * and to avoid overflows.
+-	 */
+-	bw = (u64)bfqq->entity.service << BFQ_RATE_SHIFT;
+-	do_div(bw, (unsigned long)usecs);
++		delta_ktime = ktime_get();
++	delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
++	delta_usecs = ktime_to_us(delta_ktime);
++
++	/* don't use too short time intervals */
++	if (delta_usecs < 1000) {
++		if (blk_queue_nonrot(bfqd->queue))
++			 /*
++			  * give same worst-case guarantees as idling
++			  * for seeky
++			  */
++			*delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
++		else /* charge at least one seek */
++			*delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
++
++		bfq_log(bfqd, "bfq_bfqq_is_slow: too short %u", delta_usecs);
++
++		return slow;
++	}
+ 
+-	timeout = jiffies_to_msecs(bfqd->bfq_timeout[BLK_RW_SYNC]);
++	*delta_ms = delta_usecs / USEC_PER_MSEC;
+ 
+ 	/*
+-	 * Use only long (> 20ms) intervals to filter out spikes for
+-	 * the peak rate estimation.
++	 * Use only long (> 20ms) intervals to filter out excessive
++	 * spikes in service rate estimation.
+ 	 */
+-	if (usecs > 20000) {
+-		if (bw > bfqd->peak_rate ||
+-		   (!BFQQ_SEEKY(bfqq) &&
+-		    reason == BFQ_BFQQ_BUDGET_TIMEOUT)) {
+-			bfq_log(bfqd, "measured bw =%llu", bw);
+-			/*
+-			 * To smooth oscillations use a low-pass filter with
+-			 * alpha=7/8, i.e.,
+-			 * new_rate = (7/8) * old_rate + (1/8) * bw
+-			 */
+-			do_div(bw, 8);
+-			if (bw == 0)
+-				return 0;
+-			bfqd->peak_rate *= 7;
+-			do_div(bfqd->peak_rate, 8);
+-			bfqd->peak_rate += bw;
+-			update = 1;
+-			bfq_log(bfqd, "new peak_rate=%llu", bfqd->peak_rate);
+-		}
+-
+-		update |= bfqd->peak_rate_samples == BFQ_PEAK_RATE_SAMPLES - 1;
+-
+-		if (bfqd->peak_rate_samples < BFQ_PEAK_RATE_SAMPLES)
+-			bfqd->peak_rate_samples++;
+-
+-		if (bfqd->peak_rate_samples == BFQ_PEAK_RATE_SAMPLES &&
+-		    update) {
+-			int dev_type = blk_queue_nonrot(bfqd->queue);
+-
+-			if (bfqd->bfq_user_max_budget == 0) {
+-				bfqd->bfq_max_budget =
+-					bfq_calc_max_budget(bfqd->peak_rate,
+-							    timeout);
+-				bfq_log(bfqd, "new max_budget=%d",
+-					bfqd->bfq_max_budget);
+-			}
+-			if (bfqd->device_speed == BFQ_BFQD_FAST &&
+-			    bfqd->peak_rate < device_speed_thresh[dev_type]) {
+-				bfqd->device_speed = BFQ_BFQD_SLOW;
+-				bfqd->RT_prod = R_slow[dev_type] *
+-						T_slow[dev_type];
+-			} else if (bfqd->device_speed == BFQ_BFQD_SLOW &&
+-			    bfqd->peak_rate > device_speed_thresh[dev_type]) {
+-				bfqd->device_speed = BFQ_BFQD_FAST;
+-				bfqd->RT_prod = R_fast[dev_type] *
+-						T_fast[dev_type];
+-			}
+-		}
++	if (delta_usecs > 20000) {
++		/*
++		 * Caveat for rotational devices: processes doing I/O
++		 * in the slower disk zones tend to be slow(er) even
++		 * if not seeky. In this respect, the estimated peak
++		 * rate is likely to be an average over the disk
++		 * surface. Accordingly, to not be too harsh with
++		 * unlucky processes, a process is deemed slow only if
++		 * its rate has been lower than half of the estimated
++		 * peak rate.
++		 */
++		slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
++		bfq_log(bfqd, "bfq_bfqq_is_slow: relative rate %d/%d",
++			bfqq->entity.service, bfqd->bfq_max_budget);
+ 	}
+ 
+-	/*
+-	 * If the process has been served for a too short time
+-	 * interval to let its possible sequential accesses prevail on
+-	 * the initial seek time needed to move the disk head on the
+-	 * first sector it requested, then give the process a chance
+-	 * and for the moment return false.
+-	 */
+-	if (bfqq->entity.budget <= bfq_max_budget(bfqd) / 8)
+-		return false;
+-
+-	/*
+-	 * A process is considered ``slow'' (i.e., seeky, so that we
+-	 * cannot treat it fairly in the service domain, as it would
+-	 * slow down too much the other processes) if, when a slice
+-	 * ends for whatever reason, it has received service at a
+-	 * rate that would not be high enough to complete the budget
+-	 * before the budget timeout expiration.
+-	 */
+-	expected = bw * 1000 * timeout >> BFQ_RATE_SHIFT;
++	bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
+ 
+-	/*
+-	 * Caveat: processes doing IO in the slower disk zones will
+-	 * tend to be slow(er) even if not seeky. And the estimated
+-	 * peak rate will actually be an average over the disk
+-	 * surface. Hence, to not be too harsh with unlucky processes,
+-	 * we keep a budget/3 margin of safety before declaring a
+-	 * process slow.
+-	 */
+-	return expected > (4 * bfqq->entity.budget) / 3;
++	return slow;
+ }
+ 
+ /*
+@@ -2193,20 +3020,35 @@ static bool bfq_update_peak_rate(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
+ 						struct bfq_queue *bfqq)
+ {
++	bfq_log_bfqq(bfqd, bfqq,
++"softrt_next_start: service_blkg %lu soft_rate %u sects/sec interval %u",
++		     bfqq->service_from_backlogged,
++		     bfqd->bfq_wr_max_softrt_rate,
++		     jiffies_to_msecs(HZ * bfqq->service_from_backlogged /
++				      bfqd->bfq_wr_max_softrt_rate));
++
+ 	return max(bfqq->last_idle_bklogged +
+ 		   HZ * bfqq->service_from_backlogged /
+ 		   bfqd->bfq_wr_max_softrt_rate,
+-		   jiffies + bfqq->bfqd->bfq_slice_idle + 4);
++		   jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
+ }
+ 
+ /*
+- * Return the largest-possible time instant such that, for as long as possible,
+- * the current time will be lower than this time instant according to the macro
+- * time_is_before_jiffies().
++ * Return the farthest future time instant according to jiffies
++ * macros.
+  */
+-static unsigned long bfq_infinity_from_now(unsigned long now)
++static unsigned long bfq_greatest_from_now(void)
+ {
+-	return now + ULONG_MAX / 2;
++	return jiffies + MAX_JIFFY_OFFSET;
++}
++
++/*
++ * Return the farthest past time instant according to jiffies
++ * macros.
++ */
++static unsigned long bfq_smallest_from_now(void)
++{
++	return jiffies - MAX_JIFFY_OFFSET;
+ }
+ 
+ /**
+@@ -2216,28 +3058,24 @@ static unsigned long bfq_infinity_from_now(unsigned long now)
+  * @compensate: if true, compensate for the time spent idling.
+  * @reason: the reason causing the expiration.
+  *
++ * If the process associated with bfqq does slow I/O (e.g., because it
++ * issues random requests), we charge bfqq with the time it has been
++ * in service instead of the service it has received (see
++ * bfq_bfqq_charge_time for details on how this goal is achieved). As
++ * a consequence, bfqq will typically get higher timestamps upon
++ * reactivation, and hence it will be rescheduled as if it had
++ * received more service than what it has actually received. In the
++ * end, bfqq receives less service in proportion to how slowly its
++ * associated process consumes its budgets (and hence how seriously it
++ * tends to lower the throughput). In addition, this time-charging
++ * strategy guarantees time fairness among slow processes. In
++ * contrast, if the process associated with bfqq is not slow, we
++ * charge bfqq exactly with the service it has received.
+  *
+- * If the process associated to the queue is slow (i.e., seeky), or in
+- * case of budget timeout, or, finally, if it is async, we
+- * artificially charge it an entire budget (independently of the
+- * actual service it received). As a consequence, the queue will get
+- * higher timestamps than the correct ones upon reactivation, and
+- * hence it will be rescheduled as if it had received more service
+- * than what it actually received. In the end, this class of processes
+- * will receive less service in proportion to how slowly they consume
+- * their budgets (and hence how seriously they tend to lower the
+- * throughput).
+- *
+- * In contrast, when a queue expires because it has been idling for
+- * too much or because it exhausted its budget, we do not touch the
+- * amount of service it has received. Hence when the queue will be
+- * reactivated and its timestamps updated, the latter will be in sync
+- * with the actual service received by the queue until expiration.
+- *
+- * Charging a full budget to the first type of queues and the exact
+- * service to the others has the effect of using the WF2Q+ policy to
+- * schedule the former on a timeslice basis, without violating the
+- * service domain guarantees of the latter.
++ * Charging time to the first type of queues and the exact service to
++ * the other has the effect of using the WF2Q+ policy to schedule the
++ * former on a timeslice basis, without violating service domain
++ * guarantees among the latter.
+  */
+ static void bfq_bfqq_expire(struct bfq_data *bfqd,
+ 			    struct bfq_queue *bfqq,
+@@ -2245,41 +3083,53 @@ static void bfq_bfqq_expire(struct bfq_data *bfqd,
+ 			    enum bfqq_expiration reason)
+ {
+ 	bool slow;
++	unsigned long delta = 0;
++	struct bfq_entity *entity = &bfqq->entity;
++	int ref;
+ 
+ 	BUG_ON(bfqq != bfqd->in_service_queue);
+ 
+ 	/*
+-	 * Update disk peak rate for autotuning and check whether the
+-	 * process is slow (see bfq_update_peak_rate).
++	 * Check whether the process is slow (see bfq_bfqq_is_slow).
+ 	 */
+-	slow = bfq_update_peak_rate(bfqd, bfqq, compensate, reason);
++	slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
+ 
+ 	/*
+-	 * As above explained, 'punish' slow (i.e., seeky), timed-out
+-	 * and async queues, to favor sequential sync workloads.
+-	 *
+-	 * Processes doing I/O in the slower disk zones will tend to be
+-	 * slow(er) even if not seeky. Hence, since the estimated peak
+-	 * rate is actually an average over the disk surface, these
+-	 * processes may timeout just for bad luck. To avoid punishing
+-	 * them we do not charge a full budget to a process that
+-	 * succeeded in consuming at least 2/3 of its budget.
++	 * Increase service_from_backlogged before next statement,
++	 * because the possible next invocation of
++	 * bfq_bfqq_charge_time would likely inflate
++	 * entity->service. In contrast, service_from_backlogged must
++	 * contain real service, to enable the soft real-time
++	 * heuristic to correctly compute the bandwidth consumed by
++	 * bfqq.
+ 	 */
+-	if (slow || (reason == BFQ_BFQQ_BUDGET_TIMEOUT &&
+-		     bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3))
+-		bfq_bfqq_charge_full_budget(bfqq);
++	bfqq->service_from_backlogged += entity->service;
+ 
+-	bfqq->service_from_backlogged += bfqq->entity.service;
++	/*
++	 * As above explained, charge slow (typically seeky) and
++	 * timed-out queues with the time and not the service
++	 * received, to favor sequential workloads.
++	 *
++	 * Processes doing I/O in the slower disk zones will tend to
++	 * be slow(er) even if not seeky. Therefore, since the
++	 * estimated peak rate is actually an average over the disk
++	 * surface, these processes may timeout just for bad luck. To
++	 * avoid punishing them, do not charge time to processes that
++	 * succeeded in consuming at least 2/3 of their budget. This
++	 * allows BFQ to preserve enough elasticity to still perform
++	 * bandwidth, and not time, distribution with little unlucky
++	 * or quasi-sequential processes.
++	 */
++	if (bfqq->wr_coeff == 1 &&
++	    (slow ||
++	     (reason == BFQ_BFQQ_BUDGET_TIMEOUT &&
++	      bfq_bfqq_budget_left(bfqq) >=  entity->budget / 3)))
++		bfq_bfqq_charge_time(bfqd, bfqq, delta);
+ 
+-	if (BFQQ_SEEKY(bfqq) && reason == BFQ_BFQQ_BUDGET_TIMEOUT &&
+-	    !bfq_bfqq_constantly_seeky(bfqq)) {
+-		bfq_mark_bfqq_constantly_seeky(bfqq);
+-		if (!blk_queue_nonrot(bfqd->queue))
+-			bfqd->const_seeky_busy_in_flight_queues++;
+-	}
++	BUG_ON(bfqq->entity.budget < bfqq->entity.service);
+ 
+ 	if (reason == BFQ_BFQQ_TOO_IDLE &&
+-	    bfqq->entity.service <= 2 * bfqq->entity.budget / 10)
++	    entity->service <= 2 * entity->budget / 10)
+ 		bfq_clear_bfqq_IO_bound(bfqq);
+ 
+ 	if (bfqd->low_latency && bfqq->wr_coeff == 1)
+@@ -2288,19 +3138,23 @@ static void bfq_bfqq_expire(struct bfq_data *bfqd,
+ 	if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
+ 	    RB_EMPTY_ROOT(&bfqq->sort_list)) {
+ 		/*
+-		 * If we get here, and there are no outstanding requests,
+-		 * then the request pattern is isochronous (see the comments
+-		 * to the function bfq_bfqq_softrt_next_start()). Hence we
+-		 * can compute soft_rt_next_start. If, instead, the queue
+-		 * still has outstanding requests, then we have to wait
+-		 * for the completion of all the outstanding requests to
++		 * If we get here, and there are no outstanding
++		 * requests, then the request pattern is isochronous
++		 * (see the comments on the function
++		 * bfq_bfqq_softrt_next_start()). Thus we can compute
++		 * soft_rt_next_start. If, instead, the queue still
++		 * has outstanding requests, then we have to wait for
++		 * the completion of all the outstanding requests to
+ 		 * discover whether the request pattern is actually
+ 		 * isochronous.
+ 		 */
+-		if (bfqq->dispatched == 0)
++		BUG_ON(bfqd->busy_queues < 1);
++		if (bfqq->dispatched == 0) {
+ 			bfqq->soft_rt_next_start =
+ 				bfq_bfqq_softrt_next_start(bfqd, bfqq);
+-		else {
++			bfq_log_bfqq(bfqd, bfqq, "new soft_rt_next %lu",
++				     bfqq->soft_rt_next_start);
++		} else {
+ 			/*
+ 			 * The application is still waiting for the
+ 			 * completion of one or more requests:
+@@ -2317,7 +3171,7 @@ static void bfq_bfqq_expire(struct bfq_data *bfqd,
+ 			 *    happened to be in the past.
+ 			 */
+ 			bfqq->soft_rt_next_start =
+-				bfq_infinity_from_now(jiffies);
++				bfq_greatest_from_now();
+ 			/*
+ 			 * Schedule an update of soft_rt_next_start to when
+ 			 * the task may be discovered to be isochronous.
+@@ -2327,15 +3181,30 @@ static void bfq_bfqq_expire(struct bfq_data *bfqd,
+ 	}
+ 
+ 	bfq_log_bfqq(bfqd, bfqq,
+-		"expire (%d, slow %d, num_disp %d, idle_win %d)", reason,
+-		slow, bfqq->dispatched, bfq_bfqq_idle_window(bfqq));
++		"expire (%d, slow %d, num_disp %d, idle_win %d, weight %d)",
++		     reason, slow, bfqq->dispatched,
++		     bfq_bfqq_idle_window(bfqq), entity->weight);
+ 
+ 	/*
+ 	 * Increase, decrease or leave budget unchanged according to
+ 	 * reason.
+ 	 */
++	BUG_ON(bfqq->entity.budget < bfqq->entity.service);
+ 	__bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
++	BUG_ON(bfqq->next_rq == NULL &&
++	       bfqq->entity.budget < bfqq->entity.service);
++	ref = bfqq->ref;
+ 	__bfq_bfqq_expire(bfqd, bfqq);
++
++	BUG_ON(ref > 1 &&
++	       !bfq_bfqq_busy(bfqq) && reason == BFQ_BFQQ_BUDGET_EXHAUSTED &&
++		!bfq_class_idle(bfqq));
++
++	/* mark bfqq as waiting a request only if a bic still points to it */
++	if (ref > 1 && !bfq_bfqq_busy(bfqq) &&
++	    reason != BFQ_BFQQ_BUDGET_TIMEOUT &&
++	    reason != BFQ_BFQQ_BUDGET_EXHAUSTED)
++		bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
+ }
+ 
+ /*
+@@ -2345,20 +3214,17 @@ static void bfq_bfqq_expire(struct bfq_data *bfqd,
+  */
+ static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
+ {
+-	if (bfq_bfqq_budget_new(bfqq) ||
+-	    time_before(jiffies, bfqq->budget_timeout))
+-		return false;
+-	return true;
++	return time_is_before_eq_jiffies(bfqq->budget_timeout);
+ }
+ 
+ /*
+- * If we expire a queue that is waiting for the arrival of a new
+- * request, we may prevent the fictitious timestamp back-shifting that
+- * allows the guarantees of the queue to be preserved (see [1] for
+- * this tricky aspect). Hence we return true only if this condition
+- * does not hold, or if the queue is slow enough to deserve only to be
+- * kicked off for preserving a high throughput.
+-*/
++ * If we expire a queue that is actively waiting (i.e., with the
++ * device idled) for the arrival of a new request, then we may incur
++ * the timestamp misalignment problem described in the body of the
++ * function __bfq_activate_entity. Hence we return true only if this
++ * condition does not hold, or if the queue is slow enough to deserve
++ * only to be kicked off for preserving a high throughput.
++ */
+ static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
+ {
+ 	bfq_log_bfqq(bfqq->bfqd, bfqq,
+@@ -2400,10 +3266,12 @@ static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
+ {
+ 	struct bfq_data *bfqd = bfqq->bfqd;
+ 	bool idling_boosts_thr, idling_boosts_thr_without_issues,
+-		all_queues_seeky, on_hdd_and_not_all_queues_seeky,
+ 		idling_needed_for_service_guarantees,
+ 		asymmetric_scenario;
+ 
++	if (bfqd->strict_guarantees)
++		return true;
++
+ 	/*
+ 	 * The next variable takes into account the cases where idling
+ 	 * boosts the throughput.
+@@ -2466,74 +3334,27 @@ static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
+ 		bfqd->wr_busy_queues == 0;
+ 
+ 	/*
+-	 * There are then two cases where idling must be performed not
++	 * There is then a case where idling must be performed not
+ 	 * for throughput concerns, but to preserve service
+-	 * guarantees. In the description of these cases, we say, for
+-	 * short, that a queue is sequential/random if the process
+-	 * associated to the queue issues sequential/random requests
+-	 * (in the second case the queue may be tagged as seeky or
+-	 * even constantly_seeky).
++	 * guarantees.
+ 	 *
+-	 * To introduce the first case, we note that, since
+-	 * bfq_bfqq_idle_window(bfqq) is false if the device is
+-	 * NCQ-capable and bfqq is random (see
+-	 * bfq_update_idle_window()), then, from the above two
+-	 * assignments it follows that
+-	 * idling_boosts_thr_without_issues is false if the device is
+-	 * NCQ-capable and bfqq is random. Therefore, for this case,
+-	 * device idling would never be allowed if we used just
+-	 * idling_boosts_thr_without_issues to decide whether to allow
+-	 * it. And, beneficially, this would imply that throughput
+-	 * would always be boosted also with random I/O on NCQ-capable
+-	 * HDDs.
+-	 *
+-	 * But we must be careful on this point, to avoid an unfair
+-	 * treatment for bfqq. In fact, because of the same above
+-	 * assignments, idling_boosts_thr_without_issues is, on the
+-	 * other hand, true if 1) the device is an HDD and bfqq is
+-	 * sequential, and 2) there are no busy weight-raised
+-	 * queues. As a consequence, if we used just
+-	 * idling_boosts_thr_without_issues to decide whether to idle
+-	 * the device, then with an HDD we might easily bump into a
+-	 * scenario where queues that are sequential and I/O-bound
+-	 * would enjoy idling, whereas random queues would not. The
+-	 * latter might then get a low share of the device throughput,
+-	 * simply because the former would get many requests served
+-	 * after being set as in service, while the latter would not.
+-	 *
+-	 * To address this issue, we start by setting to true a
+-	 * sentinel variable, on_hdd_and_not_all_queues_seeky, if the
+-	 * device is rotational and not all queues with pending or
+-	 * in-flight requests are constantly seeky (i.e., there are
+-	 * active sequential queues, and bfqq might then be mistreated
+-	 * if it does not enjoy idling because it is random).
+-	 */
+-	all_queues_seeky = bfq_bfqq_constantly_seeky(bfqq) &&
+-			   bfqd->busy_in_flight_queues ==
+-			   bfqd->const_seeky_busy_in_flight_queues;
+-
+-	on_hdd_and_not_all_queues_seeky =
+-		!blk_queue_nonrot(bfqd->queue) && !all_queues_seeky;
+-
+-	/*
+-	 * To introduce the second case where idling needs to be
+-	 * performed to preserve service guarantees, we can note that
+-	 * allowing the drive to enqueue more than one request at a
+-	 * time, and hence delegating de facto final scheduling
+-	 * decisions to the drive's internal scheduler, causes loss of
+-	 * control on the actual request service order. In particular,
+-	 * the critical situation is when requests from different
+-	 * processes happens to be present, at the same time, in the
+-	 * internal queue(s) of the drive. In such a situation, the
+-	 * drive, by deciding the service order of the
+-	 * internally-queued requests, does determine also the actual
+-	 * throughput distribution among these processes. But the
+-	 * drive typically has no notion or concern about per-process
+-	 * throughput distribution, and makes its decisions only on a
+-	 * per-request basis. Therefore, the service distribution
+-	 * enforced by the drive's internal scheduler is likely to
+-	 * coincide with the desired device-throughput distribution
+-	 * only in a completely symmetric scenario where:
++	 * To introduce this case, we can note that allowing the drive
++	 * to enqueue more than one request at a time, and hence
++	 * delegating de facto final scheduling decisions to the
++	 * drive's internal scheduler, entails loss of control on the
++	 * actual request service order. In particular, the critical
++	 * situation is when requests from different processes happen
++	 * to be present, at the same time, in the internal queue(s)
++	 * of the drive. In such a situation, the drive, by deciding
++	 * the service order of the internally-queued requests, does
++	 * determine also the actual throughput distribution among
++	 * these processes. But the drive typically has no notion or
++	 * concern about per-process throughput distribution, and
++	 * makes its decisions only on a per-request basis. Therefore,
++	 * the service distribution enforced by the drive's internal
++	 * scheduler is likely to coincide with the desired
++	 * device-throughput distribution only in a completely
++	 * symmetric scenario where:
+ 	 * (i)  each of these processes must get the same throughput as
+ 	 *      the others;
+ 	 * (ii) all these processes have the same I/O pattern
+@@ -2555,26 +3376,53 @@ static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
+ 	 * words, only if sub-condition (i) holds, then idling is
+ 	 * allowed, and the device tends to be prevented from queueing
+ 	 * many requests, possibly of several processes. The reason
+-	 * for not controlling also sub-condition (ii) is that, first,
+-	 * in the case of an HDD, the asymmetry in terms of types of
+-	 * I/O patterns is already taken in to account in the above
+-	 * sentinel variable
+-	 * on_hdd_and_not_all_queues_seeky. Secondly, in the case of a
+-	 * flash-based device, we prefer however to privilege
+-	 * throughput (and idling lowers throughput for this type of
+-	 * devices), for the following reasons:
+-	 * 1) differently from HDDs, the service time of random
+-	 *    requests is not orders of magnitudes lower than the service
+-	 *    time of sequential requests; thus, even if processes doing
+-	 *    sequential I/O get a preferential treatment with respect to
+-	 *    others doing random I/O, the consequences are not as
+-	 *    dramatic as with HDDs;
+-	 * 2) if a process doing random I/O does need strong
+-	 *    throughput guarantees, it is hopefully already being
+-	 *    weight-raised, or the user is likely to have assigned it a
+-	 *    higher weight than the other processes (and thus
+-	 *    sub-condition (i) is likely to be false, which triggers
+-	 *    idling).
++	 * for not controlling also sub-condition (ii) is that we
++	 * exploit preemption to preserve guarantees in case of
++	 * symmetric scenarios, even if (ii) does not hold, as
++	 * explained in the next two paragraphs.
++	 *
++	 * Even if a queue, say Q, is expired when it remains idle, Q
++	 * can still preempt the new in-service queue if the next
++	 * request of Q arrives soon (see the comments on
++	 * bfq_bfqq_update_budg_for_activation). If all queues and
++	 * groups have the same weight, this form of preemption,
++	 * combined with the hole-recovery heuristic described in the
++	 * comments on function bfq_bfqq_update_budg_for_activation,
++	 * are enough to preserve a correct bandwidth distribution in
++	 * the mid term, even without idling. In fact, even if not
++	 * idling allows the internal queues of the device to contain
++	 * many requests, and thus to reorder requests, we can rather
++	 * safely assume that the internal scheduler still preserves a
++	 * minimum of mid-term fairness. The motivation for using
++	 * preemption instead of idling is that, by not idling,
++	 * service guarantees are preserved without minimally
++	 * sacrificing throughput. In other words, both a high
++	 * throughput and its desired distribution are obtained.
++	 *
++	 * More precisely, this preemption-based, idleless approach
++	 * provides fairness in terms of IOPS, and not sectors per
++	 * second. This can be seen with a simple example. Suppose
++	 * that there are two queues with the same weight, but that
++	 * the first queue receives requests of 8 sectors, while the
++	 * second queue receives requests of 1024 sectors. In
++	 * addition, suppose that each of the two queues contains at
++	 * most one request at a time, which implies that each queue
++	 * always remains idle after it is served. Finally, after
++	 * remaining idle, each queue receives very quickly a new
++	 * request. It follows that the two queues are served
++	 * alternatively, preempting each other if needed. This
++	 * implies that, although both queues have the same weight,
++	 * the queue with large requests receives a service that is
++	 * 1024/8 times as high as the service received by the other
++	 * queue.
++	 *
++	 * On the other hand, device idling is performed, and thus
++	 * pure sector-domain guarantees are provided, for the
++	 * following queues, which are likely to need stronger
++	 * throughput guarantees: weight-raised queues, and queues
++	 * with a higher weight than other queues. When such queues
++	 * are active, sub-condition (i) is false, which triggers
++	 * device idling.
+ 	 *
+ 	 * According to the above considerations, the next variable is
+ 	 * true (only) if sub-condition (i) holds. To compute the
+@@ -2582,7 +3430,7 @@ static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
+ 	 * the function bfq_symmetric_scenario(), but also check
+ 	 * whether bfqq is being weight-raised, because
+ 	 * bfq_symmetric_scenario() does not take into account also
+-	 * weight-raised queues (see comments to
++	 * weight-raised queues (see comments on
+ 	 * bfq_weights_tree_add()).
+ 	 *
+ 	 * As a side note, it is worth considering that the above
+@@ -2604,17 +3452,16 @@ static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
+ 	 * bfqq. Such a case is when bfqq became active in a burst of
+ 	 * queue activations. Queues that became active during a large
+ 	 * burst benefit only from throughput, as discussed in the
+-	 * comments to bfq_handle_burst. Thus, if bfqq became active
++	 * comments on bfq_handle_burst. Thus, if bfqq became active
+ 	 * in a burst and not idling the device maximizes throughput,
+ 	 * then the device must no be idled, because not idling the
+ 	 * device provides bfqq and all other queues in the burst with
+-	 * maximum benefit. Combining this and the two cases above, we
+-	 * can now establish when idling is actually needed to
+-	 * preserve service guarantees.
++	 * maximum benefit. Combining this and the above case, we can
++	 * now establish when idling is actually needed to preserve
++	 * service guarantees.
+ 	 */
+ 	idling_needed_for_service_guarantees =
+-		(on_hdd_and_not_all_queues_seeky || asymmetric_scenario) &&
+-		!bfq_bfqq_in_large_burst(bfqq);
++		asymmetric_scenario && !bfq_bfqq_in_large_burst(bfqq);
+ 
+ 	/*
+ 	 * We have now all the components we need to compute the return
+@@ -2624,6 +3471,16 @@ static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
+ 	 * 2) idling either boosts the throughput (without issues), or
+ 	 *    is necessary to preserve service guarantees.
+ 	 */
++	bfq_log_bfqq(bfqd, bfqq, "may_idle: sync %d idling_boosts_thr %d",
++		     bfq_bfqq_sync(bfqq), idling_boosts_thr);
++
++	bfq_log_bfqq(bfqd, bfqq,
++		     "may_idle: wr_busy %d boosts %d IO-bound %d guar %d",
++		     bfqd->wr_busy_queues,
++		     idling_boosts_thr_without_issues,
++		     bfq_bfqq_IO_bound(bfqq),
++		     idling_needed_for_service_guarantees);
++
+ 	return bfq_bfqq_sync(bfqq) &&
+ 		(idling_boosts_thr_without_issues ||
+ 		 idling_needed_for_service_guarantees);
+@@ -2635,7 +3492,7 @@ static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
+  * 1) the queue must remain in service and cannot be expired, and
+  * 2) the device must be idled to wait for the possible arrival of a new
+  *    request for the queue.
+- * See the comments to the function bfq_bfqq_may_idle for the reasons
++ * See the comments on the function bfq_bfqq_may_idle for the reasons
+  * why performing device idling is the best choice to boost the throughput
+  * and preserve service guarantees when bfq_bfqq_may_idle itself
+  * returns true.
+@@ -2665,18 +3522,33 @@ static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
+ 	bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
+ 
+ 	if (bfq_may_expire_for_budg_timeout(bfqq) &&
+-	    !timer_pending(&bfqd->idle_slice_timer) &&
++	    !hrtimer_active(&bfqd->idle_slice_timer) &&
+ 	    !bfq_bfqq_must_idle(bfqq))
+ 		goto expire;
+ 
++check_queue:
++	/*
++	 * This loop is rarely executed more than once. Even when it
++	 * happens, it is much more convenient to re-execute this loop
++	 * than to return NULL and trigger a new dispatch to get a
++	 * request served.
++	 */
+ 	next_rq = bfqq->next_rq;
+ 	/*
+ 	 * If bfqq has requests queued and it has enough budget left to
+ 	 * serve them, keep the queue, otherwise expire it.
+ 	 */
+ 	if (next_rq) {
++		BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list));
++
+ 		if (bfq_serv_to_charge(next_rq, bfqq) >
+ 			bfq_bfqq_budget_left(bfqq)) {
++			/*
++			 * Expire the queue for budget exhaustion,
++			 * which makes sure that the next budget is
++			 * enough to serve the next request, even if
++			 * it comes from the fifo expired path.
++			 */
+ 			reason = BFQ_BFQQ_BUDGET_EXHAUSTED;
+ 			goto expire;
+ 		} else {
+@@ -2685,7 +3557,8 @@ static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
+ 			 * not disable disk idling even when a new request
+ 			 * arrives.
+ 			 */
+-			if (timer_pending(&bfqd->idle_slice_timer)) {
++			if (bfq_bfqq_wait_request(bfqq)) {
++				BUG_ON(!hrtimer_active(&bfqd->idle_slice_timer));
+ 				/*
+ 				 * If we get here: 1) at least a new request
+ 				 * has arrived but we have not disabled the
+@@ -2700,10 +3573,8 @@ static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
+ 				 * So we disable idling.
+ 				 */
+ 				bfq_clear_bfqq_wait_request(bfqq);
+-				del_timer(&bfqd->idle_slice_timer);
+-#ifdef CONFIG_BFQ_GROUP_IOSCHED
++				hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
+ 				bfqg_stats_update_idle_time(bfqq_group(bfqq));
+-#endif
+ 			}
+ 			goto keep_queue;
+ 		}
+@@ -2714,7 +3585,7 @@ static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
+ 	 * for a new request, or has requests waiting for a completion and
+ 	 * may idle after their completion, then keep it anyway.
+ 	 */
+-	if (timer_pending(&bfqd->idle_slice_timer) ||
++	if (hrtimer_active(&bfqd->idle_slice_timer) ||
+ 	    (bfqq->dispatched != 0 && bfq_bfqq_may_idle(bfqq))) {
+ 		bfqq = NULL;
+ 		goto keep_queue;
+@@ -2725,9 +3596,16 @@ static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
+ 	bfq_bfqq_expire(bfqd, bfqq, false, reason);
+ new_queue:
+ 	bfqq = bfq_set_in_service_queue(bfqd);
+-	bfq_log(bfqd, "select_queue: new queue %d returned",
+-		bfqq ? bfqq->pid : 0);
++	if (bfqq) {
++		bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
++		goto check_queue;
++	}
+ keep_queue:
++	if (bfqq)
++		bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
++	else
++		bfq_log(bfqd, "select_queue: no queue returned");
++
+ 	return bfqq;
+ }
+ 
+@@ -2736,6 +3614,9 @@ static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+ 	struct bfq_entity *entity = &bfqq->entity;
+ 
+ 	if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
++		BUG_ON(bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
++		       time_is_after_jiffies(bfqq->last_wr_start_finish));
++
+ 		bfq_log_bfqq(bfqd, bfqq,
+ 			"raising period dur %u/%u msec, old coeff %u, w %d(%d)",
+ 			jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
+@@ -2749,22 +3630,30 @@ static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+ 			bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
+ 
+ 		/*
+-		 * If the queue was activated in a burst, or
+-		 * too much time has elapsed from the beginning
+-		 * of this weight-raising period, or the queue has
+-		 * exceeded the acceptable number of cooperations,
+-		 * then end weight raising.
++		 * If the queue was activated in a burst, or too much
++		 * time has elapsed from the beginning of this
++		 * weight-raising period, then end weight raising.
+ 		 */
+-		if (bfq_bfqq_in_large_burst(bfqq) ||
+-		    bfq_bfqq_cooperations(bfqq) >= bfqd->bfq_coop_thresh ||
+-		    time_is_before_jiffies(bfqq->last_wr_start_finish +
+-					   bfqq->wr_cur_max_time)) {
+-			bfqq->last_wr_start_finish = jiffies;
+-			bfq_log_bfqq(bfqd, bfqq,
+-				     "wrais ending at %lu, rais_max_time %u",
+-				     bfqq->last_wr_start_finish,
+-				     jiffies_to_msecs(bfqq->wr_cur_max_time));
++		if (bfq_bfqq_in_large_burst(bfqq))
+ 			bfq_bfqq_end_wr(bfqq);
++		else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
++					   bfqq->wr_cur_max_time)) {
++			if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
++			time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
++					bfq_wr_duration(bfqd)))
++				bfq_bfqq_end_wr(bfqq);
++			else {
++				/* switch back to interactive wr */
++				bfqq->wr_coeff = bfqd->bfq_wr_coeff;
++				bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
++				bfqq->last_wr_start_finish =
++					bfqq->wr_start_at_switch_to_srt;
++				BUG_ON(time_is_after_jiffies(
++					       bfqq->last_wr_start_finish));
++				bfqq->entity.prio_changed = 1;
++				bfq_log_bfqq(bfqd, bfqq,
++					"back to interactive wr");
++			}
+ 		}
+ 	}
+ 	/* Update weight both if it must be raised and if it must be lowered */
+@@ -2782,46 +3671,34 @@ static int bfq_dispatch_request(struct bfq_data *bfqd,
+ 				struct bfq_queue *bfqq)
+ {
+ 	int dispatched = 0;
+-	struct request *rq;
++	struct request *rq = bfqq->next_rq;
+ 	unsigned long service_to_charge;
+ 
+ 	BUG_ON(RB_EMPTY_ROOT(&bfqq->sort_list));
+-
+-	/* Follow expired path, else get first next available. */
+-	rq = bfq_check_fifo(bfqq);
+-	if (!rq)
+-		rq = bfqq->next_rq;
++	BUG_ON(!rq);
+ 	service_to_charge = bfq_serv_to_charge(rq, bfqq);
+ 
+-	if (service_to_charge > bfq_bfqq_budget_left(bfqq)) {
+-		/*
+-		 * This may happen if the next rq is chosen in fifo order
+-		 * instead of sector order. The budget is properly
+-		 * dimensioned to be always sufficient to serve the next
+-		 * request only if it is chosen in sector order. The reason
+-		 * is that it would be quite inefficient and little useful
+-		 * to always make sure that the budget is large enough to
+-		 * serve even the possible next rq in fifo order.
+-		 * In fact, requests are seldom served in fifo order.
+-		 *
+-		 * Expire the queue for budget exhaustion, and make sure
+-		 * that the next act_budget is enough to serve the next
+-		 * request, even if it comes from the fifo expired path.
+-		 */
+-		bfqq->next_rq = rq;
+-		/*
+-		 * Since this dispatch is failed, make sure that
+-		 * a new one will be performed
+-		 */
+-		if (!bfqd->rq_in_driver)
+-			bfq_schedule_dispatch(bfqd);
+-		goto expire;
+-	}
++	BUG_ON(service_to_charge > bfq_bfqq_budget_left(bfqq));
++
++	BUG_ON(bfqq->entity.budget < bfqq->entity.service);
+ 
+-	/* Finally, insert request into driver dispatch list. */
+ 	bfq_bfqq_served(bfqq, service_to_charge);
++
++	BUG_ON(bfqq->entity.budget < bfqq->entity.service);
++
+ 	bfq_dispatch_insert(bfqd->queue, rq);
+ 
++	/*
++	 * If weight raising has to terminate for bfqq, then next
++	 * function causes an immediate update of bfqq's weight,
++	 * without waiting for next activation. As a consequence, on
++	 * expiration, bfqq will be timestamped as if has never been
++	 * weight-raised during this service slot, even if it has
++	 * received part or even most of the service as a
++	 * weight-raised queue. This inflates bfqq's timestamps, which
++	 * is beneficial, as bfqq is then more willing to leave the
++	 * device immediately to possible other weight-raised queues.
++	 */
+ 	bfq_update_wr_data(bfqd, bfqq);
+ 
+ 	bfq_log_bfqq(bfqd, bfqq,
+@@ -2837,9 +3714,7 @@ static int bfq_dispatch_request(struct bfq_data *bfqd,
+ 		bfqd->in_service_bic = RQ_BIC(rq);
+ 	}
+ 
+-	if (bfqd->busy_queues > 1 && ((!bfq_bfqq_sync(bfqq) &&
+-	    dispatched >= bfqd->bfq_max_budget_async_rq) ||
+-	    bfq_class_idle(bfqq)))
++	if (bfqd->busy_queues > 1 && bfq_class_idle(bfqq))
+ 		goto expire;
+ 
+ 	return dispatched;
+@@ -2885,8 +3760,8 @@ static int bfq_forced_dispatch(struct bfq_data *bfqd)
+ 		st = bfq_entity_service_tree(&bfqq->entity);
+ 
+ 		dispatched += __bfq_forced_dispatch_bfqq(bfqq);
+-		bfqq->max_budget = bfq_max_budget(bfqd);
+ 
++		bfqq->max_budget = bfq_max_budget(bfqd);
+ 		bfq_forget_idle(st);
+ 	}
+ 
+@@ -2899,37 +3774,37 @@ static int bfq_dispatch_requests(struct request_queue *q, int force)
+ {
+ 	struct bfq_data *bfqd = q->elevator->elevator_data;
+ 	struct bfq_queue *bfqq;
+-	int max_dispatch;
+ 
+ 	bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
++
+ 	if (bfqd->busy_queues == 0)
+ 		return 0;
+ 
+ 	if (unlikely(force))
+ 		return bfq_forced_dispatch(bfqd);
+ 
++	/*
++	 * Force device to serve one request at a time if
++	 * strict_guarantees is true. Forcing this service scheme is
++	 * currently the ONLY way to guarantee that the request
++	 * service order enforced by the scheduler is respected by a
++	 * queueing device. Otherwise the device is free even to make
++	 * some unlucky request wait for as long as the device
++	 * wishes.
++	 *
++	 * Of course, serving one request at at time may cause loss of
++	 * throughput.
++	 */
++	if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
++		return 0;
++
+ 	bfqq = bfq_select_queue(bfqd);
+ 	if (!bfqq)
+ 		return 0;
+ 
+-	if (bfq_class_idle(bfqq))
+-		max_dispatch = 1;
+-
+-	if (!bfq_bfqq_sync(bfqq))
+-		max_dispatch = bfqd->bfq_max_budget_async_rq;
+-
+-	if (!bfq_bfqq_sync(bfqq) && bfqq->dispatched >= max_dispatch) {
+-		if (bfqd->busy_queues > 1)
+-			return 0;
+-		if (bfqq->dispatched >= 4 * max_dispatch)
+-			return 0;
+-	}
+-
+-	if (bfqd->sync_flight != 0 && !bfq_bfqq_sync(bfqq))
+-		return 0;
++	BUG_ON(bfqq->entity.budget < bfqq->entity.service);
+ 
+-	bfq_clear_bfqq_wait_request(bfqq);
+-	BUG_ON(timer_pending(&bfqd->idle_slice_timer));
++	BUG_ON(bfq_bfqq_wait_request(bfqq));
+ 
+ 	if (!bfq_dispatch_request(bfqd, bfqq))
+ 		return 0;
+@@ -2937,6 +3812,8 @@ static int bfq_dispatch_requests(struct request_queue *q, int force)
+ 	bfq_log_bfqq(bfqd, bfqq, "dispatched %s request",
+ 			bfq_bfqq_sync(bfqq) ? "sync" : "async");
+ 
++	BUG_ON(bfqq->next_rq == NULL &&
++	       bfqq->entity.budget < bfqq->entity.service);
+ 	return 1;
+ }
+ 
+@@ -2944,27 +3821,26 @@ static int bfq_dispatch_requests(struct request_queue *q, int force)
+  * Task holds one reference to the queue, dropped when task exits.  Each rq
+  * in-flight on this queue also holds a reference, dropped when rq is freed.
+  *
+- * Queue lock must be held here.
++ * Queue lock must be held here. Recall not to use bfqq after calling
++ * this function on it.
+  */
+ static void bfq_put_queue(struct bfq_queue *bfqq)
+ {
+-	struct bfq_data *bfqd = bfqq->bfqd;
+ #ifdef CONFIG_BFQ_GROUP_IOSCHED
+ 	struct bfq_group *bfqg = bfqq_group(bfqq);
+ #endif
+ 
+-	BUG_ON(atomic_read(&bfqq->ref) <= 0);
++	BUG_ON(bfqq->ref <= 0);
+ 
+-	bfq_log_bfqq(bfqd, bfqq, "put_queue: %p %d", bfqq,
+-		     atomic_read(&bfqq->ref));
+-	if (!atomic_dec_and_test(&bfqq->ref))
++	bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d", bfqq, bfqq->ref);
++	bfqq->ref--;
++	if (bfqq->ref)
+ 		return;
+ 
+ 	BUG_ON(rb_first(&bfqq->sort_list));
+ 	BUG_ON(bfqq->allocated[READ] + bfqq->allocated[WRITE] != 0);
+ 	BUG_ON(bfqq->entity.tree);
+ 	BUG_ON(bfq_bfqq_busy(bfqq));
+-	BUG_ON(bfqd->in_service_queue == bfqq);
+ 
+ 	if (bfq_bfqq_sync(bfqq))
+ 		/*
+@@ -2977,7 +3853,7 @@ static void bfq_put_queue(struct bfq_queue *bfqq)
+ 		 */
+ 		hlist_del_init(&bfqq->burst_list_node);
+ 
+-	bfq_log_bfqq(bfqd, bfqq, "put_queue: %p freed", bfqq);
++	bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p freed", bfqq);
+ 
+ 	kmem_cache_free(bfq_pool, bfqq);
+ #ifdef CONFIG_BFQ_GROUP_IOSCHED
+@@ -3011,38 +3887,16 @@ static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+ 		bfq_schedule_dispatch(bfqd);
+ 	}
+ 
+-	bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq,
+-		     atomic_read(&bfqq->ref));
++	bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
+ 
+ 	bfq_put_cooperator(bfqq);
+ 
+-	bfq_put_queue(bfqq);
++	bfq_put_queue(bfqq); /* release process reference */
+ }
+ 
+ static void bfq_init_icq(struct io_cq *icq)
+ {
+-	struct bfq_io_cq *bic = icq_to_bic(icq);
+-
+-	bic->ttime.last_end_request = jiffies;
+-	/*
+-	 * A newly created bic indicates that the process has just
+-	 * started doing I/O, and is probably mapping into memory its
+-	 * executable and libraries: it definitely needs weight raising.
+-	 * There is however the possibility that the process performs,
+-	 * for a while, I/O close to some other process. EQM intercepts
+-	 * this behavior and may merge the queue corresponding to the
+-	 * process  with some other queue, BEFORE the weight of the queue
+-	 * is raised. Merged queues are not weight-raised (they are assumed
+-	 * to belong to processes that benefit only from high throughput).
+-	 * If the merge is basically the consequence of an accident, then
+-	 * the queue will be split soon and will get back its old weight.
+-	 * It is then important to write down somewhere that this queue
+-	 * does need weight raising, even if it did not make it to get its
+-	 * weight raised before being merged. To this purpose, we overload
+-	 * the field raising_time_left and assign 1 to it, to mark the queue
+-	 * as needing weight raising.
+-	 */
+-	bic->wr_time_left = 1;
++	icq_to_bic(icq)->ttime.last_end_request = ktime_get_ns() - (1ULL<<32);
+ }
+ 
+ static void bfq_exit_icq(struct io_cq *icq)
+@@ -3050,21 +3904,21 @@ static void bfq_exit_icq(struct io_cq *icq)
+ 	struct bfq_io_cq *bic = icq_to_bic(icq);
+ 	struct bfq_data *bfqd = bic_to_bfqd(bic);
+ 
+-	if (bic->bfqq[BLK_RW_ASYNC]) {
+-		bfq_exit_bfqq(bfqd, bic->bfqq[BLK_RW_ASYNC]);
+-		bic->bfqq[BLK_RW_ASYNC] = NULL;
++	if (bic_to_bfqq(bic, false)) {
++		bfq_exit_bfqq(bfqd, bic_to_bfqq(bic, false));
++		bic_set_bfqq(bic, NULL, false);
+ 	}
+ 
+-	if (bic->bfqq[BLK_RW_SYNC]) {
++	if (bic_to_bfqq(bic, true)) {
+ 		/*
+ 		 * If the bic is using a shared queue, put the reference
+ 		 * taken on the io_context when the bic started using a
+ 		 * shared bfq_queue.
+ 		 */
+-		if (bfq_bfqq_coop(bic->bfqq[BLK_RW_SYNC]))
++		if (bfq_bfqq_coop(bic_to_bfqq(bic, true)))
+ 			put_io_context(icq->ioc);
+-		bfq_exit_bfqq(bfqd, bic->bfqq[BLK_RW_SYNC]);
+-		bic->bfqq[BLK_RW_SYNC] = NULL;
++		bfq_exit_bfqq(bfqd, bic_to_bfqq(bic, true));
++		bic_set_bfqq(bic, NULL, true);
+ 	}
+ }
+ 
+@@ -3072,8 +3926,8 @@ static void bfq_exit_icq(struct io_cq *icq)
+  * Update the entity prio values; note that the new values will not
+  * be used until the next (re)activation.
+  */
+-static void
+-bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
++static void bfq_set_next_ioprio_data(struct bfq_queue *bfqq,
++				     struct bfq_io_cq *bic)
+ {
+ 	struct task_struct *tsk = current;
+ 	int ioprio_class;
+@@ -3081,7 +3935,7 @@ bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
+ 	ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
+ 	switch (ioprio_class) {
+ 	default:
+-		dev_err(bfqq->bfqd->queue->backing_dev_info.dev,
++		dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
+ 			"bfq: bad prio class %d\n", ioprio_class);
+ 	case IOPRIO_CLASS_NONE:
+ 		/*
+@@ -3105,7 +3959,7 @@ bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
+ 		break;
+ 	}
+ 
+-	if (bfqq->new_ioprio < 0 || bfqq->new_ioprio >= IOPRIO_BE_NR) {
++	if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
+ 		pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
+ 			bfqq->new_ioprio);
+ 		BUG();
+@@ -3113,45 +3967,41 @@ bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
+ 
+ 	bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
+ 	bfqq->entity.prio_changed = 1;
++	bfq_log_bfqq(bfqq->bfqd, bfqq,
++		     "set_next_ioprio_data: bic_class %d prio %d class %d",
++		     ioprio_class, bfqq->new_ioprio, bfqq->new_ioprio_class);
+ }
+ 
+ static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
+ {
+-	struct bfq_data *bfqd;
+-	struct bfq_queue *bfqq, *new_bfqq;
++	struct bfq_data *bfqd = bic_to_bfqd(bic);
++	struct bfq_queue *bfqq;
+ 	unsigned long uninitialized_var(flags);
+ 	int ioprio = bic->icq.ioc->ioprio;
+ 
+-	bfqd = bfq_get_bfqd_locked(&(bic->icq.q->elevator->elevator_data),
+-				   &flags);
+ 	/*
+ 	 * This condition may trigger on a newly created bic, be sure to
+ 	 * drop the lock before returning.
+ 	 */
+ 	if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
+-		goto out;
++		return;
+ 
+ 	bic->ioprio = ioprio;
+ 
+-	bfqq = bic->bfqq[BLK_RW_ASYNC];
++	bfqq = bic_to_bfqq(bic, false);
+ 	if (bfqq) {
+-		new_bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic,
+-					 GFP_ATOMIC);
+-		if (new_bfqq) {
+-			bic->bfqq[BLK_RW_ASYNC] = new_bfqq;
+-			bfq_log_bfqq(bfqd, bfqq,
+-				     "check_ioprio_change: bfqq %p %d",
+-				     bfqq, atomic_read(&bfqq->ref));
+-			bfq_put_queue(bfqq);
+-		}
++		/* release process reference on this queue */
++		bfq_put_queue(bfqq);
++		bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
++		bic_set_bfqq(bic, bfqq, false);
++		bfq_log_bfqq(bfqd, bfqq,
++			     "check_ioprio_change: bfqq %p %d",
++			     bfqq, bfqq->ref);
+ 	}
+ 
+-	bfqq = bic->bfqq[BLK_RW_SYNC];
++	bfqq = bic_to_bfqq(bic, true);
+ 	if (bfqq)
+ 		bfq_set_next_ioprio_data(bfqq, bic);
+-
+-out:
+-	bfq_put_bfqd_unlock(bfqd, &flags);
+ }
+ 
+ static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+@@ -3160,8 +4010,9 @@ static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ 	RB_CLEAR_NODE(&bfqq->entity.rb_node);
+ 	INIT_LIST_HEAD(&bfqq->fifo);
+ 	INIT_HLIST_NODE(&bfqq->burst_list_node);
++	BUG_ON(!hlist_unhashed(&bfqq->burst_list_node));
+ 
+-	atomic_set(&bfqq->ref, 0);
++	bfqq->ref = 0;
+ 	bfqq->bfqd = bfqd;
+ 
+ 	if (bic)
+@@ -3171,6 +4022,7 @@ static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ 		if (!bfq_class_idle(bfqq))
+ 			bfq_mark_bfqq_idle_window(bfqq);
+ 		bfq_mark_bfqq_sync(bfqq);
++		bfq_mark_bfqq_just_created(bfqq);
+ 	} else
+ 		bfq_clear_bfqq_sync(bfqq);
+ 	bfq_mark_bfqq_IO_bound(bfqq);
+@@ -3180,72 +4032,19 @@ static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ 	bfqq->pid = pid;
+ 
+ 	bfqq->wr_coeff = 1;
+-	bfqq->last_wr_start_finish = 0;
++	bfqq->last_wr_start_finish = jiffies;
++	bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
++	bfqq->budget_timeout = bfq_smallest_from_now();
++	bfqq->split_time = bfq_smallest_from_now();
++
+ 	/*
+ 	 * Set to the value for which bfqq will not be deemed as
+ 	 * soft rt when it becomes backlogged.
+ 	 */
+-	bfqq->soft_rt_next_start = bfq_infinity_from_now(jiffies);
+-}
+-
+-static struct bfq_queue *bfq_find_alloc_queue(struct bfq_data *bfqd,
+-					      struct bio *bio, int is_sync,
+-					      struct bfq_io_cq *bic,
+-					      gfp_t gfp_mask)
+-{
+-	struct bfq_group *bfqg;
+-	struct bfq_queue *bfqq, *new_bfqq = NULL;
+-	struct blkcg *blkcg;
+-
+-retry:
+-	rcu_read_lock();
+-
+-	blkcg = bio_blkcg(bio);
+-	bfqg = bfq_find_alloc_group(bfqd, blkcg);
+-	/* bic always exists here */
+-	bfqq = bic_to_bfqq(bic, is_sync);
+-
+-	/*
+-	 * Always try a new alloc if we fall back to the OOM bfqq
+-	 * originally, since it should just be a temporary situation.
+-	 */
+-	if (!bfqq || bfqq == &bfqd->oom_bfqq) {
+-		bfqq = NULL;
+-		if (new_bfqq) {
+-			bfqq = new_bfqq;
+-			new_bfqq = NULL;
+-		} else if (gfpflags_allow_blocking(gfp_mask)) {
+-			rcu_read_unlock();
+-			spin_unlock_irq(bfqd->queue->queue_lock);
+-			new_bfqq = kmem_cache_alloc_node(bfq_pool,
+-					gfp_mask | __GFP_ZERO,
+-					bfqd->queue->node);
+-			spin_lock_irq(bfqd->queue->queue_lock);
+-			if (new_bfqq)
+-				goto retry;
+-		} else {
+-			bfqq = kmem_cache_alloc_node(bfq_pool,
+-					gfp_mask | __GFP_ZERO,
+-					bfqd->queue->node);
+-		}
++	bfqq->soft_rt_next_start = bfq_greatest_from_now();
+ 
+-		if (bfqq) {
+-			bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
+-				      is_sync);
+-			bfq_init_entity(&bfqq->entity, bfqg);
+-			bfq_log_bfqq(bfqd, bfqq, "allocated");
+-		} else {
+-			bfqq = &bfqd->oom_bfqq;
+-			bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
+-		}
+-	}
+-
+-	if (new_bfqq)
+-		kmem_cache_free(bfq_pool, new_bfqq);
+-
+-	rcu_read_unlock();
+-
+-	return bfqq;
++	/* first request is almost certainly seeky */
++	bfqq->seek_history = 1;
+ }
+ 
+ static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
+@@ -3268,90 +4067,93 @@ static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
+ }
+ 
+ static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
+-				       struct bio *bio, int is_sync,
+-				       struct bfq_io_cq *bic, gfp_t gfp_mask)
++				       struct bio *bio, bool is_sync,
++				       struct bfq_io_cq *bic)
+ {
+ 	const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
+ 	const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
+ 	struct bfq_queue **async_bfqq = NULL;
+-	struct bfq_queue *bfqq = NULL;
++	struct bfq_queue *bfqq;
++	struct bfq_group *bfqg;
+ 
+-	if (!is_sync) {
+-		struct blkcg *blkcg;
+-		struct bfq_group *bfqg;
++	rcu_read_lock();
++
++	bfqg = bfq_find_set_group(bfqd, bio_blkcg(bio));
++	if (!bfqg) {
++		bfqq = &bfqd->oom_bfqq;
++		goto out;
++	}
+ 
+-		rcu_read_lock();
+-		blkcg = bio_blkcg(bio);
+-		rcu_read_unlock();
+-		bfqg = bfq_find_alloc_group(bfqd, blkcg);
++	if (!is_sync) {
+ 		async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
+ 						  ioprio);
+ 		bfqq = *async_bfqq;
++		if (bfqq)
++			goto out;
+ 	}
+ 
+-	if (!bfqq)
+-		bfqq = bfq_find_alloc_queue(bfqd, bio, is_sync, bic, gfp_mask);
++	bfqq = kmem_cache_alloc_node(bfq_pool,
++				     GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
++				     bfqd->queue->node);
++
++	if (bfqq) {
++		bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
++			      is_sync);
++		bfq_init_entity(&bfqq->entity, bfqg);
++		bfq_log_bfqq(bfqd, bfqq, "allocated");
++	} else {
++		bfqq = &bfqd->oom_bfqq;
++		bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
++		goto out;
++	}
+ 
+ 	/*
+ 	 * Pin the queue now that it's allocated, scheduler exit will
+ 	 * prune it.
+ 	 */
+-	if (!is_sync && !(*async_bfqq)) {
+-		atomic_inc(&bfqq->ref);
++	if (async_bfqq) {
++		bfqq->ref++; /*
++			      * Extra group reference, w.r.t. sync
++			      * queue. This extra reference is removed
++			      * only if bfqq->bfqg disappears, to
++			      * guarantee that this queue is not freed
++			      * until its group goes away.
++			      */
+ 		bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
+-			     bfqq, atomic_read(&bfqq->ref));
++			     bfqq, bfqq->ref);
+ 		*async_bfqq = bfqq;
+ 	}
+ 
+-	atomic_inc(&bfqq->ref);
+-	bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq,
+-		     atomic_read(&bfqq->ref));
++out:
++	bfqq->ref++; /* get a process reference to this queue */
++	bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
++	rcu_read_unlock();
+ 	return bfqq;
+ }
+ 
+ static void bfq_update_io_thinktime(struct bfq_data *bfqd,
+ 				    struct bfq_io_cq *bic)
+ {
+-	unsigned long elapsed = jiffies - bic->ttime.last_end_request;
+-	unsigned long ttime = min(elapsed, 2UL * bfqd->bfq_slice_idle);
++	struct bfq_ttime *ttime = &bic->ttime;
++	u64 elapsed = ktime_get_ns() - bic->ttime.last_end_request;
+ 
+-	bic->ttime.ttime_samples = (7*bic->ttime.ttime_samples + 256) / 8;
+-	bic->ttime.ttime_total = (7*bic->ttime.ttime_total + 256*ttime) / 8;
+-	bic->ttime.ttime_mean = (bic->ttime.ttime_total + 128) /
+-				bic->ttime.ttime_samples;
++	elapsed = min_t(u64, elapsed, 2 * bfqd->bfq_slice_idle);
++
++	ttime->ttime_samples = (7*bic->ttime.ttime_samples + 256) / 8;
++	ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed,  8);
++	ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
++				     ttime->ttime_samples);
+ }
+ 
+-static void bfq_update_io_seektime(struct bfq_data *bfqd,
+-				   struct bfq_queue *bfqq,
+-				   struct request *rq)
++static void
++bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++		       struct request *rq)
+ {
+-	sector_t sdist;
+-	u64 total;
+-
+-	if (bfqq->last_request_pos < blk_rq_pos(rq))
+-		sdist = blk_rq_pos(rq) - bfqq->last_request_pos;
+-	else
+-		sdist = bfqq->last_request_pos - blk_rq_pos(rq);
+-
+-	/*
+-	 * Don't allow the seek distance to get too large from the
+-	 * odd fragment, pagein, etc.
+-	 */
+-	if (bfqq->seek_samples == 0) /* first request, not really a seek */
+-		sdist = 0;
+-	else if (bfqq->seek_samples <= 60) /* second & third seek */
+-		sdist = min(sdist, (bfqq->seek_mean * 4) + 2*1024*1024);
+-	else
+-		sdist = min(sdist, (bfqq->seek_mean * 4) + 2*1024*64);
+-
+-	bfqq->seek_samples = (7*bfqq->seek_samples + 256) / 8;
+-	bfqq->seek_total = (7*bfqq->seek_total + (u64)256*sdist) / 8;
+-	total = bfqq->seek_total + (bfqq->seek_samples/2);
+-	do_div(total, bfqq->seek_samples);
+-	bfqq->seek_mean = (sector_t)total;
+-
+-	bfq_log_bfqq(bfqd, bfqq, "dist=%llu mean=%llu", (u64)sdist,
+-			(u64)bfqq->seek_mean);
++	bfqq->seek_history <<= 1;
++	bfqq->seek_history |=
++		get_sdist(bfqq->last_request_pos, rq) > BFQQ_SEEK_THR &&
++		(!blk_queue_nonrot(bfqd->queue) ||
++		 blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT);
+ }
+ 
+ /*
+@@ -3369,7 +4171,8 @@ static void bfq_update_idle_window(struct bfq_data *bfqd,
+ 		return;
+ 
+ 	/* Idle window just restored, statistics are meaningless. */
+-	if (bfq_bfqq_just_split(bfqq))
++	if (time_is_after_eq_jiffies(bfqq->split_time +
++				     bfqd->bfq_wr_min_idle_time))
+ 		return;
+ 
+ 	enable_idle = bfq_bfqq_idle_window(bfqq);
+@@ -3409,22 +4212,13 @@ static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ 
+ 	bfq_update_io_thinktime(bfqd, bic);
+ 	bfq_update_io_seektime(bfqd, bfqq, rq);
+-	if (!BFQQ_SEEKY(bfqq) && bfq_bfqq_constantly_seeky(bfqq)) {
+-		bfq_clear_bfqq_constantly_seeky(bfqq);
+-		if (!blk_queue_nonrot(bfqd->queue)) {
+-			BUG_ON(!bfqd->const_seeky_busy_in_flight_queues);
+-			bfqd->const_seeky_busy_in_flight_queues--;
+-		}
+-	}
+ 	if (bfqq->entity.service > bfq_max_budget(bfqd) / 8 ||
+ 	    !BFQQ_SEEKY(bfqq))
+ 		bfq_update_idle_window(bfqd, bfqq, bic);
+-	bfq_clear_bfqq_just_split(bfqq);
+ 
+ 	bfq_log_bfqq(bfqd, bfqq,
+-		     "rq_enqueued: idle_window=%d (seeky %d, mean %llu)",
+-		     bfq_bfqq_idle_window(bfqq), BFQQ_SEEKY(bfqq),
+-		     (unsigned long long) bfqq->seek_mean);
++		     "rq_enqueued: idle_window=%d (seeky %d)",
++		     bfq_bfqq_idle_window(bfqq), BFQQ_SEEKY(bfqq));
+ 
+ 	bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
+ 
+@@ -3438,14 +4232,15 @@ static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ 		 * is small and the queue is not to be expired, then
+ 		 * just exit.
+ 		 *
+-		 * In this way, if the disk is being idled to wait for
+-		 * a new request from the in-service queue, we avoid
+-		 * unplugging the device and committing the disk to serve
+-		 * just a small request. On the contrary, we wait for
+-		 * the block layer to decide when to unplug the device:
+-		 * hopefully, new requests will be merged to this one
+-		 * quickly, then the device will be unplugged and
+-		 * larger requests will be dispatched.
++		 * In this way, if the device is being idled to wait
++		 * for a new request from the in-service queue, we
++		 * avoid unplugging the device and committing the
++		 * device to serve just a small request. On the
++		 * contrary, we wait for the block layer to decide
++		 * when to unplug the device: hopefully, new requests
++		 * will be merged to this one quickly, then the device
++		 * will be unplugged and larger requests will be
++		 * dispatched.
+ 		 */
+ 		if (small_req && !budget_timeout)
+ 			return;
+@@ -3457,10 +4252,8 @@ static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ 		 * timer.
+ 		 */
+ 		bfq_clear_bfqq_wait_request(bfqq);
+-		del_timer(&bfqd->idle_slice_timer);
+-#ifdef CONFIG_BFQ_GROUP_IOSCHED
++		hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
+ 		bfqg_stats_update_idle_time(bfqq_group(bfqq));
+-#endif
+ 
+ 		/*
+ 		 * The queue is not empty, because a new request just
+@@ -3504,28 +4297,24 @@ static void bfq_insert_request(struct request_queue *q, struct request *rq)
+ 			 */
+ 			new_bfqq->allocated[rq_data_dir(rq)]++;
+ 			bfqq->allocated[rq_data_dir(rq)]--;
+-			atomic_inc(&new_bfqq->ref);
+-			bfq_put_queue(bfqq);
++			new_bfqq->ref++;
++			bfq_clear_bfqq_just_created(bfqq);
+ 			if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
+ 				bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
+ 						bfqq, new_bfqq);
++			/*
++			 * rq is about to be enqueued into new_bfqq,
++			 * release rq reference on bfqq
++			 */
++			bfq_put_queue(bfqq);
+ 			rq->elv.priv[1] = new_bfqq;
+ 			bfqq = new_bfqq;
+-		} else
+-			bfq_bfqq_increase_failed_cooperations(bfqq);
++		}
+ 	}
+ 
+ 	bfq_add_request(rq);
+ 
+-	/*
+-	 * Here a newly-created bfq_queue has already started a weight-raising
+-	 * period: clear raising_time_left to prevent bfq_bfqq_save_state()
+-	 * from assigning it a full weight-raising period. See the detailed
+-	 * comments about this field in bfq_init_icq().
+-	 */
+-	if (bfqq->bic)
+-		bfqq->bic->wr_time_left = 0;
+-	rq->fifo_time = jiffies + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
++	rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
+ 	list_add_tail(&rq->queuelist, &bfqq->fifo);
+ 
+ 	bfq_rq_enqueued(bfqd, bfqq, rq);
+@@ -3533,8 +4322,8 @@ static void bfq_insert_request(struct request_queue *q, struct request *rq)
+ 
+ static void bfq_update_hw_tag(struct bfq_data *bfqd)
+ {
+-	bfqd->max_rq_in_driver = max(bfqd->max_rq_in_driver,
+-				     bfqd->rq_in_driver);
++	bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
++				       bfqd->rq_in_driver);
+ 
+ 	if (bfqd->hw_tag == 1)
+ 		return;
+@@ -3560,48 +4349,85 @@ static void bfq_completed_request(struct request_queue *q, struct request *rq)
+ {
+ 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
+ 	struct bfq_data *bfqd = bfqq->bfqd;
+-	bool sync = bfq_bfqq_sync(bfqq);
++	u64 now_ns;
++	u32 delta_us;
+ 
+-	bfq_log_bfqq(bfqd, bfqq, "completed one req with %u sects left (%d)",
+-		     blk_rq_sectors(rq), sync);
++	bfq_log_bfqq(bfqd, bfqq, "completed one req with %u sects left",
++		     blk_rq_sectors(rq));
+ 
++	assert_spin_locked(bfqd->queue->queue_lock);
+ 	bfq_update_hw_tag(bfqd);
+ 
+ 	BUG_ON(!bfqd->rq_in_driver);
+ 	BUG_ON(!bfqq->dispatched);
+ 	bfqd->rq_in_driver--;
+ 	bfqq->dispatched--;
+-#ifdef CONFIG_BFQ_GROUP_IOSCHED
+ 	bfqg_stats_update_completion(bfqq_group(bfqq),
+ 				     rq_start_time_ns(rq),
+-				     rq_io_start_time_ns(rq), rq->cmd_flags);
+-#endif
++				     rq_io_start_time_ns(rq),
++				     rq->cmd_flags);
+ 
+ 	if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
++		BUG_ON(!RB_EMPTY_ROOT(&bfqq->sort_list));
++		/*
++		 * Set budget_timeout (which we overload to store the
++		 * time at which the queue remains with no backlog and
++		 * no outstanding request; used by the weight-raising
++		 * mechanism).
++		 */
++		bfqq->budget_timeout = jiffies;
++
+ 		bfq_weights_tree_remove(bfqd, &bfqq->entity,
+ 					&bfqd->queue_weights_tree);
+-		if (!blk_queue_nonrot(bfqd->queue)) {
+-			BUG_ON(!bfqd->busy_in_flight_queues);
+-			bfqd->busy_in_flight_queues--;
+-			if (bfq_bfqq_constantly_seeky(bfqq)) {
+-				BUG_ON(!bfqd->
+-					const_seeky_busy_in_flight_queues);
+-				bfqd->const_seeky_busy_in_flight_queues--;
+-			}
+-		}
+ 	}
+ 
+-	if (sync) {
+-		bfqd->sync_flight--;
+-		RQ_BIC(rq)->ttime.last_end_request = jiffies;
+-	}
++	now_ns = ktime_get_ns();
++
++	RQ_BIC(rq)->ttime.last_end_request = now_ns;
++
++	/*
++	 * Using us instead of ns, to get a reasonable precision in
++	 * computing rate in next check.
++	 */
++	delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
++
++	bfq_log(bfqd, "rq_completed: delta %uus/%luus max_size %u rate %llu/%llu",
++		delta_us, BFQ_MIN_TT/NSEC_PER_USEC, bfqd->last_rq_max_size,
++		(USEC_PER_SEC*
++		(u64)((bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us))
++			>>BFQ_RATE_SHIFT,
++		(USEC_PER_SEC*(u64)(1UL<<(BFQ_RATE_SHIFT-10)))>>BFQ_RATE_SHIFT);
++
++	/*
++	 * If the request took rather long to complete, and, according
++	 * to the maximum request size recorded, this completion latency
++	 * implies that the request was certainly served at a very low
++	 * rate (less than 1M sectors/sec), then the whole observation
++	 * interval that lasts up to this time instant cannot be a
++	 * valid time interval for computing a new peak rate.  Invoke
++	 * bfq_update_rate_reset to have the following three steps
++	 * taken:
++	 * - close the observation interval at the last (previous)
++	 *   request dispatch or completion
++	 * - compute rate, if possible, for that observation interval
++	 * - reset to zero samples, which will trigger a proper
++	 *   re-initialization of the observation interval on next
++	 *   dispatch
++	 */
++	if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
++	   (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
++			1UL<<(BFQ_RATE_SHIFT - 10))
++		bfq_update_rate_reset(bfqd, NULL);
++	bfqd->last_completion = now_ns;
+ 
+ 	/*
+-	 * If we are waiting to discover whether the request pattern of the
+-	 * task associated with the queue is actually isochronous, and
+-	 * both requisites for this condition to hold are satisfied, then
+-	 * compute soft_rt_next_start (see the comments to the function
+-	 * bfq_bfqq_softrt_next_start()).
++	 * If we are waiting to discover whether the request pattern
++	 * of the task associated with the queue is actually
++	 * isochronous, and both requisites for this condition to hold
++	 * are now satisfied, then compute soft_rt_next_start (see the
++	 * comments on the function bfq_bfqq_softrt_next_start()). We
++	 * schedule this delayed check when bfqq expires, if it still
++	 * has in-flight requests.
+ 	 */
+ 	if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
+ 	    RB_EMPTY_ROOT(&bfqq->sort_list))
+@@ -3613,10 +4439,7 @@ static void bfq_completed_request(struct request_queue *q, struct request *rq)
+ 	 * or if we want to idle in case it has no pending requests.
+ 	 */
+ 	if (bfqd->in_service_queue == bfqq) {
+-		if (bfq_bfqq_budget_new(bfqq))
+-			bfq_set_budget_timeout(bfqd);
+-
+-		if (bfq_bfqq_must_idle(bfqq)) {
++		if (bfqq->dispatched == 0 && bfq_bfqq_must_idle(bfqq)) {
+ 			bfq_arm_slice_timer(bfqd);
+ 			goto out;
+ 		} else if (bfq_may_expire_for_budg_timeout(bfqq))
+@@ -3646,7 +4469,7 @@ static int __bfq_may_queue(struct bfq_queue *bfqq)
+ 	return ELV_MQUEUE_MAY;
+ }
+ 
+-static int bfq_may_queue(struct request_queue *q, int rw)
++static int bfq_may_queue(struct request_queue *q, unsigned int op)
+ {
+ 	struct bfq_data *bfqd = q->elevator->elevator_data;
+ 	struct task_struct *tsk = current;
+@@ -3663,7 +4486,7 @@ static int bfq_may_queue(struct request_queue *q, int rw)
+ 	if (!bic)
+ 		return ELV_MQUEUE_MAY;
+ 
+-	bfqq = bic_to_bfqq(bic, rw_is_sync(rw));
++	bfqq = bic_to_bfqq(bic, op_is_sync(op));
+ 	if (bfqq)
+ 		return __bfq_may_queue(bfqq);
+ 
+@@ -3687,14 +4510,14 @@ static void bfq_put_request(struct request *rq)
+ 		rq->elv.priv[1] = NULL;
+ 
+ 		bfq_log_bfqq(bfqq->bfqd, bfqq, "put_request %p, %d",
+-			     bfqq, atomic_read(&bfqq->ref));
++			     bfqq, bfqq->ref);
+ 		bfq_put_queue(bfqq);
+ 	}
+ }
+ 
+ /*
+  * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
+- * was the last process referring to said bfqq.
++ * was the last process referring to that bfqq.
+  */
+ static struct bfq_queue *
+ bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
+@@ -3732,37 +4555,60 @@ static int bfq_set_request(struct request_queue *q, struct request *rq,
+ 	unsigned long flags;
+ 	bool split = false;
+ 
+-	might_sleep_if(gfpflags_allow_blocking(gfp_mask));
+-
+-	bfq_check_ioprio_change(bic, bio);
+-
+ 	spin_lock_irqsave(q->queue_lock, flags);
++	bfq_check_ioprio_change(bic, bio);
+ 
+ 	if (!bic)
+ 		goto queue_fail;
+ 
++	bfq_check_ioprio_change(bic, bio);
++
+ 	bfq_bic_update_cgroup(bic, bio);
+ 
+ new_queue:
+ 	bfqq = bic_to_bfqq(bic, is_sync);
+ 	if (!bfqq || bfqq == &bfqd->oom_bfqq) {
+-		bfqq = bfq_get_queue(bfqd, bio, is_sync, bic, gfp_mask);
++		if (bfqq)
++			bfq_put_queue(bfqq);
++		bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
++		BUG_ON(!hlist_unhashed(&bfqq->burst_list_node));
++
+ 		bic_set_bfqq(bic, bfqq, is_sync);
+ 		if (split && is_sync) {
++			bfq_log_bfqq(bfqd, bfqq,
++				     "set_request: was_in_list %d "
++				     "was_in_large_burst %d "
++				     "large burst in progress %d",
++				     bic->was_in_burst_list,
++				     bic->saved_in_large_burst,
++				     bfqd->large_burst);
++
+ 			if ((bic->was_in_burst_list && bfqd->large_burst) ||
+-			    bic->saved_in_large_burst)
++			    bic->saved_in_large_burst) {
++				bfq_log_bfqq(bfqd, bfqq,
++					     "set_request: marking in "
++					     "large burst");
+ 				bfq_mark_bfqq_in_large_burst(bfqq);
+-			else {
++			} else {
++				bfq_log_bfqq(bfqd, bfqq,
++					     "set_request: clearing in "
++					     "large burst");
+ 				bfq_clear_bfqq_in_large_burst(bfqq);
+ 				if (bic->was_in_burst_list)
+ 					hlist_add_head(&bfqq->burst_list_node,
+ 						       &bfqd->burst_list);
+ 			}
++			bfqq->split_time = jiffies;
+ 		}
+ 	} else {
+ 		/* If the queue was seeky for too long, break it apart. */
+ 		if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
+ 			bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
++
++			/* Update bic before losing reference to bfqq */
++			if (bfq_bfqq_in_large_burst(bfqq))
++				bic->saved_in_large_burst = true;
++
+ 			bfqq = bfq_split_bfqq(bic, bfqq);
+ 			split = true;
+ 			if (!bfqq)
+@@ -3771,9 +4617,8 @@ static int bfq_set_request(struct request_queue *q, struct request *rq,
+ 	}
+ 
+ 	bfqq->allocated[rw]++;
+-	atomic_inc(&bfqq->ref);
+-	bfq_log_bfqq(bfqd, bfqq, "set_request: bfqq %p, %d", bfqq,
+-		     atomic_read(&bfqq->ref));
++	bfqq->ref++;
++	bfq_log_bfqq(bfqd, bfqq, "set_request: bfqq %p, %d", bfqq, bfqq->ref);
+ 
+ 	rq->elv.priv[0] = bic;
+ 	rq->elv.priv[1] = bfqq;
+@@ -3788,7 +4633,6 @@ static int bfq_set_request(struct request_queue *q, struct request *rq,
+ 	if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
+ 		bfqq->bic = bic;
+ 		if (split) {
+-			bfq_mark_bfqq_just_split(bfqq);
+ 			/*
+ 			 * If the queue has just been split from a shared
+ 			 * queue, restore the idle window and the possible
+@@ -3798,6 +4642,9 @@ static int bfq_set_request(struct request_queue *q, struct request *rq,
+ 		}
+ 	}
+ 
++	if (unlikely(bfq_bfqq_just_created(bfqq)))
++		bfq_handle_burst(bfqd, bfqq);
++
+ 	spin_unlock_irqrestore(q->queue_lock, flags);
+ 
+ 	return 0;
+@@ -3824,9 +4671,10 @@ static void bfq_kick_queue(struct work_struct *work)
+  * Handler of the expiration of the timer running if the in-service queue
+  * is idling inside its time slice.
+  */
+-static void bfq_idle_slice_timer(unsigned long data)
++static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
+ {
+-	struct bfq_data *bfqd = (struct bfq_data *)data;
++	struct bfq_data *bfqd = container_of(timer, struct bfq_data,
++					     idle_slice_timer);
+ 	struct bfq_queue *bfqq;
+ 	unsigned long flags;
+ 	enum bfqq_expiration reason;
+@@ -3844,6 +4692,8 @@ static void bfq_idle_slice_timer(unsigned long data)
+ 	 */
+ 	if (bfqq) {
+ 		bfq_log_bfqq(bfqd, bfqq, "slice_timer expired");
++		bfq_clear_bfqq_wait_request(bfqq);
++
+ 		if (bfq_bfqq_budget_timeout(bfqq))
+ 			/*
+ 			 * Also here the queue can be safely expired
+@@ -3869,25 +4719,26 @@ static void bfq_idle_slice_timer(unsigned long data)
+ 	bfq_schedule_dispatch(bfqd);
+ 
+ 	spin_unlock_irqrestore(bfqd->queue->queue_lock, flags);
++	return HRTIMER_NORESTART;
+ }
+ 
+ static void bfq_shutdown_timer_wq(struct bfq_data *bfqd)
+ {
+-	del_timer_sync(&bfqd->idle_slice_timer);
++	hrtimer_cancel(&bfqd->idle_slice_timer);
+ 	cancel_work_sync(&bfqd->unplug_work);
+ }
+ 
+ static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
+-					struct bfq_queue **bfqq_ptr)
++				 struct bfq_queue **bfqq_ptr)
+ {
+ 	struct bfq_group *root_group = bfqd->root_group;
+ 	struct bfq_queue *bfqq = *bfqq_ptr;
+ 
+ 	bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
+ 	if (bfqq) {
+-		bfq_bfqq_move(bfqd, bfqq, &bfqq->entity, root_group);
++		bfq_bfqq_move(bfqd, bfqq, root_group);
+ 		bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
+-			     bfqq, atomic_read(&bfqq->ref));
++			     bfqq, bfqq->ref);
+ 		bfq_put_queue(bfqq);
+ 		*bfqq_ptr = NULL;
+ 	}
+@@ -3922,19 +4773,18 @@ static void bfq_exit_queue(struct elevator_queue *e)
+ 
+ 	BUG_ON(bfqd->in_service_queue);
+ 	list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
+-		bfq_deactivate_bfqq(bfqd, bfqq, 0);
++		bfq_deactivate_bfqq(bfqd, bfqq, false, false);
+ 
+ 	spin_unlock_irq(q->queue_lock);
+ 
+ 	bfq_shutdown_timer_wq(bfqd);
+ 
+-	synchronize_rcu();
+-
+-	BUG_ON(timer_pending(&bfqd->idle_slice_timer));
++	BUG_ON(hrtimer_active(&bfqd->idle_slice_timer));
+ 
+ #ifdef CONFIG_BFQ_GROUP_IOSCHED
+ 	blkcg_deactivate_policy(q, &blkcg_policy_bfq);
+ #else
++	bfq_put_async_queues(bfqd, bfqd->root_group);
+ 	kfree(bfqd->root_group);
+ #endif
+ 
+@@ -3954,6 +4804,7 @@ static void bfq_init_root_group(struct bfq_group *root_group,
+ 	root_group->rq_pos_tree = RB_ROOT;
+ 	for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
+ 		root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
++	root_group->sched_data.bfq_class_idle_last_service = jiffies;
+ }
+ 
+ static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
+@@ -3978,11 +4829,14 @@ static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
+ 	 * will not attempt to free it.
+ 	 */
+ 	bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
+-	atomic_inc(&bfqd->oom_bfqq.ref);
++	bfqd->oom_bfqq.ref++;
+ 	bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
+ 	bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
+ 	bfqd->oom_bfqq.entity.new_weight =
+ 		bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
++
++	/* oom_bfqq does not participate to bursts */
++	bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
+ 	/*
+ 	 * Trigger weight initialization, according to ioprio, at the
+ 	 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
+@@ -4001,13 +4855,10 @@ static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
+ 		goto out_free;
+ 	bfq_init_root_group(bfqd->root_group, bfqd);
+ 	bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
+-#ifdef CONFIG_BFQ_GROUP_IOSCHED
+-	bfqd->active_numerous_groups = 0;
+-#endif
+ 
+-	init_timer(&bfqd->idle_slice_timer);
++	hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
++		     HRTIMER_MODE_REL);
+ 	bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
+-	bfqd->idle_slice_timer.data = (unsigned long)bfqd;
+ 
+ 	bfqd->queue_weights_tree = RB_ROOT;
+ 	bfqd->group_weights_tree = RB_ROOT;
+@@ -4027,21 +4878,19 @@ static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
+ 	bfqd->bfq_back_max = bfq_back_max;
+ 	bfqd->bfq_back_penalty = bfq_back_penalty;
+ 	bfqd->bfq_slice_idle = bfq_slice_idle;
+-	bfqd->bfq_class_idle_last_service = 0;
+-	bfqd->bfq_max_budget_async_rq = bfq_max_budget_async_rq;
+-	bfqd->bfq_timeout[BLK_RW_ASYNC] = bfq_timeout_async;
+-	bfqd->bfq_timeout[BLK_RW_SYNC] = bfq_timeout_sync;
++	bfqd->bfq_timeout = bfq_timeout;
+ 
+-	bfqd->bfq_coop_thresh = 2;
+-	bfqd->bfq_failed_cooperations = 7000;
+ 	bfqd->bfq_requests_within_timer = 120;
+ 
+-	bfqd->bfq_large_burst_thresh = 11;
+-	bfqd->bfq_burst_interval = msecs_to_jiffies(500);
++	bfqd->bfq_large_burst_thresh = 8;
++	bfqd->bfq_burst_interval = msecs_to_jiffies(180);
+ 
+ 	bfqd->low_latency = true;
+ 
+-	bfqd->bfq_wr_coeff = 20;
++	/*
++	 * Trade-off between responsiveness and fairness.
++	 */
++	bfqd->bfq_wr_coeff = 30;
+ 	bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
+ 	bfqd->bfq_wr_max_time = 0;
+ 	bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
+@@ -4053,16 +4902,15 @@ static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
+ 					      * video.
+ 					      */
+ 	bfqd->wr_busy_queues = 0;
+-	bfqd->busy_in_flight_queues = 0;
+-	bfqd->const_seeky_busy_in_flight_queues = 0;
+ 
+ 	/*
+-	 * Begin by assuming, optimistically, that the device peak rate is
+-	 * equal to the highest reference rate.
++	 * Begin by assuming, optimistically, that the device is a
++	 * high-speed one, and that its peak rate is equal to 2/3 of
++	 * the highest reference rate.
+ 	 */
+ 	bfqd->RT_prod = R_fast[blk_queue_nonrot(bfqd->queue)] *
+ 			T_fast[blk_queue_nonrot(bfqd->queue)];
+-	bfqd->peak_rate = R_fast[blk_queue_nonrot(bfqd->queue)];
++	bfqd->peak_rate = R_fast[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
+ 	bfqd->device_speed = BFQ_BFQD_FAST;
+ 
+ 	return 0;
+@@ -4088,7 +4936,7 @@ static int __init bfq_slab_setup(void)
+ 
+ static ssize_t bfq_var_show(unsigned int var, char *page)
+ {
+-	return sprintf(page, "%d\n", var);
++	return sprintf(page, "%u\n", var);
+ }
+ 
+ static ssize_t bfq_var_store(unsigned long *var, const char *page,
+@@ -4159,21 +5007,21 @@ static ssize_t bfq_weights_show(struct elevator_queue *e, char *page)
+ static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
+ {									\
+ 	struct bfq_data *bfqd = e->elevator_data;			\
+-	unsigned int __data = __VAR;					\
+-	if (__CONV)							\
++	u64 __data = __VAR;						\
++	if (__CONV == 1)						\
+ 		__data = jiffies_to_msecs(__data);			\
++	else if (__CONV == 2)						\
++		__data = div_u64(__data, NSEC_PER_MSEC);		\
+ 	return bfq_var_show(__data, (page));				\
+ }
+-SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 1);
+-SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 1);
++SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
++SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
+ SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
+ SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
+-SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 1);
++SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
+ SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
+-SHOW_FUNCTION(bfq_max_budget_async_rq_show,
+-	      bfqd->bfq_max_budget_async_rq, 0);
+-SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout[BLK_RW_SYNC], 1);
+-SHOW_FUNCTION(bfq_timeout_async_show, bfqd->bfq_timeout[BLK_RW_ASYNC], 1);
++SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
++SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
+ SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
+ SHOW_FUNCTION(bfq_wr_coeff_show, bfqd->bfq_wr_coeff, 0);
+ SHOW_FUNCTION(bfq_wr_rt_max_time_show, bfqd->bfq_wr_rt_max_time, 1);
+@@ -4183,6 +5031,17 @@ SHOW_FUNCTION(bfq_wr_min_inter_arr_async_show, bfqd->bfq_wr_min_inter_arr_async,
+ SHOW_FUNCTION(bfq_wr_max_softrt_rate_show, bfqd->bfq_wr_max_softrt_rate, 0);
+ #undef SHOW_FUNCTION
+ 
++#define USEC_SHOW_FUNCTION(__FUNC, __VAR)				\
++static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
++{									\
++	struct bfq_data *bfqd = e->elevator_data;			\
++	u64 __data = __VAR;						\
++	__data = div_u64(__data, NSEC_PER_USEC);			\
++	return bfq_var_show(__data, (page));				\
++}
++USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
++#undef USEC_SHOW_FUNCTION
++
+ #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
+ static ssize_t								\
+ __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
+@@ -4194,24 +5053,22 @@ __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
+ 		__data = (MIN);						\
+ 	else if (__data > (MAX))					\
+ 		__data = (MAX);						\
+-	if (__CONV)							\
++	if (__CONV == 1)						\
+ 		*(__PTR) = msecs_to_jiffies(__data);			\
++	else if (__CONV == 2)						\
++		*(__PTR) = (u64)__data * NSEC_PER_MSEC;			\
+ 	else								\
+ 		*(__PTR) = __data;					\
+ 	return ret;							\
+ }
+ STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
+-		INT_MAX, 1);
++		INT_MAX, 2);
+ STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
+-		INT_MAX, 1);
++		INT_MAX, 2);
+ STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
+ STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
+ 		INT_MAX, 0);
+-STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 1);
+-STORE_FUNCTION(bfq_max_budget_async_rq_store, &bfqd->bfq_max_budget_async_rq,
+-		1, INT_MAX, 0);
+-STORE_FUNCTION(bfq_timeout_async_store, &bfqd->bfq_timeout[BLK_RW_ASYNC], 0,
+-		INT_MAX, 1);
++STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
+ STORE_FUNCTION(bfq_wr_coeff_store, &bfqd->bfq_wr_coeff, 1, INT_MAX, 0);
+ STORE_FUNCTION(bfq_wr_max_time_store, &bfqd->bfq_wr_max_time, 0, INT_MAX, 1);
+ STORE_FUNCTION(bfq_wr_rt_max_time_store, &bfqd->bfq_wr_rt_max_time, 0, INT_MAX,
+@@ -4224,6 +5081,23 @@ STORE_FUNCTION(bfq_wr_max_softrt_rate_store, &bfqd->bfq_wr_max_softrt_rate, 0,
+ 		INT_MAX, 0);
+ #undef STORE_FUNCTION
+ 
++#define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)			\
++static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
++{									\
++	struct bfq_data *bfqd = e->elevator_data;			\
++	unsigned long uninitialized_var(__data);			\
++	int ret = bfq_var_store(&__data, (page), count);		\
++	if (__data < (MIN))						\
++		__data = (MIN);						\
++	else if (__data > (MAX))					\
++		__data = (MAX);						\
++	*(__PTR) = (u64)__data * NSEC_PER_USEC;				\
++	return ret;							\
++}
++USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
++		    UINT_MAX);
++#undef USEC_STORE_FUNCTION
++
+ /* do nothing for the moment */
+ static ssize_t bfq_weights_store(struct elevator_queue *e,
+ 				    const char *page, size_t count)
+@@ -4231,16 +5105,6 @@ static ssize_t bfq_weights_store(struct elevator_queue *e,
+ 	return count;
+ }
+ 
+-static unsigned long bfq_estimated_max_budget(struct bfq_data *bfqd)
+-{
+-	u64 timeout = jiffies_to_msecs(bfqd->bfq_timeout[BLK_RW_SYNC]);
+-
+-	if (bfqd->peak_rate_samples >= BFQ_PEAK_RATE_SAMPLES)
+-		return bfq_calc_max_budget(bfqd->peak_rate, timeout);
+-	else
+-		return bfq_default_max_budget;
+-}
+-
+ static ssize_t bfq_max_budget_store(struct elevator_queue *e,
+ 				    const char *page, size_t count)
+ {
+@@ -4249,7 +5113,7 @@ static ssize_t bfq_max_budget_store(struct elevator_queue *e,
+ 	int ret = bfq_var_store(&__data, (page), count);
+ 
+ 	if (__data == 0)
+-		bfqd->bfq_max_budget = bfq_estimated_max_budget(bfqd);
++		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
+ 	else {
+ 		if (__data > INT_MAX)
+ 			__data = INT_MAX;
+@@ -4261,6 +5125,10 @@ static ssize_t bfq_max_budget_store(struct elevator_queue *e,
+ 	return ret;
+ }
+ 
++/*
++ * Leaving this name to preserve name compatibility with cfq
++ * parameters, but this timeout is used for both sync and async.
++ */
+ static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
+ 				      const char *page, size_t count)
+ {
+@@ -4273,9 +5141,27 @@ static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
+ 	else if (__data > INT_MAX)
+ 		__data = INT_MAX;
+ 
+-	bfqd->bfq_timeout[BLK_RW_SYNC] = msecs_to_jiffies(__data);
++	bfqd->bfq_timeout = msecs_to_jiffies(__data);
+ 	if (bfqd->bfq_user_max_budget == 0)
+-		bfqd->bfq_max_budget = bfq_estimated_max_budget(bfqd);
++		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
++
++	return ret;
++}
++
++static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
++				     const char *page, size_t count)
++{
++	struct bfq_data *bfqd = e->elevator_data;
++	unsigned long uninitialized_var(__data);
++	int ret = bfq_var_store(&__data, (page), count);
++
++	if (__data > 1)
++		__data = 1;
++	if (!bfqd->strict_guarantees && __data == 1
++	    && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
++		bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
++
++	bfqd->strict_guarantees = __data;
+ 
+ 	return ret;
+ }
+@@ -4305,10 +5191,10 @@ static struct elv_fs_entry bfq_attrs[] = {
+ 	BFQ_ATTR(back_seek_max),
+ 	BFQ_ATTR(back_seek_penalty),
+ 	BFQ_ATTR(slice_idle),
++	BFQ_ATTR(slice_idle_us),
+ 	BFQ_ATTR(max_budget),
+-	BFQ_ATTR(max_budget_async_rq),
+ 	BFQ_ATTR(timeout_sync),
+-	BFQ_ATTR(timeout_async),
++	BFQ_ATTR(strict_guarantees),
+ 	BFQ_ATTR(low_latency),
+ 	BFQ_ATTR(wr_coeff),
+ 	BFQ_ATTR(wr_max_time),
+@@ -4321,14 +5207,15 @@ static struct elv_fs_entry bfq_attrs[] = {
+ };
+ 
+ static struct elevator_type iosched_bfq = {
+-	.ops = {
++	.ops.sq = {
+ 		.elevator_merge_fn =		bfq_merge,
+ 		.elevator_merged_fn =		bfq_merged_request,
+ 		.elevator_merge_req_fn =	bfq_merged_requests,
+ #ifdef CONFIG_BFQ_GROUP_IOSCHED
+ 		.elevator_bio_merged_fn =	bfq_bio_merged,
+ #endif
+-		.elevator_allow_merge_fn =	bfq_allow_merge,
++		.elevator_allow_bio_merge_fn =	bfq_allow_bio_merge,
++		.elevator_allow_rq_merge_fn =	bfq_allow_rq_merge,
+ 		.elevator_dispatch_fn =		bfq_dispatch_requests,
+ 		.elevator_add_req_fn =		bfq_insert_request,
+ 		.elevator_activate_req_fn =	bfq_activate_request,
+@@ -4351,18 +5238,28 @@ static struct elevator_type iosched_bfq = {
+ 	.elevator_owner =	THIS_MODULE,
+ };
+ 
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++static struct blkcg_policy blkcg_policy_bfq = {
++	.dfl_cftypes		= bfq_blkg_files,
++	.legacy_cftypes		= bfq_blkcg_legacy_files,
++
++	.cpd_alloc_fn		= bfq_cpd_alloc,
++	.cpd_init_fn		= bfq_cpd_init,
++	.cpd_bind_fn	        = bfq_cpd_init,
++	.cpd_free_fn		= bfq_cpd_free,
++
++	.pd_alloc_fn		= bfq_pd_alloc,
++	.pd_init_fn		= bfq_pd_init,
++	.pd_offline_fn		= bfq_pd_offline,
++	.pd_free_fn		= bfq_pd_free,
++	.pd_reset_stats_fn	= bfq_pd_reset_stats,
++};
++#endif
++
+ static int __init bfq_init(void)
+ {
+ 	int ret;
+-
+-	/*
+-	 * Can be 0 on HZ < 1000 setups.
+-	 */
+-	if (bfq_slice_idle == 0)
+-		bfq_slice_idle = 1;
+-
+-	if (bfq_timeout_async == 0)
+-		bfq_timeout_async = 1;
++	char msg[60] = "BFQ I/O-scheduler: v8r11";
+ 
+ #ifdef CONFIG_BFQ_GROUP_IOSCHED
+ 	ret = blkcg_policy_register(&blkcg_policy_bfq);
+@@ -4375,27 +5272,46 @@ static int __init bfq_init(void)
+ 		goto err_pol_unreg;
+ 
+ 	/*
+-	 * Times to load large popular applications for the typical systems
+-	 * installed on the reference devices (see the comments before the
+-	 * definitions of the two arrays).
++	 * Times to load large popular applications for the typical
++	 * systems installed on the reference devices (see the
++	 * comments before the definitions of the next two
++	 * arrays). Actually, we use slightly slower values, as the
++	 * estimated peak rate tends to be smaller than the actual
++	 * peak rate.  The reason for this last fact is that estimates
++	 * are computed over much shorter time intervals than the long
++	 * intervals typically used for benchmarking. Why? First, to
++	 * adapt more quickly to variations. Second, because an I/O
++	 * scheduler cannot rely on a peak-rate-evaluation workload to
++	 * be run for a long time.
+ 	 */
+-	T_slow[0] = msecs_to_jiffies(2600);
+-	T_slow[1] = msecs_to_jiffies(1000);
+-	T_fast[0] = msecs_to_jiffies(5500);
+-	T_fast[1] = msecs_to_jiffies(2000);
++	T_slow[0] = msecs_to_jiffies(3500); /* actually 4 sec */
++	T_slow[1] = msecs_to_jiffies(6000); /* actually 6.5 sec */
++	T_fast[0] = msecs_to_jiffies(7000); /* actually 8 sec */
++	T_fast[1] = msecs_to_jiffies(2500); /* actually 3 sec */
+ 
+ 	/*
+-	 * Thresholds that determine the switch between speed classes (see
+-	 * the comments before the definition of the array).
++	 * Thresholds that determine the switch between speed classes
++	 * (see the comments before the definition of the array
++	 * device_speed_thresh). These thresholds are biased towards
++	 * transitions to the fast class. This is safer than the
++	 * opposite bias. In fact, a wrong transition to the slow
++	 * class results in short weight-raising periods, because the
++	 * speed of the device then tends to be higher that the
++	 * reference peak rate. On the opposite end, a wrong
++	 * transition to the fast class tends to increase
++	 * weight-raising periods, because of the opposite reason.
+ 	 */
+-	device_speed_thresh[0] = (R_fast[0] + R_slow[0]) / 2;
+-	device_speed_thresh[1] = (R_fast[1] + R_slow[1]) / 2;
++	device_speed_thresh[0] = (4 * R_slow[0]) / 3;
++	device_speed_thresh[1] = (4 * R_slow[1]) / 3;
+ 
+ 	ret = elv_register(&iosched_bfq);
+ 	if (ret)
+ 		goto err_pol_unreg;
+ 
+-	pr_info("BFQ I/O-scheduler: v7r11");
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++	strcat(msg, " (with cgroups support)");
++#endif
++	pr_info("%s", msg);
+ 
+ 	return 0;
+ 
+diff --git a/block/bfq-sched.c b/block/bfq-sched.c
+index a5ed694..1fde070 100644
+--- a/block/bfq-sched.c
++++ b/block/bfq-sched.c
+@@ -7,28 +7,173 @@
+  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
+  *		      Paolo Valente <paolo.valente@unimore.it>
+  *
+- * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
++ * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
++ *
++ * Copyright (C) 2016 Paolo Valente <paolo.valente@linaro.org>
+  */
+ 
+-#ifdef CONFIG_BFQ_GROUP_IOSCHED
+-#define for_each_entity(entity)	\
+-	for (; entity ; entity = entity->parent)
++static struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
+ 
+-#define for_each_entity_safe(entity, parent) \
+-	for (; entity && ({ parent = entity->parent; 1; }); entity = parent)
++/**
++ * bfq_gt - compare two timestamps.
++ * @a: first ts.
++ * @b: second ts.
++ *
++ * Return @a > @b, dealing with wrapping correctly.
++ */
++static int bfq_gt(u64 a, u64 b)
++{
++	return (s64)(a - b) > 0;
++}
++
++static struct bfq_entity *bfq_root_active_entity(struct rb_root *tree)
++{
++	struct rb_node *node = tree->rb_node;
+ 
++	return rb_entry(node, struct bfq_entity, rb_node);
++}
+ 
+-static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
+-						 int extract,
+-						 struct bfq_data *bfqd);
++static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd);
+ 
+-static struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
++static bool bfq_update_parent_budget(struct bfq_entity *next_in_service);
++
++/**
++ * bfq_update_next_in_service - update sd->next_in_service
++ * @sd: sched_data for which to perform the update.
++ * @new_entity: if not NULL, pointer to the entity whose activation,
++ *		requeueing or repositionig triggered the invocation of
++ *		this function.
++ *
++ * This function is called to update sd->next_in_service, which, in
++ * its turn, may change as a consequence of the insertion or
++ * extraction of an entity into/from one of the active trees of
++ * sd. These insertions/extractions occur as a consequence of
++ * activations/deactivations of entities, with some activations being
++ * 'true' activations, and other activations being requeueings (i.e.,
++ * implementing the second, requeueing phase of the mechanism used to
++ * reposition an entity in its active tree; see comments on
++ * __bfq_activate_entity and __bfq_requeue_entity for details). In
++ * both the last two activation sub-cases, new_entity points to the
++ * just activated or requeued entity.
++ *
++ * Returns true if sd->next_in_service changes in such a way that
++ * entity->parent may become the next_in_service for its parent
++ * entity.
++ */
++static bool bfq_update_next_in_service(struct bfq_sched_data *sd,
++				       struct bfq_entity *new_entity)
++{
++	struct bfq_entity *next_in_service = sd->next_in_service;
++	struct bfq_queue *bfqq;
++	bool parent_sched_may_change = false;
++
++	/*
++	 * If this update is triggered by the activation, requeueing
++	 * or repositiong of an entity that does not coincide with
++	 * sd->next_in_service, then a full lookup in the active tree
++	 * can be avoided. In fact, it is enough to check whether the
++	 * just-modified entity has a higher priority than
++	 * sd->next_in_service, or, even if it has the same priority
++	 * as sd->next_in_service, is eligible and has a lower virtual
++	 * finish time than sd->next_in_service. If this compound
++	 * condition holds, then the new entity becomes the new
++	 * next_in_service. Otherwise no change is needed.
++	 */
++	if (new_entity && new_entity != sd->next_in_service) {
++		/*
++		 * Flag used to decide whether to replace
++		 * sd->next_in_service with new_entity. Tentatively
++		 * set to true, and left as true if
++		 * sd->next_in_service is NULL.
++		 */
++		bool replace_next = true;
++
++		/*
++		 * If there is already a next_in_service candidate
++		 * entity, then compare class priorities or timestamps
++		 * to decide whether to replace sd->service_tree with
++		 * new_entity.
++		 */
++		if (next_in_service) {
++			unsigned int new_entity_class_idx =
++				bfq_class_idx(new_entity);
++			struct bfq_service_tree *st =
++				sd->service_tree + new_entity_class_idx;
++
++			/*
++			 * For efficiency, evaluate the most likely
++			 * sub-condition first.
++			 */
++			replace_next =
++				(new_entity_class_idx ==
++				 bfq_class_idx(next_in_service)
++				 &&
++				 !bfq_gt(new_entity->start, st->vtime)
++				 &&
++				 bfq_gt(next_in_service->finish,
++					new_entity->finish))
++				||
++				new_entity_class_idx <
++				bfq_class_idx(next_in_service);
++		}
++
++		if (replace_next)
++			next_in_service = new_entity;
++	} else /* invoked because of a deactivation: lookup needed */
++		next_in_service = bfq_lookup_next_entity(sd);
++
++	if (next_in_service) {
++		parent_sched_may_change = !sd->next_in_service ||
++			bfq_update_parent_budget(next_in_service);
++	} else
++		parent_sched_may_change = sd->next_in_service;
++
++	sd->next_in_service = next_in_service;
++
++	if (!next_in_service)
++		return parent_sched_may_change;
++
++	bfqq = bfq_entity_to_bfqq(next_in_service);
++	if (bfqq)
++		bfq_log_bfqq(bfqq->bfqd, bfqq,
++			     "update_next_in_service: chosen this queue");
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++	else {
++		struct bfq_group *bfqg =
++			container_of(next_in_service,
++				     struct bfq_group, entity);
+ 
+-static void bfq_update_budget(struct bfq_entity *next_in_service)
++		bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
++			     "update_next_in_service: chosen this entity");
++	}
++#endif
++	return parent_sched_may_change;
++}
++
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++/* both next loops stop at one of the child entities of the root group */
++#define for_each_entity(entity)				\
++	for (; entity ; entity = entity->parent)
++
++/*
++ * For each iteration, compute parent in advance, so as to be safe if
++ * entity is deallocated during the iteration. Such a deallocation may
++ * happen as a consequence of a bfq_put_queue that frees the bfq_queue
++ * containing entity.
++ */
++#define for_each_entity_safe(entity, parent)				\
++	for (; entity && ({ parent = entity->parent; 1; }); entity = parent)
++
++/*
++ * Returns true if this budget changes may let next_in_service->parent
++ * become the next_in_service entity for its parent entity.
++ */
++static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
+ {
+ 	struct bfq_entity *bfqg_entity;
+ 	struct bfq_group *bfqg;
+ 	struct bfq_sched_data *group_sd;
++	bool ret = false;
+ 
+ 	BUG_ON(!next_in_service);
+ 
+@@ -41,60 +186,68 @@ static void bfq_update_budget(struct bfq_entity *next_in_service)
+ 	 * as it must never become an in-service entity.
+ 	 */
+ 	bfqg_entity = bfqg->my_entity;
+-	if (bfqg_entity)
++	if (bfqg_entity) {
++		if (bfqg_entity->budget > next_in_service->budget)
++			ret = true;
+ 		bfqg_entity->budget = next_in_service->budget;
++	}
++
++	return ret;
+ }
+ 
+-static int bfq_update_next_in_service(struct bfq_sched_data *sd)
++/*
++ * This function tells whether entity stops being a candidate for next
++ * service, according to the following logic.
++ *
++ * This function is invoked for an entity that is about to be set in
++ * service. If such an entity is a queue, then the entity is no longer
++ * a candidate for next service (i.e, a candidate entity to serve
++ * after the in-service entity is expired). The function then returns
++ * true.
++ *
++ * In contrast, the entity could stil be a candidate for next service
++ * if it is not a queue, and has more than one child. In fact, even if
++ * one of its children is about to be set in service, other children
++ * may still be the next to serve. As a consequence, a non-queue
++ * entity is not a candidate for next-service only if it has only one
++ * child. And only if this condition holds, then the function returns
++ * true for a non-queue entity.
++ */
++static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
+ {
+-	struct bfq_entity *next_in_service;
++	struct bfq_group *bfqg;
+ 
+-	if (sd->in_service_entity)
+-		/* will update/requeue at the end of service */
+-		return 0;
++	if (bfq_entity_to_bfqq(entity))
++		return true;
+ 
+-	/*
+-	 * NOTE: this can be improved in many ways, such as returning
+-	 * 1 (and thus propagating upwards the update) only when the
+-	 * budget changes, or caching the bfqq that will be scheduled
+-	 * next from this subtree.  By now we worry more about
+-	 * correctness than about performance...
+-	 */
+-	next_in_service = bfq_lookup_next_entity(sd, 0, NULL);
+-	sd->next_in_service = next_in_service;
++	bfqg = container_of(entity, struct bfq_group, entity);
+ 
+-	if (next_in_service)
+-		bfq_update_budget(next_in_service);
++	BUG_ON(bfqg == ((struct bfq_data *)(bfqg->bfqd))->root_group);
++	BUG_ON(bfqg->active_entities == 0);
++	if (bfqg->active_entities == 1)
++		return true;
+ 
+-	return 1;
++	return false;
+ }
+ 
+-static void bfq_check_next_in_service(struct bfq_sched_data *sd,
+-				      struct bfq_entity *entity)
+-{
+-	BUG_ON(sd->next_in_service != entity);
+-}
+-#else
++#else /* CONFIG_BFQ_GROUP_IOSCHED */
+ #define for_each_entity(entity)	\
+ 	for (; entity ; entity = NULL)
+ 
+ #define for_each_entity_safe(entity, parent) \
+ 	for (parent = NULL; entity ; entity = parent)
+ 
+-static int bfq_update_next_in_service(struct bfq_sched_data *sd)
++static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
+ {
+-	return 0;
++	return false;
+ }
+ 
+-static void bfq_check_next_in_service(struct bfq_sched_data *sd,
+-				      struct bfq_entity *entity)
++static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
+ {
++	return true;
+ }
+ 
+-static void bfq_update_budget(struct bfq_entity *next_in_service)
+-{
+-}
+-#endif
++#endif /* CONFIG_BFQ_GROUP_IOSCHED */
+ 
+ /*
+  * Shift for timestamp calculations.  This actually limits the maximum
+@@ -105,18 +258,6 @@ static void bfq_update_budget(struct bfq_entity *next_in_service)
+  */
+ #define WFQ_SERVICE_SHIFT	22
+ 
+-/**
+- * bfq_gt - compare two timestamps.
+- * @a: first ts.
+- * @b: second ts.
+- *
+- * Return @a > @b, dealing with wrapping correctly.
+- */
+-static int bfq_gt(u64 a, u64 b)
+-{
+-	return (s64)(a - b) > 0;
+-}
+-
+ static struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity)
+ {
+ 	struct bfq_queue *bfqq = NULL;
+@@ -151,20 +292,36 @@ static u64 bfq_delta(unsigned long service, unsigned long weight)
+ static void bfq_calc_finish(struct bfq_entity *entity, unsigned long service)
+ {
+ 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++	unsigned long long start, finish, delta;
+ 
+ 	BUG_ON(entity->weight == 0);
+ 
+ 	entity->finish = entity->start +
+ 		bfq_delta(service, entity->weight);
+ 
++	start = ((entity->start>>10)*1000)>>12;
++	finish = ((entity->finish>>10)*1000)>>12;
++	delta = ((bfq_delta(service, entity->weight)>>10)*1000)>>12;
++
+ 	if (bfqq) {
+ 		bfq_log_bfqq(bfqq->bfqd, bfqq,
+ 			"calc_finish: serv %lu, w %d",
+ 			service, entity->weight);
+ 		bfq_log_bfqq(bfqq->bfqd, bfqq,
+ 			"calc_finish: start %llu, finish %llu, delta %llu",
+-			entity->start, entity->finish,
+-			bfq_delta(service, entity->weight));
++			start, finish, delta);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++	} else {
++		struct bfq_group *bfqg =
++			container_of(entity, struct bfq_group, entity);
++
++		bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
++			"calc_finish group: serv %lu, w %d",
++			     service, entity->weight);
++		bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
++			"calc_finish group: start %llu, finish %llu, delta %llu",
++			start, finish, delta);
++#endif
+ 	}
+ }
+ 
+@@ -293,10 +450,26 @@ static void bfq_update_min(struct bfq_entity *entity, struct rb_node *node)
+ static void bfq_update_active_node(struct rb_node *node)
+ {
+ 	struct bfq_entity *entity = rb_entry(node, struct bfq_entity, rb_node);
++	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
+ 
+ 	entity->min_start = entity->start;
+ 	bfq_update_min(entity, node->rb_right);
+ 	bfq_update_min(entity, node->rb_left);
++
++	if (bfqq) {
++		bfq_log_bfqq(bfqq->bfqd, bfqq,
++			     "update_active_node: new min_start %llu",
++			     ((entity->min_start>>10)*1000)>>12);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++	} else {
++		struct bfq_group *bfqg =
++			container_of(entity, struct bfq_group, entity);
++
++		bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
++			     "update_active_node: new min_start %llu",
++			     ((entity->min_start>>10)*1000)>>12);
++#endif
++	}
+ }
+ 
+ /**
+@@ -386,8 +559,6 @@ static void bfq_active_insert(struct bfq_service_tree *st,
+ 		BUG_ON(!bfqg);
+ 		BUG_ON(!bfqd);
+ 		bfqg->active_entities++;
+-		if (bfqg->active_entities == 2)
+-			bfqd->active_numerous_groups++;
+ 	}
+ #endif
+ }
+@@ -399,7 +570,7 @@ static void bfq_active_insert(struct bfq_service_tree *st,
+ static unsigned short bfq_ioprio_to_weight(int ioprio)
+ {
+ 	BUG_ON(ioprio < 0 || ioprio >= IOPRIO_BE_NR);
+-	return IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF - ioprio;
++	return (IOPRIO_BE_NR - ioprio) * BFQ_WEIGHT_CONVERSION_COEFF;
+ }
+ 
+ /**
+@@ -422,9 +593,9 @@ static void bfq_get_entity(struct bfq_entity *entity)
+ 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
+ 
+ 	if (bfqq) {
+-		atomic_inc(&bfqq->ref);
++		bfqq->ref++;
+ 		bfq_log_bfqq(bfqq->bfqd, bfqq, "get_entity: %p %d",
+-			     bfqq, atomic_read(&bfqq->ref));
++			     bfqq, bfqq->ref);
+ 	}
+ }
+ 
+@@ -499,10 +670,6 @@ static void bfq_active_extract(struct bfq_service_tree *st,
+ 		BUG_ON(!bfqd);
+ 		BUG_ON(!bfqg->active_entities);
+ 		bfqg->active_entities--;
+-		if (bfqg->active_entities == 1) {
+-			BUG_ON(!bfqd->active_numerous_groups);
+-			bfqd->active_numerous_groups--;
+-		}
+ 	}
+ #endif
+ }
+@@ -531,28 +698,32 @@ static void bfq_idle_insert(struct bfq_service_tree *st,
+ }
+ 
+ /**
+- * bfq_forget_entity - remove an entity from the wfq trees.
++ * bfq_forget_entity - do not consider entity any longer for scheduling
+  * @st: the service tree.
+  * @entity: the entity being removed.
++ * @is_in_service: true if entity is currently the in-service entity.
+  *
+- * Update the device status and forget everything about @entity, putting
+- * the device reference to it, if it is a queue.  Entities belonging to
+- * groups are not refcounted.
++ * Forget everything about @entity. In addition, if entity represents
++ * a queue, and the latter is not in service, then release the service
++ * reference to the queue (the one taken through bfq_get_entity). In
++ * fact, in this case, there is really no more service reference to
++ * the queue, as the latter is also outside any service tree. If,
++ * instead, the queue is in service, then __bfq_bfqd_reset_in_service
++ * will take care of putting the reference when the queue finally
++ * stops being served.
+  */
+ static void bfq_forget_entity(struct bfq_service_tree *st,
+-			      struct bfq_entity *entity)
++			      struct bfq_entity *entity,
++			      bool is_in_service)
+ {
+ 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
+-	struct bfq_sched_data *sd;
+-
+ 	BUG_ON(!entity->on_st);
+ 
+-	entity->on_st = 0;
++	entity->on_st = false;
+ 	st->wsum -= entity->weight;
+-	if (bfqq) {
+-		sd = entity->sched_data;
+-		bfq_log_bfqq(bfqq->bfqd, bfqq, "forget_entity: %p %d",
+-			     bfqq, atomic_read(&bfqq->ref));
++	if (bfqq && !is_in_service) {
++		bfq_log_bfqq(bfqq->bfqd, bfqq, "forget_entity (before): %p %d",
++			     bfqq, bfqq->ref);
+ 		bfq_put_queue(bfqq);
+ 	}
+ }
+@@ -566,7 +737,8 @@ static void bfq_put_idle_entity(struct bfq_service_tree *st,
+ 				struct bfq_entity *entity)
+ {
+ 	bfq_idle_extract(st, entity);
+-	bfq_forget_entity(st, entity);
++	bfq_forget_entity(st, entity,
++			  entity == entity->sched_data->in_service_entity);
+ }
+ 
+ /**
+@@ -602,7 +774,7 @@ __bfq_entity_update_weight_prio(struct bfq_service_tree *old_st,
+ 
+ 	if (entity->prio_changed) {
+ 		struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
+-		unsigned short prev_weight, new_weight;
++		unsigned int prev_weight, new_weight;
+ 		struct bfq_data *bfqd = NULL;
+ 		struct rb_root *root;
+ #ifdef CONFIG_BFQ_GROUP_IOSCHED
+@@ -630,7 +802,10 @@ __bfq_entity_update_weight_prio(struct bfq_service_tree *old_st,
+ 			    entity->new_weight > BFQ_MAX_WEIGHT) {
+ 				pr_crit("update_weight_prio: new_weight %d\n",
+ 					entity->new_weight);
+-				BUG();
++				if (entity->new_weight < BFQ_MIN_WEIGHT)
++					entity->new_weight = BFQ_MIN_WEIGHT;
++				else
++					entity->new_weight = BFQ_MAX_WEIGHT;
+ 			}
+ 			entity->orig_weight = entity->new_weight;
+ 			if (bfqq)
+@@ -661,6 +836,13 @@ __bfq_entity_update_weight_prio(struct bfq_service_tree *old_st,
+ 		 * associated with its new weight.
+ 		 */
+ 		if (prev_weight != new_weight) {
++			if (bfqq)
++				bfq_log_bfqq(bfqq->bfqd, bfqq,
++					     "weight changed %d %d(%d %d)",
++					     prev_weight, new_weight,
++					     entity->orig_weight,
++					     bfqq->wr_coeff);
++
+ 			root = bfqq ? &bfqd->queue_weights_tree :
+ 				      &bfqd->group_weights_tree;
+ 			bfq_weights_tree_remove(bfqd, entity, root);
+@@ -707,7 +889,7 @@ static void bfq_bfqq_served(struct bfq_queue *bfqq, int served)
+ 		st = bfq_entity_service_tree(entity);
+ 
+ 		entity->service += served;
+-		BUG_ON(entity->service > entity->budget);
++
+ 		BUG_ON(st->wsum == 0);
+ 
+ 		st->vtime += bfq_delta(served, st->wsum);
+@@ -716,234 +898,589 @@ static void bfq_bfqq_served(struct bfq_queue *bfqq, int served)
+ #ifdef CONFIG_BFQ_GROUP_IOSCHED
+ 	bfqg_stats_set_start_empty_time(bfqq_group(bfqq));
+ #endif
+-	bfq_log_bfqq(bfqq->bfqd, bfqq, "bfqq_served %d secs", served);
++	st = bfq_entity_service_tree(&bfqq->entity);
++	bfq_log_bfqq(bfqq->bfqd, bfqq, "bfqq_served %d secs, vtime %llu on %p",
++		     served,  ((st->vtime>>10)*1000)>>12, st);
+ }
+ 
+ /**
+- * bfq_bfqq_charge_full_budget - set the service to the entity budget.
++ * bfq_bfqq_charge_time - charge an amount of service equivalent to the length
++ *			  of the time interval during which bfqq has been in
++ *			  service.
++ * @bfqd: the device
+  * @bfqq: the queue that needs a service update.
++ * @time_ms: the amount of time during which the queue has received service
++ *
++ * If a queue does not consume its budget fast enough, then providing
++ * the queue with service fairness may impair throughput, more or less
++ * severely. For this reason, queues that consume their budget slowly
++ * are provided with time fairness instead of service fairness. This
++ * goal is achieved through the BFQ scheduling engine, even if such an
++ * engine works in the service, and not in the time domain. The trick
++ * is charging these queues with an inflated amount of service, equal
++ * to the amount of service that they would have received during their
++ * service slot if they had been fast, i.e., if their requests had
++ * been dispatched at a rate equal to the estimated peak rate.
+  *
+- * When it's not possible to be fair in the service domain, because
+- * a queue is not consuming its budget fast enough (the meaning of
+- * fast depends on the timeout parameter), we charge it a full
+- * budget.  In this way we should obtain a sort of time-domain
+- * fairness among all the seeky/slow queues.
++ * It is worth noting that time fairness can cause important
++ * distortions in terms of bandwidth distribution, on devices with
++ * internal queueing. The reason is that I/O requests dispatched
++ * during the service slot of a queue may be served after that service
++ * slot is finished, and may have a total processing time loosely
++ * correlated with the duration of the service slot. This is
++ * especially true for short service slots.
+  */
+-static void bfq_bfqq_charge_full_budget(struct bfq_queue *bfqq)
++static void bfq_bfqq_charge_time(struct bfq_data *bfqd, struct bfq_queue *bfqq,
++				 unsigned long time_ms)
+ {
+ 	struct bfq_entity *entity = &bfqq->entity;
++	int tot_serv_to_charge = entity->service;
++	unsigned int timeout_ms = jiffies_to_msecs(bfq_timeout);
++
++	if (time_ms > 0 && time_ms < timeout_ms)
++		tot_serv_to_charge =
++			(bfqd->bfq_max_budget * time_ms) / timeout_ms;
++
++	if (tot_serv_to_charge < entity->service)
++		tot_serv_to_charge = entity->service;
++
++	bfq_log_bfqq(bfqq->bfqd, bfqq,
++		     "charge_time: %lu/%u ms, %d/%d/%d sectors",
++		     time_ms, timeout_ms, entity->service,
++		     tot_serv_to_charge, entity->budget);
++
++	/* Increase budget to avoid inconsistencies */
++	if (tot_serv_to_charge > entity->budget)
++		entity->budget = tot_serv_to_charge;
++
++	bfq_bfqq_served(bfqq,
++			max_t(int, 0, tot_serv_to_charge - entity->service));
++}
++
++static void bfq_update_fin_time_enqueue(struct bfq_entity *entity,
++					struct bfq_service_tree *st,
++					bool backshifted)
++{
++	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++	struct bfq_sched_data *sd = entity->sched_data;
+ 
+-	bfq_log_bfqq(bfqq->bfqd, bfqq, "charge_full_budget");
++	st = __bfq_entity_update_weight_prio(st, entity);
++	bfq_calc_finish(entity, entity->budget);
++
++	/*
++	 * If some queues enjoy backshifting for a while, then their
++	 * (virtual) finish timestamps may happen to become lower and
++	 * lower than the system virtual time.  In particular, if
++	 * these queues often happen to be idle for short time
++	 * periods, and during such time periods other queues with
++	 * higher timestamps happen to be busy, then the backshifted
++	 * timestamps of the former queues can become much lower than
++	 * the system virtual time. In fact, to serve the queues with
++	 * higher timestamps while the ones with lower timestamps are
++	 * idle, the system virtual time may be pushed-up to much
++	 * higher values than the finish timestamps of the idle
++	 * queues. As a consequence, the finish timestamps of all new
++	 * or newly activated queues may end up being much larger than
++	 * those of lucky queues with backshifted timestamps. The
++	 * latter queues may then monopolize the device for a lot of
++	 * time. This would simply break service guarantees.
++	 *
++	 * To reduce this problem, push up a little bit the
++	 * backshifted timestamps of the queue associated with this
++	 * entity (only a queue can happen to have the backshifted
++	 * flag set): just enough to let the finish timestamp of the
++	 * queue be equal to the current value of the system virtual
++	 * time. This may introduce a little unfairness among queues
++	 * with backshifted timestamps, but it does not break
++	 * worst-case fairness guarantees.
++	 *
++	 * As a special case, if bfqq is weight-raised, push up
++	 * timestamps much less, to keep very low the probability that
++	 * this push up causes the backshifted finish timestamps of
++	 * weight-raised queues to become higher than the backshifted
++	 * finish timestamps of non weight-raised queues.
++	 */
++	if (backshifted && bfq_gt(st->vtime, entity->finish)) {
++		unsigned long delta = st->vtime - entity->finish;
++
++		if (bfqq)
++			delta /= bfqq->wr_coeff;
+ 
+-	bfq_bfqq_served(bfqq, entity->budget - entity->service);
++		entity->start += delta;
++		entity->finish += delta;
++
++		if (bfqq) {
++			bfq_log_bfqq(bfqq->bfqd, bfqq,
++				     "__activate_entity: new queue finish %llu",
++				     ((entity->finish>>10)*1000)>>12);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++		} else {
++			struct bfq_group *bfqg =
++				container_of(entity, struct bfq_group, entity);
++
++			bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
++				     "__activate_entity: new group finish %llu",
++				     ((entity->finish>>10)*1000)>>12);
++#endif
++		}
++	}
++
++	bfq_active_insert(st, entity);
++
++	if (bfqq) {
++		bfq_log_bfqq(bfqq->bfqd, bfqq,
++			"__activate_entity: queue %seligible in st %p",
++			     entity->start <= st->vtime ? "" : "non ", st);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++	} else {
++		struct bfq_group *bfqg =
++			container_of(entity, struct bfq_group, entity);
++
++		bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
++			"__activate_entity: group %seligible in st %p",
++			     entity->start <= st->vtime ? "" : "non ", st);
++#endif
++	}
++	BUG_ON(RB_EMPTY_ROOT(&st->active));
++	BUG_ON(&st->active != &sd->service_tree->active &&
++	       &st->active != &(sd->service_tree+1)->active &&
++	       &st->active != &(sd->service_tree+2)->active);
+ }
+ 
+ /**
+- * __bfq_activate_entity - activate an entity.
++ * __bfq_activate_entity - handle activation of entity.
+  * @entity: the entity being activated.
++ * @non_blocking_wait_rq: true if entity was waiting for a request
++ *
++ * Called for a 'true' activation, i.e., if entity is not active and
++ * one of its children receives a new request.
+  *
+- * Called whenever an entity is activated, i.e., it is not active and one
+- * of its children receives a new request, or has to be reactivated due to
+- * budget exhaustion.  It uses the current budget of the entity (and the
+- * service received if @entity is active) of the queue to calculate its
+- * timestamps.
++ * Basically, this function updates the timestamps of entity and
++ * inserts entity into its active tree, ater possible extracting it
++ * from its idle tree.
+  */
+-static void __bfq_activate_entity(struct bfq_entity *entity)
++static void __bfq_activate_entity(struct bfq_entity *entity,
++				  bool non_blocking_wait_rq)
+ {
+ 	struct bfq_sched_data *sd = entity->sched_data;
+ 	struct bfq_service_tree *st = bfq_entity_service_tree(entity);
++	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++	bool backshifted = false;
++	unsigned long long min_vstart;
+ 
+-	if (entity == sd->in_service_entity) {
+-		BUG_ON(entity->tree);
+-		/*
+-		 * If we are requeueing the current entity we have
+-		 * to take care of not charging to it service it has
+-		 * not received.
+-		 */
+-		bfq_calc_finish(entity, entity->service);
+-		entity->start = entity->finish;
+-		sd->in_service_entity = NULL;
+-	} else if (entity->tree == &st->active) {
+-		/*
+-		 * Requeueing an entity due to a change of some
+-		 * next_in_service entity below it.  We reuse the
+-		 * old start time.
+-		 */
+-		bfq_active_extract(st, entity);
+-	} else if (entity->tree == &st->idle) {
++	BUG_ON(!sd);
++	BUG_ON(!st);
++
++	/* See comments on bfq_fqq_update_budg_for_activation */
++	if (non_blocking_wait_rq && bfq_gt(st->vtime, entity->finish)) {
++		backshifted = true;
++		min_vstart = entity->finish;
++	} else
++		min_vstart = st->vtime;
++
++	if (entity->tree == &st->idle) {
+ 		/*
+ 		 * Must be on the idle tree, bfq_idle_extract() will
+ 		 * check for that.
+ 		 */
+ 		bfq_idle_extract(st, entity);
+-		entity->start = bfq_gt(st->vtime, entity->finish) ?
+-				       st->vtime : entity->finish;
++		entity->start = bfq_gt(min_vstart, entity->finish) ?
++			min_vstart : entity->finish;
+ 	} else {
+ 		/*
+ 		 * The finish time of the entity may be invalid, and
+ 		 * it is in the past for sure, otherwise the queue
+ 		 * would have been on the idle tree.
+ 		 */
+-		entity->start = st->vtime;
++		entity->start = min_vstart;
+ 		st->wsum += entity->weight;
++		/*
++		 * entity is about to be inserted into a service tree,
++		 * and then set in service: get a reference to make
++		 * sure entity does not disappear until it is no
++		 * longer in service or scheduled for service.
++		 */
+ 		bfq_get_entity(entity);
+ 
+-		BUG_ON(entity->on_st);
+-		entity->on_st = 1;
++		BUG_ON(entity->on_st && bfqq);
++
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++		if (entity->on_st && !bfqq) {
++			struct bfq_group *bfqg =
++				container_of(entity, struct bfq_group,
++					     entity);
++
++			bfq_log_bfqg((struct bfq_data *)bfqg->bfqd,
++				     bfqg,
++				     "activate bug, class %d in_service %p",
++				     bfq_class_idx(entity), sd->in_service_entity);
++		}
++#endif
++		BUG_ON(entity->on_st && !bfqq);
++		entity->on_st = true;
+ 	}
+ 
+-	st = __bfq_entity_update_weight_prio(st, entity);
+-	bfq_calc_finish(entity, entity->budget);
+-	bfq_active_insert(st, entity);
++	bfq_update_fin_time_enqueue(entity, st, backshifted);
+ }
+ 
+ /**
+- * bfq_activate_entity - activate an entity and its ancestors if necessary.
+- * @entity: the entity to activate.
++ * __bfq_requeue_entity - handle requeueing or repositioning of an entity.
++ * @entity: the entity being requeued or repositioned.
++ *
++ * Requeueing is needed if this entity stops being served, which
++ * happens if a leaf descendant entity has expired. On the other hand,
++ * repositioning is needed if the next_inservice_entity for the child
++ * entity has changed. See the comments inside the function for
++ * details.
+  *
+- * Activate @entity and all the entities on the path from it to the root.
++ * Basically, this function: 1) removes entity from its active tree if
++ * present there, 2) updates the timestamps of entity and 3) inserts
++ * entity back into its active tree (in the new, right position for
++ * the new values of the timestamps).
+  */
+-static void bfq_activate_entity(struct bfq_entity *entity)
++static void __bfq_requeue_entity(struct bfq_entity *entity)
++{
++	struct bfq_sched_data *sd = entity->sched_data;
++	struct bfq_service_tree *st = bfq_entity_service_tree(entity);
++
++	BUG_ON(!sd);
++	BUG_ON(!st);
++
++	BUG_ON(entity != sd->in_service_entity &&
++	       entity->tree != &st->active);
++
++	if (entity == sd->in_service_entity) {
++		/*
++		 * We are requeueing the current in-service entity,
++		 * which may have to be done for one of the following
++		 * reasons:
++		 * - entity represents the in-service queue, and the
++		 *   in-service queue is being requeued after an
++		 *   expiration;
++		 * - entity represents a group, and its budget has
++		 *   changed because one of its child entities has
++		 *   just been either activated or requeued for some
++		 *   reason; the timestamps of the entity need then to
++		 *   be updated, and the entity needs to be enqueued
++		 *   or repositioned accordingly.
++		 *
++		 * In particular, before requeueing, the start time of
++		 * the entity must be moved forward to account for the
++		 * service that the entity has received while in
++		 * service. This is done by the next instructions. The
++		 * finish time will then be updated according to this
++		 * new value of the start time, and to the budget of
++		 * the entity.
++		 */
++		bfq_calc_finish(entity, entity->service);
++		entity->start = entity->finish;
++		BUG_ON(entity->tree && entity->tree != &st->active);
++		/*
++		 * In addition, if the entity had more than one child
++		 * when set in service, then was not extracted from
++		 * the active tree. This implies that the position of
++		 * the entity in the active tree may need to be
++		 * changed now, because we have just updated the start
++		 * time of the entity, and we will update its finish
++		 * time in a moment (the requeueing is then, more
++		 * precisely, a repositioning in this case). To
++		 * implement this repositioning, we: 1) dequeue the
++		 * entity here, 2) update the finish time and
++		 * requeue the entity according to the new
++		 * timestamps below.
++		 */
++		if (entity->tree)
++			bfq_active_extract(st, entity);
++	} else { /* The entity is already active, and not in service */
++		/*
++		 * In this case, this function gets called only if the
++		 * next_in_service entity below this entity has
++		 * changed, and this change has caused the budget of
++		 * this entity to change, which, finally implies that
++		 * the finish time of this entity must be
++		 * updated. Such an update may cause the scheduling,
++		 * i.e., the position in the active tree, of this
++		 * entity to change. We handle this change by: 1)
++		 * dequeueing the entity here, 2) updating the finish
++		 * time and requeueing the entity according to the new
++		 * timestamps below. This is the same approach as the
++		 * non-extracted-entity sub-case above.
++		 */
++		bfq_active_extract(st, entity);
++	}
++
++	bfq_update_fin_time_enqueue(entity, st, false);
++}
++
++static void __bfq_activate_requeue_entity(struct bfq_entity *entity,
++					  struct bfq_sched_data *sd,
++					  bool non_blocking_wait_rq)
++{
++	struct bfq_service_tree *st = bfq_entity_service_tree(entity);
++
++	if (sd->in_service_entity == entity || entity->tree == &st->active)
++		 /*
++		  * in service or already queued on the active tree,
++		  * requeue or reposition
++		  */
++		__bfq_requeue_entity(entity);
++	else
++		/*
++		 * Not in service and not queued on its active tree:
++		 * the activity is idle and this is a true activation.
++		 */
++		__bfq_activate_entity(entity, non_blocking_wait_rq);
++}
++
++
++/**
++ * bfq_activate_entity - activate or requeue an entity representing a bfq_queue,
++ *			 and activate, requeue or reposition all ancestors
++ *			 for which such an update becomes necessary.
++ * @entity: the entity to activate.
++ * @non_blocking_wait_rq: true if this entity was waiting for a request
++ * @requeue: true if this is a requeue, which implies that bfqq is
++ *	     being expired; thus ALL its ancestors stop being served and must
++ *	     therefore be requeued
++ */
++static void bfq_activate_requeue_entity(struct bfq_entity *entity,
++					bool non_blocking_wait_rq,
++					bool requeue)
+ {
+ 	struct bfq_sched_data *sd;
+ 
+ 	for_each_entity(entity) {
+-		__bfq_activate_entity(entity);
+-
++		BUG_ON(!entity);
+ 		sd = entity->sched_data;
+-		if (!bfq_update_next_in_service(sd))
+-			/*
+-			 * No need to propagate the activation to the
+-			 * upper entities, as they will be updated when
+-			 * the in-service entity is rescheduled.
+-			 */
++		__bfq_activate_requeue_entity(entity, sd, non_blocking_wait_rq);
++
++		BUG_ON(RB_EMPTY_ROOT(&sd->service_tree->active) &&
++		       RB_EMPTY_ROOT(&(sd->service_tree+1)->active) &&
++		       RB_EMPTY_ROOT(&(sd->service_tree+2)->active));
++
++		if (!bfq_update_next_in_service(sd, entity) && !requeue) {
++			BUG_ON(!sd->next_in_service);
+ 			break;
++		}
++		BUG_ON(!sd->next_in_service);
+ 	}
+ }
+ 
+ /**
+  * __bfq_deactivate_entity - deactivate an entity from its service tree.
+  * @entity: the entity to deactivate.
+- * @requeue: if false, the entity will not be put into the idle tree.
+- *
+- * Deactivate an entity, independently from its previous state.  If the
+- * entity was not on a service tree just return, otherwise if it is on
+- * any scheduler tree, extract it from that tree, and if necessary
+- * and if the caller did not specify @requeue, put it on the idle tree.
++ * @ins_into_idle_tree: if false, the entity will not be put into the
++ *			idle tree.
+  *
+- * Return %1 if the caller should update the entity hierarchy, i.e.,
+- * if the entity was in service or if it was the next_in_service for
+- * its sched_data; return %0 otherwise.
++ * Deactivates an entity, independently from its previous state.  Must
++ * be invoked only if entity is on a service tree. Extracts the entity
++ * from that tree, and if necessary and allowed, puts it on the idle
++ * tree.
+  */
+-static int __bfq_deactivate_entity(struct bfq_entity *entity, int requeue)
++static bool __bfq_deactivate_entity(struct bfq_entity *entity,
++				    bool ins_into_idle_tree)
+ {
+ 	struct bfq_sched_data *sd = entity->sched_data;
+ 	struct bfq_service_tree *st;
+-	int was_in_service;
+-	int ret = 0;
++	bool is_in_service;
+ 
+-	if (sd == NULL || !entity->on_st) /* never activated, or inactive */
+-		return 0;
++	if (!entity->on_st) { /* entity never activated, or already inactive */
++		BUG_ON(sd && entity == sd->in_service_entity);
++		return false;
++	}
+ 
++	/*
++	 * If we get here, then entity is active, which implies that
++	 * bfq_group_set_parent has already been invoked for the group
++	 * represented by entity. Therefore, the field
++	 * entity->sched_data has been set, and we can safely use it.
++	 */
+ 	st = bfq_entity_service_tree(entity);
+-	was_in_service = entity == sd->in_service_entity;
++	is_in_service = entity == sd->in_service_entity;
+ 
+-	BUG_ON(was_in_service && entity->tree);
++	BUG_ON(is_in_service && entity->tree && entity->tree != &st->active);
+ 
+-	if (was_in_service) {
++	if (is_in_service)
+ 		bfq_calc_finish(entity, entity->service);
+-		sd->in_service_entity = NULL;
+-	} else if (entity->tree == &st->active)
++
++	if (entity->tree == &st->active)
+ 		bfq_active_extract(st, entity);
+-	else if (entity->tree == &st->idle)
++	else if (!is_in_service && entity->tree == &st->idle)
+ 		bfq_idle_extract(st, entity);
+ 	else if (entity->tree)
+ 		BUG();
+ 
+-	if (was_in_service || sd->next_in_service == entity)
+-		ret = bfq_update_next_in_service(sd);
+-
+-	if (!requeue || !bfq_gt(entity->finish, st->vtime))
+-		bfq_forget_entity(st, entity);
++	if (!ins_into_idle_tree || !bfq_gt(entity->finish, st->vtime))
++		bfq_forget_entity(st, entity, is_in_service);
+ 	else
+ 		bfq_idle_insert(st, entity);
+ 
+-	BUG_ON(sd->in_service_entity == entity);
+-	BUG_ON(sd->next_in_service == entity);
+-
+-	return ret;
++	return true;
+ }
+ 
+ /**
+- * bfq_deactivate_entity - deactivate an entity.
++ * bfq_deactivate_entity - deactivate an entity representing a bfq_queue.
+  * @entity: the entity to deactivate.
+- * @requeue: true if the entity can be put on the idle tree
++ * @ins_into_idle_tree: true if the entity can be put on the idle tree
+  */
+-static void bfq_deactivate_entity(struct bfq_entity *entity, int requeue)
++static void bfq_deactivate_entity(struct bfq_entity *entity,
++				  bool ins_into_idle_tree,
++				  bool expiration)
+ {
+ 	struct bfq_sched_data *sd;
+-	struct bfq_entity *parent;
++	struct bfq_entity *parent = NULL;
+ 
+ 	for_each_entity_safe(entity, parent) {
+ 		sd = entity->sched_data;
+ 
+-		if (!__bfq_deactivate_entity(entity, requeue))
++		BUG_ON(sd == NULL); /*
++				     * It would mean that this is the
++				     * root group.
++				     */
++
++		BUG_ON(expiration && entity != sd->in_service_entity);
++
++		BUG_ON(entity != sd->in_service_entity &&
++		       entity->tree ==
++		       &bfq_entity_service_tree(entity)->active &&
++		       !sd->next_in_service);
++
++		if (!__bfq_deactivate_entity(entity, ins_into_idle_tree)) {
+ 			/*
+-			 * The parent entity is still backlogged, and
+-			 * we don't need to update it as it is still
+-			 * in service.
++			 * entity is not in any tree any more, so
++			 * this deactivation is a no-op, and there is
++			 * nothing to change for upper-level entities
++			 * (in case of expiration, this can never
++			 * happen).
+ 			 */
+-			break;
++			BUG_ON(expiration); /*
++					     * entity cannot be already out of
++					     * any tree
++					     */
++			return;
++		}
++
++		if (sd->next_in_service == entity)
++			/*
++			 * entity was the next_in_service entity,
++			 * then, since entity has just been
++			 * deactivated, a new one must be found.
++			 */
++			bfq_update_next_in_service(sd, NULL);
+ 
+-		if (sd->next_in_service)
++		if (sd->next_in_service) {
+ 			/*
+-			 * The parent entity is still backlogged and
+-			 * the budgets on the path towards the root
+-			 * need to be updated.
++			 * The parent entity is still backlogged,
++			 * because next_in_service is not NULL. So, no
++			 * further upwards deactivation must be
++			 * performed.  Yet, next_in_service has
++			 * changed.  Then the schedule does need to be
++			 * updated upwards.
+ 			 */
+-			goto update;
++			BUG_ON(sd->next_in_service == entity);
++			break;
++		}
+ 
+ 		/*
+-		 * If we reach there the parent is no more backlogged and
+-		 * we want to propagate the dequeue upwards.
++		 * If we get here, then the parent is no more
++		 * backlogged and we need to propagate the
++		 * deactivation upwards. Thus let the loop go on.
+ 		 */
+-		requeue = 1;
+-	}
+ 
+-	return;
++		/*
++		 * Also let parent be queued into the idle tree on
++		 * deactivation, to preserve service guarantees, and
++		 * assuming that who invoked this function does not
++		 * need parent entities too to be removed completely.
++		 */
++		ins_into_idle_tree = true;
++	}
+ 
+-update:
++	/*
++	 * If the deactivation loop is fully executed, then there are
++	 * no more entities to touch and next loop is not executed at
++	 * all. Otherwise, requeue remaining entities if they are
++	 * about to stop receiving service, or reposition them if this
++	 * is not the case.
++	 */
+ 	entity = parent;
+ 	for_each_entity(entity) {
+-		__bfq_activate_entity(entity);
++		struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++
++		/*
++		 * Invoke __bfq_requeue_entity on entity, even if
++		 * already active, to requeue/reposition it in the
++		 * active tree (because sd->next_in_service has
++		 * changed)
++		 */
++		__bfq_requeue_entity(entity);
+ 
+ 		sd = entity->sched_data;
+-		if (!bfq_update_next_in_service(sd))
++		BUG_ON(expiration && sd->in_service_entity != entity);
++
++		if (bfqq)
++			bfq_log_bfqq(bfqq->bfqd, bfqq,
++				     "invoking udpdate_next for this queue");
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++		else {
++			struct bfq_group *bfqg =
++				container_of(entity,
++					     struct bfq_group, entity);
++
++			bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
++				     "invoking udpdate_next for this entity");
++		}
++#endif
++		if (!bfq_update_next_in_service(sd, entity) &&
++		    !expiration)
++			/*
++			 * next_in_service unchanged or not causing
++			 * any change in entity->parent->sd, and no
++			 * requeueing needed for expiration: stop
++			 * here.
++			 */
+ 			break;
+ 	}
+ }
+ 
+ /**
+- * bfq_update_vtime - update vtime if necessary.
++ * bfq_calc_vtime_jump - compute the value to which the vtime should jump,
++ *                       if needed, to have at least one entity eligible.
+  * @st: the service tree to act upon.
+  *
+- * If necessary update the service tree vtime to have at least one
+- * eligible entity, skipping to its start time.  Assumes that the
+- * active tree of the device is not empty.
+- *
+- * NOTE: this hierarchical implementation updates vtimes quite often,
+- * we may end up with reactivated processes getting timestamps after a
+- * vtime skip done because we needed a ->first_active entity on some
+- * intermediate node.
++ * Assumes that st is not empty.
+  */
+-static void bfq_update_vtime(struct bfq_service_tree *st)
++static u64 bfq_calc_vtime_jump(struct bfq_service_tree *st)
+ {
+-	struct bfq_entity *entry;
+-	struct rb_node *node = st->active.rb_node;
++	struct bfq_entity *root_entity = bfq_root_active_entity(&st->active);
++
++	if (bfq_gt(root_entity->min_start, st->vtime)) {
++		struct bfq_queue *bfqq = bfq_entity_to_bfqq(root_entity);
+ 
+-	entry = rb_entry(node, struct bfq_entity, rb_node);
+-	if (bfq_gt(entry->min_start, st->vtime)) {
+-		st->vtime = entry->min_start;
++		if (bfqq)
++			bfq_log_bfqq(bfqq->bfqd, bfqq,
++				     "calc_vtime_jump: new value %llu",
++				     root_entity->min_start);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++		else {
++			struct bfq_group *bfqg =
++				container_of(root_entity, struct bfq_group,
++					     entity);
++
++			bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
++				     "calc_vtime_jump: new value %llu",
++				     root_entity->min_start);
++		}
++#endif
++		return root_entity->min_start;
++	}
++	return st->vtime;
++}
++
++static void bfq_update_vtime(struct bfq_service_tree *st, u64 new_value)
++{
++	if (new_value > st->vtime) {
++		st->vtime = new_value;
+ 		bfq_forget_idle(st);
+ 	}
+ }
+@@ -952,6 +1489,7 @@ static void bfq_update_vtime(struct bfq_service_tree *st)
+  * bfq_first_active_entity - find the eligible entity with
+  *                           the smallest finish time
+  * @st: the service tree to select from.
++ * @vtime: the system virtual to use as a reference for eligibility
+  *
+  * This function searches the first schedulable entity, starting from the
+  * root of the tree and going on the left every time on this side there is
+@@ -959,7 +1497,8 @@ static void bfq_update_vtime(struct bfq_service_tree *st)
+  * the right is followed only if a) the left subtree contains no eligible
+  * entities and b) no eligible entity has been found yet.
+  */
+-static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st)
++static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st,
++						  u64 vtime)
+ {
+ 	struct bfq_entity *entry, *first = NULL;
+ 	struct rb_node *node = st->active.rb_node;
+@@ -967,15 +1506,15 @@ static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st)
+ 	while (node) {
+ 		entry = rb_entry(node, struct bfq_entity, rb_node);
+ left:
+-		if (!bfq_gt(entry->start, st->vtime))
++		if (!bfq_gt(entry->start, vtime))
+ 			first = entry;
+ 
+-		BUG_ON(bfq_gt(entry->min_start, st->vtime));
++		BUG_ON(bfq_gt(entry->min_start, vtime));
+ 
+ 		if (node->rb_left) {
+ 			entry = rb_entry(node->rb_left,
+ 					 struct bfq_entity, rb_node);
+-			if (!bfq_gt(entry->min_start, st->vtime)) {
++			if (!bfq_gt(entry->min_start, vtime)) {
+ 				node = node->rb_left;
+ 				goto left;
+ 			}
+@@ -993,31 +1532,84 @@ static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st)
+  * __bfq_lookup_next_entity - return the first eligible entity in @st.
+  * @st: the service tree.
+  *
+- * Update the virtual time in @st and return the first eligible entity
+- * it contains.
++ * If there is no in-service entity for the sched_data st belongs to,
++ * then return the entity that will be set in service if:
++ * 1) the parent entity this st belongs to is set in service;
++ * 2) no entity belonging to such parent entity undergoes a state change
++ * that would influence the timestamps of the entity (e.g., becomes idle,
++ * becomes backlogged, changes its budget, ...).
++ *
++ * In this first case, update the virtual time in @st too (see the
++ * comments on this update inside the function).
++ *
++ * In constrast, if there is an in-service entity, then return the
++ * entity that would be set in service if not only the above
++ * conditions, but also the next one held true: the currently
++ * in-service entity, on expiration,
++ * 1) gets a finish time equal to the current one, or
++ * 2) is not eligible any more, or
++ * 3) is idle.
+  */
+-static struct bfq_entity *__bfq_lookup_next_entity(struct bfq_service_tree *st,
+-						   bool force)
++static struct bfq_entity *
++__bfq_lookup_next_entity(struct bfq_service_tree *st, bool in_service
++#if 0
++			 , bool force
++#endif
++	)
+ {
+-	struct bfq_entity *entity, *new_next_in_service = NULL;
++	struct bfq_entity *entity
++#if 0
++		, *new_next_in_service = NULL
++#endif
++		;
++	u64 new_vtime;
++	struct bfq_queue *bfqq;
+ 
+ 	if (RB_EMPTY_ROOT(&st->active))
+ 		return NULL;
+ 
+-	bfq_update_vtime(st);
+-	entity = bfq_first_active_entity(st);
+-	BUG_ON(bfq_gt(entity->start, st->vtime));
++	/*
++	 * Get the value of the system virtual time for which at
++	 * least one entity is eligible.
++	 */
++	new_vtime = bfq_calc_vtime_jump(st);
+ 
+ 	/*
+-	 * If the chosen entity does not match with the sched_data's
+-	 * next_in_service and we are forcedly serving the IDLE priority
+-	 * class tree, bubble up budget update.
++	 * If there is no in-service entity for the sched_data this
++	 * active tree belongs to, then push the system virtual time
++	 * up to the value that guarantees that at least one entity is
++	 * eligible. If, instead, there is an in-service entity, then
++	 * do not make any such update, because there is already an
++	 * eligible entity, namely the in-service one (even if the
++	 * entity is not on st, because it was extracted when set in
++	 * service).
+ 	 */
+-	if (unlikely(force && entity != entity->sched_data->next_in_service)) {
+-		new_next_in_service = entity;
+-		for_each_entity(new_next_in_service)
+-			bfq_update_budget(new_next_in_service);
++	if (!in_service)
++		bfq_update_vtime(st, new_vtime);
++
++	entity = bfq_first_active_entity(st, new_vtime);
++	BUG_ON(bfq_gt(entity->start, new_vtime));
++
++	/* Log some information */
++	bfqq = bfq_entity_to_bfqq(entity);
++	if (bfqq)
++		bfq_log_bfqq(bfqq->bfqd, bfqq,
++			     "__lookup_next: start %llu vtime %llu st %p",
++			     ((entity->start>>10)*1000)>>12,
++			     ((new_vtime>>10)*1000)>>12, st);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++	else {
++		struct bfq_group *bfqg =
++			container_of(entity, struct bfq_group, entity);
++
++		bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
++			     "__lookup_next: start %llu vtime %llu st %p",
++			     ((entity->start>>10)*1000)>>12,
++			     ((new_vtime>>10)*1000)>>12, st);
+ 	}
++#endif
++
++	BUG_ON(!entity);
+ 
+ 	return entity;
+ }
+@@ -1025,50 +1617,81 @@ static struct bfq_entity *__bfq_lookup_next_entity(struct bfq_service_tree *st,
+ /**
+  * bfq_lookup_next_entity - return the first eligible entity in @sd.
+  * @sd: the sched_data.
+- * @extract: if true the returned entity will be also extracted from @sd.
+  *
+- * NOTE: since we cache the next_in_service entity at each level of the
+- * hierarchy, the complexity of the lookup can be decreased with
+- * absolutely no effort just returning the cached next_in_service value;
+- * we prefer to do full lookups to test the consistency of * the data
+- * structures.
++ * This function is invoked when there has been a change in the trees
++ * for sd, and we need know what is the new next entity after this
++ * change.
+  */
+-static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
+-						 int extract,
+-						 struct bfq_data *bfqd)
++static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd)
+ {
+ 	struct bfq_service_tree *st = sd->service_tree;
+-	struct bfq_entity *entity;
+-	int i = 0;
+-
+-	BUG_ON(sd->in_service_entity);
++	struct bfq_service_tree *idle_class_st = st + (BFQ_IOPRIO_CLASSES - 1);
++	struct bfq_entity *entity = NULL;
++	struct bfq_queue *bfqq;
++	int class_idx = 0;
+ 
+-	if (bfqd &&
+-	    jiffies - bfqd->bfq_class_idle_last_service > BFQ_CL_IDLE_TIMEOUT) {
+-		entity = __bfq_lookup_next_entity(st + BFQ_IOPRIO_CLASSES - 1,
+-						  true);
+-		if (entity) {
+-			i = BFQ_IOPRIO_CLASSES - 1;
+-			bfqd->bfq_class_idle_last_service = jiffies;
+-			sd->next_in_service = entity;
+-		}
++	BUG_ON(!sd);
++	BUG_ON(!st);
++	/*
++	 * Choose from idle class, if needed to guarantee a minimum
++	 * bandwidth to this class (and if there is some active entity
++	 * in idle class). This should also mitigate
++	 * priority-inversion problems in case a low priority task is
++	 * holding file system resources.
++	 */
++	if (time_is_before_jiffies(sd->bfq_class_idle_last_service +
++				   BFQ_CL_IDLE_TIMEOUT)) {
++		if (!RB_EMPTY_ROOT(&idle_class_st->active))
++			class_idx = BFQ_IOPRIO_CLASSES - 1;
++		/* About to be served if backlogged, or not yet backlogged */
++		sd->bfq_class_idle_last_service = jiffies;
+ 	}
+-	for (; i < BFQ_IOPRIO_CLASSES; i++) {
+-		entity = __bfq_lookup_next_entity(st + i, false);
+-		if (entity) {
+-			if (extract) {
+-				bfq_check_next_in_service(sd, entity);
+-				bfq_active_extract(st + i, entity);
+-				sd->in_service_entity = entity;
+-				sd->next_in_service = NULL;
+-			}
++
++	/*
++	 * Find the next entity to serve for the highest-priority
++	 * class, unless the idle class needs to be served.
++	 */
++	for (; class_idx < BFQ_IOPRIO_CLASSES; class_idx++) {
++		entity = __bfq_lookup_next_entity(st + class_idx,
++						  sd->in_service_entity);
++
++		if (entity)
+ 			break;
+-		}
+ 	}
+ 
++	BUG_ON(!entity &&
++	       (!RB_EMPTY_ROOT(&st->active) || !RB_EMPTY_ROOT(&(st+1)->active) ||
++		!RB_EMPTY_ROOT(&(st+2)->active)));
++
++	if (!entity)
++		return NULL;
++
++	/* Log some information */
++	bfqq = bfq_entity_to_bfqq(entity);
++	if (bfqq)
++		bfq_log_bfqq(bfqq->bfqd, bfqq, "chosen from st %p %d",
++			     st + class_idx, class_idx);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++	else {
++		struct bfq_group *bfqg =
++			container_of(entity, struct bfq_group, entity);
++
++		bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
++			     "chosen from st %p %d",
++			     st + class_idx, class_idx);
++	}
++#endif
++
+ 	return entity;
+ }
+ 
++static bool next_queue_may_preempt(struct bfq_data *bfqd)
++{
++	struct bfq_sched_data *sd = &bfqd->root_group->sched_data;
++
++	return sd->next_in_service != sd->in_service_entity;
++}
++
+ /*
+  * Get next queue for service.
+  */
+@@ -1083,58 +1706,273 @@ static struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd)
+ 	if (bfqd->busy_queues == 0)
+ 		return NULL;
+ 
++	/*
++	 * Traverse the path from the root to the leaf entity to
++	 * serve. Set in service all the entities visited along the
++	 * way.
++	 */
+ 	sd = &bfqd->root_group->sched_data;
+ 	for (; sd ; sd = entity->my_sched_data) {
+-		entity = bfq_lookup_next_entity(sd, 1, bfqd);
+-		BUG_ON(!entity);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++		if (entity) {
++			struct bfq_group *bfqg =
++				container_of(entity, struct bfq_group, entity);
++
++			bfq_log_bfqg(bfqd, bfqg,
++				     "get_next_queue: lookup in this group");
++			if (!sd->next_in_service)
++				pr_crit("get_next_queue: lookup in this group");
++		} else {
++			bfq_log_bfqg(bfqd, bfqd->root_group,
++				     "get_next_queue: lookup in root group");
++			if (!sd->next_in_service)
++				pr_crit("get_next_queue: lookup in root group");
++		}
++#endif
++
++		BUG_ON(!sd->next_in_service);
++
++		/*
++		 * WARNING. We are about to set the in-service entity
++		 * to sd->next_in_service, i.e., to the (cached) value
++		 * returned by bfq_lookup_next_entity(sd) the last
++		 * time it was invoked, i.e., the last time when the
++		 * service order in sd changed as a consequence of the
++		 * activation or deactivation of an entity. In this
++		 * respect, if we execute bfq_lookup_next_entity(sd)
++		 * in this very moment, it may, although with low
++		 * probability, yield a different entity than that
++		 * pointed to by sd->next_in_service. This rare event
++		 * happens in case there was no CLASS_IDLE entity to
++		 * serve for sd when bfq_lookup_next_entity(sd) was
++		 * invoked for the last time, while there is now one
++		 * such entity.
++		 *
++		 * If the above event happens, then the scheduling of
++		 * such entity in CLASS_IDLE is postponed until the
++		 * service of the sd->next_in_service entity
++		 * finishes. In fact, when the latter is expired,
++		 * bfq_lookup_next_entity(sd) gets called again,
++		 * exactly to update sd->next_in_service.
++		 */
++
++		/* Make next_in_service entity become in_service_entity */
++		entity = sd->next_in_service;
++		sd->in_service_entity = entity;
++
++		/*
++		 * Reset the accumulator of the amount of service that
++		 * the entity is about to receive.
++		 */
+ 		entity->service = 0;
++
++		/*
++		 * If entity is no longer a candidate for next
++		 * service, then we extract it from its active tree,
++		 * for the following reason. To further boost the
++		 * throughput in some special case, BFQ needs to know
++		 * which is the next candidate entity to serve, while
++		 * there is already an entity in service. In this
++		 * respect, to make it easy to compute/update the next
++		 * candidate entity to serve after the current
++		 * candidate has been set in service, there is a case
++		 * where it is necessary to extract the current
++		 * candidate from its service tree. Such a case is
++		 * when the entity just set in service cannot be also
++		 * a candidate for next service. Details about when
++		 * this conditions holds are reported in the comments
++		 * on the function bfq_no_longer_next_in_service()
++		 * invoked below.
++		 */
++		if (bfq_no_longer_next_in_service(entity))
++			bfq_active_extract(bfq_entity_service_tree(entity),
++					   entity);
++
++		/*
++		 * For the same reason why we may have just extracted
++		 * entity from its active tree, we may need to update
++		 * next_in_service for the sched_data of entity too,
++		 * regardless of whether entity has been extracted.
++		 * In fact, even if entity has not been extracted, a
++		 * descendant entity may get extracted. Such an event
++		 * would cause a change in next_in_service for the
++		 * level of the descendant entity, and thus possibly
++		 * back to upper levels.
++		 *
++		 * We cannot perform the resulting needed update
++		 * before the end of this loop, because, to know which
++		 * is the correct next-to-serve candidate entity for
++		 * each level, we need first to find the leaf entity
++		 * to set in service. In fact, only after we know
++		 * which is the next-to-serve leaf entity, we can
++		 * discover whether the parent entity of the leaf
++		 * entity becomes the next-to-serve, and so on.
++		 */
++
++		/* Log some information */
++		bfqq = bfq_entity_to_bfqq(entity);
++		if (bfqq)
++			bfq_log_bfqq(bfqd, bfqq,
++			     "get_next_queue: this queue, finish %llu",
++				(((entity->finish>>10)*1000)>>10)>>2);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++		else {
++			struct bfq_group *bfqg =
++				container_of(entity, struct bfq_group, entity);
++
++			bfq_log_bfqg(bfqd, bfqg,
++			     "get_next_queue: this entity, finish %llu",
++				(((entity->finish>>10)*1000)>>10)>>2);
++		}
++#endif
++
+ 	}
+ 
++	BUG_ON(!entity);
+ 	bfqq = bfq_entity_to_bfqq(entity);
+ 	BUG_ON(!bfqq);
+ 
++	/*
++	 * We can finally update all next-to-serve entities along the
++	 * path from the leaf entity just set in service to the root.
++	 */
++	for_each_entity(entity) {
++		struct bfq_sched_data *sd = entity->sched_data;
++
++		if(!bfq_update_next_in_service(sd, NULL))
++			break;
++	}
++
+ 	return bfqq;
+ }
+ 
+ static void __bfq_bfqd_reset_in_service(struct bfq_data *bfqd)
+ {
++	struct bfq_queue *in_serv_bfqq = bfqd->in_service_queue;
++	struct bfq_entity *in_serv_entity = &in_serv_bfqq->entity;
++	struct bfq_entity *entity = in_serv_entity;
++
+ 	if (bfqd->in_service_bic) {
+ 		put_io_context(bfqd->in_service_bic->icq.ioc);
+ 		bfqd->in_service_bic = NULL;
+ 	}
+ 
++	bfq_clear_bfqq_wait_request(in_serv_bfqq);
++	hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
+ 	bfqd->in_service_queue = NULL;
+-	del_timer(&bfqd->idle_slice_timer);
++
++	/*
++	 * When this function is called, all in-service entities have
++	 * been properly deactivated or requeued, so we can safely
++	 * execute the final step: reset in_service_entity along the
++	 * path from entity to the root.
++	 */
++	for_each_entity(entity)
++		entity->sched_data->in_service_entity = NULL;
++
++	/*
++	 * in_serv_entity is no longer in service, so, if it is in no
++	 * service tree either, then release the service reference to
++	 * the queue it represents (taken with bfq_get_entity).
++	 */
++	if (!in_serv_entity->on_st)
++		bfq_put_queue(in_serv_bfqq);
++}
++
++static void set_next_in_service_bfqq(struct bfq_data *bfqd)
++{
++	struct bfq_entity *entity = NULL;
++	struct bfq_queue *bfqq;
++	struct bfq_sched_data *sd = &bfqd->root_group->sched_data;
++
++	BUG_ON(!sd);
++
++	/* Traverse the path from the root to the in-service leaf entity */
++	for (; sd ; sd = entity->my_sched_data) {
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++		if (entity) {
++			struct bfq_group *bfqg =
++				container_of(entity, struct bfq_group, entity);
++
++			bfq_log_bfqg(bfqd, bfqg,
++			"set_next_in_service_bfqq: lookup in this group");
++		} else
++			bfq_log_bfqg(bfqd, bfqd->root_group,
++			"set_next_in_service_bfqq: lookup in root group");
++#endif
++
++		entity = sd->next_in_service;
++
++		if (!entity) {
++			bfqd->next_in_service_queue = NULL;
++			return;
++		}
++
++		/* Log some information */
++		bfqq = bfq_entity_to_bfqq(entity);
++		if (bfqq)
++			bfq_log_bfqq(bfqd, bfqq,
++			"set_next_in_service_bfqq: this queue, finish %llu",
++				(((entity->finish>>10)*1000)>>10)>>2);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++		else {
++			struct bfq_group *bfqg =
++				container_of(entity, struct bfq_group, entity);
++
++			bfq_log_bfqg(bfqd, bfqg,
++			"set_next_in_service_bfqq: this entity, finish %llu",
++				(((entity->finish>>10)*1000)>>10)>>2);
++		}
++#endif
++
++	}
++	BUG_ON(!bfq_entity_to_bfqq(entity));
++
++	bfqd->next_in_service_queue = bfq_entity_to_bfqq(entity);
+ }
+ 
+ static void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+-				int requeue)
++				bool ins_into_idle_tree, bool expiration)
+ {
+ 	struct bfq_entity *entity = &bfqq->entity;
+ 
+-	if (bfqq == bfqd->in_service_queue)
+-		__bfq_bfqd_reset_in_service(bfqd);
+-
+-	bfq_deactivate_entity(entity, requeue);
++	bfq_deactivate_entity(entity, ins_into_idle_tree, expiration);
++	set_next_in_service_bfqq(bfqd);
+ }
+ 
+ static void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+ {
+ 	struct bfq_entity *entity = &bfqq->entity;
++	struct bfq_service_tree *st = bfq_entity_service_tree(entity);
++
++	BUG_ON(bfqq == bfqd->in_service_queue);
++	BUG_ON(entity->tree != &st->active && entity->tree != &st->idle &&
++	       entity->on_st);
+ 
+-	bfq_activate_entity(entity);
++	bfq_activate_requeue_entity(entity, bfq_bfqq_non_blocking_wait_rq(bfqq),
++				    false);
++	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
++	set_next_in_service_bfqq(bfqd);
++}
++
++static void bfq_requeue_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
++{
++	struct bfq_entity *entity = &bfqq->entity;
++
++	bfq_activate_requeue_entity(entity, false,
++				    bfqq == bfqd->in_service_queue);
++	set_next_in_service_bfqq(bfqd);
+ }
+ 
+-#ifdef CONFIG_BFQ_GROUP_IOSCHED
+ static void bfqg_stats_update_dequeue(struct bfq_group *bfqg);
+-#endif
+ 
+ /*
+  * Called when the bfqq no longer has requests pending, remove it from
+- * the service tree.
++ * the service tree. As a special case, it can be invoked during an
++ * expiration.
+  */
+ static void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+-			      int requeue)
++			      bool expiration)
+ {
+ 	BUG_ON(!bfq_bfqq_busy(bfqq));
+ 	BUG_ON(!RB_EMPTY_ROOT(&bfqq->sort_list));
+@@ -1146,27 +1984,18 @@ static void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq,
+ 	BUG_ON(bfqd->busy_queues == 0);
+ 	bfqd->busy_queues--;
+ 
+-	if (!bfqq->dispatched) {
++	if (!bfqq->dispatched)
+ 		bfq_weights_tree_remove(bfqd, &bfqq->entity,
+ 					&bfqd->queue_weights_tree);
+-		if (!blk_queue_nonrot(bfqd->queue)) {
+-			BUG_ON(!bfqd->busy_in_flight_queues);
+-			bfqd->busy_in_flight_queues--;
+-			if (bfq_bfqq_constantly_seeky(bfqq)) {
+-				BUG_ON(!bfqd->
+-					const_seeky_busy_in_flight_queues);
+-				bfqd->const_seeky_busy_in_flight_queues--;
+-			}
+-		}
+-	}
++
+ 	if (bfqq->wr_coeff > 1)
+ 		bfqd->wr_busy_queues--;
+ 
+-#ifdef CONFIG_BFQ_GROUP_IOSCHED
+ 	bfqg_stats_update_dequeue(bfqq_group(bfqq));
+-#endif
+ 
+-	bfq_deactivate_bfqq(bfqd, bfqq, requeue);
++	BUG_ON(bfqq->entity.budget < 0);
++
++	bfq_deactivate_bfqq(bfqd, bfqq, true, expiration);
+ }
+ 
+ /*
+@@ -1184,16 +2013,11 @@ static void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq)
+ 	bfq_mark_bfqq_busy(bfqq);
+ 	bfqd->busy_queues++;
+ 
+-	if (!bfqq->dispatched) {
++	if (!bfqq->dispatched)
+ 		if (bfqq->wr_coeff == 1)
+ 			bfq_weights_tree_add(bfqd, &bfqq->entity,
+ 					     &bfqd->queue_weights_tree);
+-		if (!blk_queue_nonrot(bfqd->queue)) {
+-			bfqd->busy_in_flight_queues++;
+-			if (bfq_bfqq_constantly_seeky(bfqq))
+-				bfqd->const_seeky_busy_in_flight_queues++;
+-		}
+-	}
++
+ 	if (bfqq->wr_coeff > 1)
+ 		bfqd->wr_busy_queues++;
+ }
+diff --git a/block/bfq.h b/block/bfq.h
+index fcce855..5f08990 100644
+--- a/block/bfq.h
++++ b/block/bfq.h
+@@ -1,5 +1,5 @@
+ /*
+- * BFQ-v7r11 for 4.5.0: data structures and common functions prototypes.
++ * BFQ v8r11 for 4.11.0: data structures and common functions prototypes.
+  *
+  * Based on ideas and code from CFQ:
+  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
+@@ -7,7 +7,9 @@
+  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
+  *		      Paolo Valente <paolo.valente@unimore.it>
+  *
+- * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
++ * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
++ *
++ * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
+  */
+ 
+ #ifndef _BFQ_H
+@@ -15,8 +17,6 @@
+ 
+ #include <linux/blktrace_api.h>
+ #include <linux/hrtimer.h>
+-#include <linux/ioprio.h>
+-#include <linux/rbtree.h>
+ #include <linux/blk-cgroup.h>
+ 
+ #define BFQ_IOPRIO_CLASSES	3
+@@ -28,20 +28,21 @@
+ 
+ #define BFQ_DEFAULT_QUEUE_IOPRIO	4
+ 
+-#define BFQ_DEFAULT_GRP_WEIGHT	10
++#define BFQ_WEIGHT_LEGACY_DFL	100
+ #define BFQ_DEFAULT_GRP_IOPRIO	0
+ #define BFQ_DEFAULT_GRP_CLASS	IOPRIO_CLASS_BE
+ 
++/*
++ * Soft real-time applications are extremely more latency sensitive
++ * than interactive ones. Over-raise the weight of the former to
++ * privilege them against the latter.
++ */
++#define BFQ_SOFTRT_WEIGHT_FACTOR	100
++
+ struct bfq_entity;
+ 
+ /**
+  * struct bfq_service_tree - per ioprio_class service tree.
+- * @active: tree for active entities (i.e., those backlogged).
+- * @idle: tree for idle entities (i.e., those not backlogged, with V <= F_i).
+- * @first_idle: idle entity with minimum F_i.
+- * @last_idle: idle entity with maximum F_i.
+- * @vtime: scheduler virtual time.
+- * @wsum: scheduler weight sum; active and idle entities contribute to it.
+  *
+  * Each service tree represents a B-WF2Q+ scheduler on its own.  Each
+  * ioprio_class has its own independent scheduler, and so its own
+@@ -49,27 +50,28 @@ struct bfq_entity;
+  * of the containing bfqd.
+  */
+ struct bfq_service_tree {
++	/* tree for active entities (i.e., those backlogged) */
+ 	struct rb_root active;
++	/* tree for idle entities (i.e., not backlogged, with V <= F_i)*/
+ 	struct rb_root idle;
+ 
+-	struct bfq_entity *first_idle;
+-	struct bfq_entity *last_idle;
++	struct bfq_entity *first_idle;	/* idle entity with minimum F_i */
++	struct bfq_entity *last_idle;	/* idle entity with maximum F_i */
+ 
+-	u64 vtime;
++	u64 vtime; /* scheduler virtual time */
++	/* scheduler weight sum; active and idle entities contribute to it */
+ 	unsigned long wsum;
+ };
+ 
+ /**
+  * struct bfq_sched_data - multi-class scheduler.
+- * @in_service_entity: entity in service.
+- * @next_in_service: head-of-the-line entity in the scheduler.
+- * @service_tree: array of service trees, one per ioprio_class.
+  *
+  * bfq_sched_data is the basic scheduler queue.  It supports three
+- * ioprio_classes, and can be used either as a toplevel queue or as
+- * an intermediate queue on a hierarchical setup.
+- * @next_in_service points to the active entity of the sched_data
+- * service trees that will be scheduled next.
++ * ioprio_classes, and can be used either as a toplevel queue or as an
++ * intermediate queue on a hierarchical setup.  @next_in_service
++ * points to the active entity of the sched_data service trees that
++ * will be scheduled next. It is used to reduce the number of steps
++ * needed for each hierarchical-schedule update.
+  *
+  * The supported ioprio_classes are the same as in CFQ, in descending
+  * priority order, IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, IOPRIO_CLASS_IDLE.
+@@ -79,48 +81,32 @@ struct bfq_service_tree {
+  * All the fields are protected by the queue lock of the containing bfqd.
+  */
+ struct bfq_sched_data {
+-	struct bfq_entity *in_service_entity;
++	struct bfq_entity *in_service_entity;  /* entity in service */
++	/* head-of-the-line entity in the scheduler (see comments above) */
+ 	struct bfq_entity *next_in_service;
++	/* array of service trees, one per ioprio_class */
+ 	struct bfq_service_tree service_tree[BFQ_IOPRIO_CLASSES];
++	/* last time CLASS_IDLE was served */
++	unsigned long bfq_class_idle_last_service;
++
+ };
+ 
+ /**
+  * struct bfq_weight_counter - counter of the number of all active entities
+  *                             with a given weight.
+- * @weight: weight of the entities that this counter refers to.
+- * @num_active: number of active entities with this weight.
+- * @weights_node: weights tree member (see bfq_data's @queue_weights_tree
+- *                and @group_weights_tree).
+  */
+ struct bfq_weight_counter {
+-	short int weight;
+-	unsigned int num_active;
++	unsigned int weight; /* weight of the entities this counter refers to */
++	unsigned int num_active; /* nr of active entities with this weight */
++	/*
++	 * Weights tree member (see bfq_data's @queue_weights_tree and
++	 * @group_weights_tree)
++	 */
+ 	struct rb_node weights_node;
+ };
+ 
+ /**
+  * struct bfq_entity - schedulable entity.
+- * @rb_node: service_tree member.
+- * @weight_counter: pointer to the weight counter associated with this entity.
+- * @on_st: flag, true if the entity is on a tree (either the active or
+- *         the idle one of its service_tree).
+- * @finish: B-WF2Q+ finish timestamp (aka F_i).
+- * @start: B-WF2Q+ start timestamp (aka S_i).
+- * @tree: tree the entity is enqueued into; %NULL if not on a tree.
+- * @min_start: minimum start time of the (active) subtree rooted at
+- *             this entity; used for O(log N) lookups into active trees.
+- * @service: service received during the last round of service.
+- * @budget: budget used to calculate F_i; F_i = S_i + @budget / @weight.
+- * @weight: weight of the queue
+- * @parent: parent entity, for hierarchical scheduling.
+- * @my_sched_data: for non-leaf nodes in the cgroup hierarchy, the
+- *                 associated scheduler queue, %NULL on leaf nodes.
+- * @sched_data: the scheduler queue this entity belongs to.
+- * @ioprio: the ioprio in use.
+- * @new_weight: when a weight change is requested, the new weight value.
+- * @orig_weight: original weight, used to implement weight boosting
+- * @prio_changed: flag, true when the user requested a weight, ioprio or
+- *		  ioprio_class change.
+  *
+  * A bfq_entity is used to represent either a bfq_queue (leaf node in the
+  * cgroup hierarchy) or a bfq_group into the upper level scheduler.  Each
+@@ -147,27 +133,52 @@ struct bfq_weight_counter {
+  * containing bfqd.
+  */
+ struct bfq_entity {
+-	struct rb_node rb_node;
++	struct rb_node rb_node; /* service_tree member */
++	/* pointer to the weight counter associated with this entity */
+ 	struct bfq_weight_counter *weight_counter;
+ 
+-	int on_st;
++	/*
++	 * Flag, true if the entity is on a tree (either the active or
++	 * the idle one of its service_tree) or is in service.
++	 */
++	bool on_st;
+ 
+-	u64 finish;
+-	u64 start;
++	u64 finish; /* B-WF2Q+ finish timestamp (aka F_i) */
++	u64 start;  /* B-WF2Q+ start timestamp (aka S_i) */
+ 
++	/* tree the entity is enqueued into; %NULL if not on a tree */
+ 	struct rb_root *tree;
+ 
++	/*
++	 * minimum start time of the (active) subtree rooted at this
++	 * entity; used for O(log N) lookups into active trees
++	 */
+ 	u64 min_start;
+ 
+-	int service, budget;
+-	unsigned short weight, new_weight;
+-	unsigned short orig_weight;
++	/* amount of service received during the last service slot */
++	int service;
++
++	/* budget, used also to calculate F_i: F_i = S_i + @budget / @weight */
++	int budget;
++
++	unsigned int weight;	 /* weight of the queue */
++	unsigned int new_weight; /* next weight if a change is in progress */
++
++	/* original weight, used to implement weight boosting */
++	unsigned int orig_weight;
+ 
++	/* parent entity, for hierarchical scheduling */
+ 	struct bfq_entity *parent;
+ 
++	/*
++	 * For non-leaf nodes in the hierarchy, the associated
++	 * scheduler queue, %NULL on leaf nodes.
++	 */
+ 	struct bfq_sched_data *my_sched_data;
++	/* the scheduler queue this entity belongs to */
+ 	struct bfq_sched_data *sched_data;
+ 
++	/* flag, set to request a weight, ioprio or ioprio_class change  */
+ 	int prio_changed;
+ };
+ 
+@@ -175,56 +186,6 @@ struct bfq_group;
+ 
+ /**
+  * struct bfq_queue - leaf schedulable entity.
+- * @ref: reference counter.
+- * @bfqd: parent bfq_data.
+- * @new_ioprio: when an ioprio change is requested, the new ioprio value.
+- * @ioprio_class: the ioprio_class in use.
+- * @new_ioprio_class: when an ioprio_class change is requested, the new
+- *                    ioprio_class value.
+- * @new_bfqq: shared bfq_queue if queue is cooperating with
+- *           one or more other queues.
+- * @pos_node: request-position tree member (see bfq_group's @rq_pos_tree).
+- * @pos_root: request-position tree root (see bfq_group's @rq_pos_tree).
+- * @sort_list: sorted list of pending requests.
+- * @next_rq: if fifo isn't expired, next request to serve.
+- * @queued: nr of requests queued in @sort_list.
+- * @allocated: currently allocated requests.
+- * @meta_pending: pending metadata requests.
+- * @fifo: fifo list of requests in sort_list.
+- * @entity: entity representing this queue in the scheduler.
+- * @max_budget: maximum budget allowed from the feedback mechanism.
+- * @budget_timeout: budget expiration (in jiffies).
+- * @dispatched: number of requests on the dispatch list or inside driver.
+- * @flags: status flags.
+- * @bfqq_list: node for active/idle bfqq list inside our bfqd.
+- * @burst_list_node: node for the device's burst list.
+- * @seek_samples: number of seeks sampled
+- * @seek_total: sum of the distances of the seeks sampled
+- * @seek_mean: mean seek distance
+- * @last_request_pos: position of the last request enqueued
+- * @requests_within_timer: number of consecutive pairs of request completion
+- *                         and arrival, such that the queue becomes idle
+- *                         after the completion, but the next request arrives
+- *                         within an idle time slice; used only if the queue's
+- *                         IO_bound has been cleared.
+- * @pid: pid of the process owning the queue, used for logging purposes.
+- * @last_wr_start_finish: start time of the current weight-raising period if
+- *                        the @bfq-queue is being weight-raised, otherwise
+- *                        finish time of the last weight-raising period
+- * @wr_cur_max_time: current max raising time for this queue
+- * @soft_rt_next_start: minimum time instant such that, only if a new
+- *                      request is enqueued after this time instant in an
+- *                      idle @bfq_queue with no outstanding requests, then
+- *                      the task associated with the queue it is deemed as
+- *                      soft real-time (see the comments to the function
+- *                      bfq_bfqq_softrt_next_start())
+- * @last_idle_bklogged: time of the last transition of the @bfq_queue from
+- *                      idle to backlogged
+- * @service_from_backlogged: cumulative service received from the @bfq_queue
+- *                           since the last transition from idle to
+- *                           backlogged
+- * @bic: pointer to the bfq_io_cq owning the bfq_queue, set to %NULL if the
+- *	 queue is shared
+  *
+  * A bfq_queue is a leaf request queue; it can be associated with an
+  * io_context or more, if it  is  async or shared  between  cooperating
+@@ -235,117 +196,175 @@ struct bfq_group;
+  * All the fields are protected by the queue lock of the containing bfqd.
+  */
+ struct bfq_queue {
+-	atomic_t ref;
++	/* reference counter */
++	int ref;
++	/* parent bfq_data */
+ 	struct bfq_data *bfqd;
+ 
+-	unsigned short ioprio, new_ioprio;
+-	unsigned short ioprio_class, new_ioprio_class;
++	/* current ioprio and ioprio class */
++	unsigned short ioprio, ioprio_class;
++	/* next ioprio and ioprio class if a change is in progress */
++	unsigned short new_ioprio, new_ioprio_class;
+ 
+-	/* fields for cooperating queues handling */
++	/*
++	 * Shared bfq_queue if queue is cooperating with one or more
++	 * other queues.
++	 */
+ 	struct bfq_queue *new_bfqq;
++	/* request-position tree member (see bfq_group's @rq_pos_tree) */
+ 	struct rb_node pos_node;
++	/* request-position tree root (see bfq_group's @rq_pos_tree) */
+ 	struct rb_root *pos_root;
+ 
++	/* sorted list of pending requests */
+ 	struct rb_root sort_list;
++	/* if fifo isn't expired, next request to serve */
+ 	struct request *next_rq;
++	/* number of sync and async requests queued */
+ 	int queued[2];
++	/* number of sync and async requests currently allocated */
+ 	int allocated[2];
++	/* number of pending metadata requests */
+ 	int meta_pending;
++	/* fifo list of requests in sort_list */
+ 	struct list_head fifo;
+ 
++	/* entity representing this queue in the scheduler */
+ 	struct bfq_entity entity;
+ 
++	/* maximum budget allowed from the feedback mechanism */
+ 	int max_budget;
++	/* budget expiration (in jiffies) */
+ 	unsigned long budget_timeout;
+ 
++	/* number of requests on the dispatch list or inside driver */
+ 	int dispatched;
+ 
+-	unsigned int flags;
++	unsigned int flags; /* status flags.*/
+ 
++	/* node for active/idle bfqq list inside parent bfqd */
+ 	struct list_head bfqq_list;
+ 
++	/* bit vector: a 1 for each seeky requests in history */
++	u32 seek_history;
++
++	/* node for the device's burst list */
+ 	struct hlist_node burst_list_node;
+ 
+-	unsigned int seek_samples;
+-	u64 seek_total;
+-	sector_t seek_mean;
++	/* position of the last request enqueued */
+ 	sector_t last_request_pos;
+ 
++	/* Number of consecutive pairs of request completion and
++	 * arrival, such that the queue becomes idle after the
++	 * completion, but the next request arrives within an idle
++	 * time slice; used only if the queue's IO_bound flag has been
++	 * cleared.
++	 */
+ 	unsigned int requests_within_timer;
+ 
++	/* pid of the process owning the queue, used for logging purposes */
+ 	pid_t pid;
++
++	/*
++	 * Pointer to the bfq_io_cq owning the bfq_queue, set to %NULL
++	 * if the queue is shared.
++	 */
+ 	struct bfq_io_cq *bic;
+ 
+-	/* weight-raising fields */
++	/* current maximum weight-raising time for this queue */
+ 	unsigned long wr_cur_max_time;
++	/*
++	 * Minimum time instant such that, only if a new request is
++	 * enqueued after this time instant in an idle @bfq_queue with
++	 * no outstanding requests, then the task associated with the
++	 * queue it is deemed as soft real-time (see the comments on
++	 * the function bfq_bfqq_softrt_next_start())
++	 */
+ 	unsigned long soft_rt_next_start;
++	/*
++	 * Start time of the current weight-raising period if
++	 * the @bfq-queue is being weight-raised, otherwise
++	 * finish time of the last weight-raising period.
++	 */
+ 	unsigned long last_wr_start_finish;
++	/* factor by which the weight of this queue is multiplied */
+ 	unsigned int wr_coeff;
++	/*
++	 * Time of the last transition of the @bfq_queue from idle to
++	 * backlogged.
++	 */
+ 	unsigned long last_idle_bklogged;
++	/*
++	 * Cumulative service received from the @bfq_queue since the
++	 * last transition from idle to backlogged.
++	 */
+ 	unsigned long service_from_backlogged;
++	/*
++	 * Value of wr start time when switching to soft rt
++	 */
++	unsigned long wr_start_at_switch_to_srt;
++
++	unsigned long split_time; /* time of last split */
+ };
+ 
+ /**
+  * struct bfq_ttime - per process thinktime stats.
+- * @ttime_total: total process thinktime
+- * @ttime_samples: number of thinktime samples
+- * @ttime_mean: average process thinktime
+  */
+ struct bfq_ttime {
+-	unsigned long last_end_request;
++	u64 last_end_request; /* completion time of last request */
++
++	u64 ttime_total; /* total process thinktime */
++	unsigned long ttime_samples; /* number of thinktime samples */
++	u64 ttime_mean; /* average process thinktime */
+ 
+-	unsigned long ttime_total;
+-	unsigned long ttime_samples;
+-	unsigned long ttime_mean;
+ };
+ 
+ /**
+  * struct bfq_io_cq - per (request_queue, io_context) structure.
+- * @icq: associated io_cq structure
+- * @bfqq: array of two process queues, the sync and the async
+- * @ttime: associated @bfq_ttime struct
+- * @ioprio: per (request_queue, blkcg) ioprio.
+- * @blkcg_id: id of the blkcg the related io_cq belongs to.
+- * @wr_time_left: snapshot of the time left before weight raising ends
+- *                for the sync queue associated to this process; this
+- *		  snapshot is taken to remember this value while the weight
+- *		  raising is suspended because the queue is merged with a
+- *		  shared queue, and is used to set @raising_cur_max_time
+- *		  when the queue is split from the shared queue and its
+- *		  weight is raised again
+- * @saved_idle_window: same purpose as the previous field for the idle
+- *                     window
+- * @saved_IO_bound: same purpose as the previous two fields for the I/O
+- *                  bound classification of a queue
+- * @saved_in_large_burst: same purpose as the previous fields for the
+- *                        value of the field keeping the queue's belonging
+- *                        to a large burst
+- * @was_in_burst_list: true if the queue belonged to a burst list
+- *                     before its merge with another cooperating queue
+- * @cooperations: counter of consecutive successful queue merges underwent
+- *                by any of the process' @bfq_queues
+- * @failed_cooperations: counter of consecutive failed queue merges of any
+- *                       of the process' @bfq_queues
+  */
+ struct bfq_io_cq {
++	/* associated io_cq structure */
+ 	struct io_cq icq; /* must be the first member */
++	/* array of two process queues, the sync and the async */
+ 	struct bfq_queue *bfqq[2];
++	/* associated @bfq_ttime struct */
+ 	struct bfq_ttime ttime;
++	/* per (request_queue, blkcg) ioprio */
+ 	int ioprio;
+-
+ #ifdef CONFIG_BFQ_GROUP_IOSCHED
+-	uint64_t blkcg_id; /* the current blkcg ID */
++	uint64_t blkcg_serial_nr; /* the current blkcg serial */
+ #endif
+ 
+-	unsigned int wr_time_left;
++	/*
++	 * Snapshot of the idle window before merging; taken to
++	 * remember this value while the queue is merged, so as to be
++	 * able to restore it in case of split.
++	 */
+ 	bool saved_idle_window;
++	/*
++	 * Same purpose as the previous two fields for the I/O bound
++	 * classification of a queue.
++	 */
+ 	bool saved_IO_bound;
+ 
++	/*
++	 * Same purpose as the previous fields for the value of the
++	 * field keeping the queue's belonging to a large burst
++	 */
+ 	bool saved_in_large_burst;
++	/*
++	 * True if the queue belonged to a burst list before its merge
++	 * with another cooperating queue.
++	 */
+ 	bool was_in_burst_list;
+ 
+-	unsigned int cooperations;
+-	unsigned int failed_cooperations;
++	/*
++	 * Similar to previous fields: save wr information.
++	 */
++	unsigned long saved_wr_coeff;
++	unsigned long saved_last_wr_start_finish;
++	unsigned long saved_wr_start_at_switch_to_srt;
++	unsigned int saved_wr_cur_max_time;
+ };
+ 
+ enum bfq_device_speed {
+@@ -354,224 +373,234 @@ enum bfq_device_speed {
+ };
+ 
+ /**
+- * struct bfq_data - per device data structure.
+- * @queue: request queue for the managed device.
+- * @root_group: root bfq_group for the device.
+- * @active_numerous_groups: number of bfq_groups containing more than one
+- *                          active @bfq_entity.
+- * @queue_weights_tree: rbtree of weight counters of @bfq_queues, sorted by
+- *                      weight. Used to keep track of whether all @bfq_queues
+- *                     have the same weight. The tree contains one counter
+- *                     for each distinct weight associated to some active
+- *                     and not weight-raised @bfq_queue (see the comments to
+- *                      the functions bfq_weights_tree_[add|remove] for
+- *                     further details).
+- * @group_weights_tree: rbtree of non-queue @bfq_entity weight counters, sorted
+- *                      by weight. Used to keep track of whether all
+- *                     @bfq_groups have the same weight. The tree contains
+- *                     one counter for each distinct weight associated to
+- *                     some active @bfq_group (see the comments to the
+- *                     functions bfq_weights_tree_[add|remove] for further
+- *                     details).
+- * @busy_queues: number of bfq_queues containing requests (including the
+- *		 queue in service, even if it is idling).
+- * @busy_in_flight_queues: number of @bfq_queues containing pending or
+- *                         in-flight requests, plus the @bfq_queue in
+- *                         service, even if idle but waiting for the
+- *                         possible arrival of its next sync request. This
+- *                         field is updated only if the device is rotational,
+- *                         but used only if the device is also NCQ-capable.
+- *                         The reason why the field is updated also for non-
+- *                         NCQ-capable rotational devices is related to the
+- *                         fact that the value of @hw_tag may be set also
+- *                         later than when busy_in_flight_queues may need to
+- *                         be incremented for the first time(s). Taking also
+- *                         this possibility into account, to avoid unbalanced
+- *                         increments/decrements, would imply more overhead
+- *                         than just updating busy_in_flight_queues
+- *                         regardless of the value of @hw_tag.
+- * @const_seeky_busy_in_flight_queues: number of constantly-seeky @bfq_queues
+- *                                     (that is, seeky queues that expired
+- *                                     for budget timeout at least once)
+- *                                     containing pending or in-flight
+- *                                     requests, including the in-service
+- *                                     @bfq_queue if constantly seeky. This
+- *                                     field is updated only if the device
+- *                                     is rotational, but used only if the
+- *                                     device is also NCQ-capable (see the
+- *                                     comments to @busy_in_flight_queues).
+- * @wr_busy_queues: number of weight-raised busy @bfq_queues.
+- * @queued: number of queued requests.
+- * @rq_in_driver: number of requests dispatched and waiting for completion.
+- * @sync_flight: number of sync requests in the driver.
+- * @max_rq_in_driver: max number of reqs in driver in the last
+- *                    @hw_tag_samples completed requests.
+- * @hw_tag_samples: nr of samples used to calculate hw_tag.
+- * @hw_tag: flag set to one if the driver is showing a queueing behavior.
+- * @budgets_assigned: number of budgets assigned.
+- * @idle_slice_timer: timer set when idling for the next sequential request
+- *                    from the queue in service.
+- * @unplug_work: delayed work to restart dispatching on the request queue.
+- * @in_service_queue: bfq_queue in service.
+- * @in_service_bic: bfq_io_cq (bic) associated with the @in_service_queue.
+- * @last_position: on-disk position of the last served request.
+- * @last_budget_start: beginning of the last budget.
+- * @last_idling_start: beginning of the last idle slice.
+- * @peak_rate: peak transfer rate observed for a budget.
+- * @peak_rate_samples: number of samples used to calculate @peak_rate.
+- * @bfq_max_budget: maximum budget allotted to a bfq_queue before
+- *                  rescheduling.
+- * @active_list: list of all the bfq_queues active on the device.
+- * @idle_list: list of all the bfq_queues idle on the device.
+- * @bfq_fifo_expire: timeout for async/sync requests; when it expires
+- *                   requests are served in fifo order.
+- * @bfq_back_penalty: weight of backward seeks wrt forward ones.
+- * @bfq_back_max: maximum allowed backward seek.
+- * @bfq_slice_idle: maximum idling time.
+- * @bfq_user_max_budget: user-configured max budget value
+- *                       (0 for auto-tuning).
+- * @bfq_max_budget_async_rq: maximum budget (in nr of requests) allotted to
+- *                           async queues.
+- * @bfq_timeout: timeout for bfq_queues to consume their budget; used to
+- *               to prevent seeky queues to impose long latencies to well
+- *               behaved ones (this also implies that seeky queues cannot
+- *               receive guarantees in the service domain; after a timeout
+- *               they are charged for the whole allocated budget, to try
+- *               to preserve a behavior reasonably fair among them, but
+- *               without service-domain guarantees).
+- * @bfq_coop_thresh: number of queue merges after which a @bfq_queue is
+- *                   no more granted any weight-raising.
+- * @bfq_failed_cooperations: number of consecutive failed cooperation
+- *                           chances after which weight-raising is restored
+- *                           to a queue subject to more than bfq_coop_thresh
+- *                           queue merges.
+- * @bfq_requests_within_timer: number of consecutive requests that must be
+- *                             issued within the idle time slice to set
+- *                             again idling to a queue which was marked as
+- *                             non-I/O-bound (see the definition of the
+- *                             IO_bound flag for further details).
+- * @last_ins_in_burst: last time at which a queue entered the current
+- *                     burst of queues being activated shortly after
+- *                     each other; for more details about this and the
+- *                     following parameters related to a burst of
+- *                     activations, see the comments to the function
+- *                     @bfq_handle_burst.
+- * @bfq_burst_interval: reference time interval used to decide whether a
+- *                      queue has been activated shortly after
+- *                      @last_ins_in_burst.
+- * @burst_size: number of queues in the current burst of queue activations.
+- * @bfq_large_burst_thresh: maximum burst size above which the current
+- *			    queue-activation burst is deemed as 'large'.
+- * @large_burst: true if a large queue-activation burst is in progress.
+- * @burst_list: head of the burst list (as for the above fields, more details
+- *		in the comments to the function bfq_handle_burst).
+- * @low_latency: if set to true, low-latency heuristics are enabled.
+- * @bfq_wr_coeff: maximum factor by which the weight of a weight-raised
+- *                queue is multiplied.
+- * @bfq_wr_max_time: maximum duration of a weight-raising period (jiffies).
+- * @bfq_wr_rt_max_time: maximum duration for soft real-time processes.
+- * @bfq_wr_min_idle_time: minimum idle period after which weight-raising
+- *			  may be reactivated for a queue (in jiffies).
+- * @bfq_wr_min_inter_arr_async: minimum period between request arrivals
+- *				after which weight-raising may be
+- *				reactivated for an already busy queue
+- *				(in jiffies).
+- * @bfq_wr_max_softrt_rate: max service-rate for a soft real-time queue,
+- *			    sectors per seconds.
+- * @RT_prod: cached value of the product R*T used for computing the maximum
+- *	     duration of the weight raising automatically.
+- * @device_speed: device-speed class for the low-latency heuristic.
+- * @oom_bfqq: fallback dummy bfqq for extreme OOM conditions.
++ * struct bfq_data - per-device data structure.
+  *
+  * All the fields are protected by the @queue lock.
+  */
+ struct bfq_data {
++	/* request queue for the device */
+ 	struct request_queue *queue;
+ 
++	/* root bfq_group for the device */
+ 	struct bfq_group *root_group;
+ 
+-#ifdef CONFIG_BFQ_GROUP_IOSCHED
+-	int active_numerous_groups;
+-#endif
+-
++	/*
++	 * rbtree of weight counters of @bfq_queues, sorted by
++	 * weight. Used to keep track of whether all @bfq_queues have
++	 * the same weight. The tree contains one counter for each
++	 * distinct weight associated to some active and not
++	 * weight-raised @bfq_queue (see the comments to the functions
++	 * bfq_weights_tree_[add|remove] for further details).
++	 */
+ 	struct rb_root queue_weights_tree;
++	/*
++	 * rbtree of non-queue @bfq_entity weight counters, sorted by
++	 * weight. Used to keep track of whether all @bfq_groups have
++	 * the same weight. The tree contains one counter for each
++	 * distinct weight associated to some active @bfq_group (see
++	 * the comments to the functions bfq_weights_tree_[add|remove]
++	 * for further details).
++	 */
+ 	struct rb_root group_weights_tree;
+ 
++	/*
++	 * Number of bfq_queues containing requests (including the
++	 * queue in service, even if it is idling).
++	 */
+ 	int busy_queues;
+-	int busy_in_flight_queues;
+-	int const_seeky_busy_in_flight_queues;
++	/* number of weight-raised busy @bfq_queues */
+ 	int wr_busy_queues;
++	/* number of queued requests */
+ 	int queued;
++	/* number of requests dispatched and waiting for completion */
+ 	int rq_in_driver;
+-	int sync_flight;
+ 
++	/*
++	 * Maximum number of requests in driver in the last
++	 * @hw_tag_samples completed requests.
++	 */
+ 	int max_rq_in_driver;
++	/* number of samples used to calculate hw_tag */
+ 	int hw_tag_samples;
++	/* flag set to one if the driver is showing a queueing behavior */
+ 	int hw_tag;
+ 
++	/* number of budgets assigned */
+ 	int budgets_assigned;
+ 
+-	struct timer_list idle_slice_timer;
++	/*
++	 * Timer set when idling (waiting) for the next request from
++	 * the queue in service.
++	 */
++	struct hrtimer idle_slice_timer;
++	/* delayed work to restart dispatching on the request queue */
+ 	struct work_struct unplug_work;
+ 
++	/* bfq_queue in service */
+ 	struct bfq_queue *in_service_queue;
++	/* candidate bfq_queue to become the next in-service queue */
++	struct bfq_queue *next_in_service_queue;
++	/* bfq_io_cq (bic) associated with the @in_service_queue */
+ 	struct bfq_io_cq *in_service_bic;
+ 
++	/* on-disk position of the last served request */
+ 	sector_t last_position;
+ 
++	/* time of last request completion (ns) */
++	u64 last_completion;
++
++	/* time of first rq dispatch in current observation interval (ns) */
++	u64 first_dispatch;
++	/* time of last rq dispatch in current observation interval (ns) */
++	u64 last_dispatch;
++
++	/* beginning of the last budget */
+ 	ktime_t last_budget_start;
++	/* beginning of the last idle slice */
+ 	ktime_t last_idling_start;
++
++	/* number of samples in current observation interval */
+ 	int peak_rate_samples;
+-	u64 peak_rate;
++	/* num of samples of seq dispatches in current observation interval */
++	u32 sequential_samples;
++	/* total num of sectors transferred in current observation interval */
++	u64 tot_sectors_dispatched;
++	/* max rq size seen during current observation interval (sectors) */
++	u32 last_rq_max_size;
++	/* time elapsed from first dispatch in current observ. interval (us) */
++	u64 delta_from_first;
++	/* current estimate of device peak rate */
++	u32 peak_rate;
++
++	/* maximum budget allotted to a bfq_queue before rescheduling */
+ 	int bfq_max_budget;
+ 
++	/* list of all the bfq_queues active on the device */
+ 	struct list_head active_list;
++	/* list of all the bfq_queues idle on the device */
+ 	struct list_head idle_list;
+ 
+-	unsigned int bfq_fifo_expire[2];
++	/*
++	 * Timeout for async/sync requests; when it fires, requests
++	 * are served in fifo order.
++	 */
++	u64 bfq_fifo_expire[2];
++	/* weight of backward seeks wrt forward ones */
+ 	unsigned int bfq_back_penalty;
++	/* maximum allowed backward seek */
+ 	unsigned int bfq_back_max;
+-	unsigned int bfq_slice_idle;
+-	u64 bfq_class_idle_last_service;
++	/* maximum idling time */
++	u32 bfq_slice_idle;
+ 
++	/* user-configured max budget value (0 for auto-tuning) */
+ 	int bfq_user_max_budget;
+-	int bfq_max_budget_async_rq;
+-	unsigned int bfq_timeout[2];
+-
+-	unsigned int bfq_coop_thresh;
+-	unsigned int bfq_failed_cooperations;
++	/*
++	 * Timeout for bfq_queues to consume their budget; used to
++	 * prevent seeky queues from imposing long latencies to
++	 * sequential or quasi-sequential ones (this also implies that
++	 * seeky queues cannot receive guarantees in the service
++	 * domain; after a timeout they are charged for the time they
++	 * have been in service, to preserve fairness among them, but
++	 * without service-domain guarantees).
++	 */
++	unsigned int bfq_timeout;
++
++	/*
++	 * Number of consecutive requests that must be issued within
++	 * the idle time slice to set again idling to a queue which
++	 * was marked as non-I/O-bound (see the definition of the
++	 * IO_bound flag for further details).
++	 */
+ 	unsigned int bfq_requests_within_timer;
+ 
++	/*
++	 * Force device idling whenever needed to provide accurate
++	 * service guarantees, without caring about throughput
++	 * issues. CAVEAT: this may even increase latencies, in case
++	 * of useless idling for processes that did stop doing I/O.
++	 */
++	bool strict_guarantees;
++
++	/*
++	 * Last time at which a queue entered the current burst of
++	 * queues being activated shortly after each other; for more
++	 * details about this and the following parameters related to
++	 * a burst of activations, see the comments on the function
++	 * bfq_handle_burst.
++	 */
+ 	unsigned long last_ins_in_burst;
++	/*
++	 * Reference time interval used to decide whether a queue has
++	 * been activated shortly after @last_ins_in_burst.
++	 */
+ 	unsigned long bfq_burst_interval;
++	/* number of queues in the current burst of queue activations */
+ 	int burst_size;
++
++	/* common parent entity for the queues in the burst */
++	struct bfq_entity *burst_parent_entity;
++	/* Maximum burst size above which the current queue-activation
++	 * burst is deemed as 'large'.
++	 */
+ 	unsigned long bfq_large_burst_thresh;
++	/* true if a large queue-activation burst is in progress */
+ 	bool large_burst;
++	/*
++	 * Head of the burst list (as for the above fields, more
++	 * details in the comments on the function bfq_handle_burst).
++	 */
+ 	struct hlist_head burst_list;
+ 
++	/* if set to true, low-latency heuristics are enabled */
+ 	bool low_latency;
+-
+-	/* parameters of the low_latency heuristics */
++	/*
++	 * Maximum factor by which the weight of a weight-raised queue
++	 * is multiplied.
++	 */
+ 	unsigned int bfq_wr_coeff;
++	/* maximum duration of a weight-raising period (jiffies) */
+ 	unsigned int bfq_wr_max_time;
++
++	/* Maximum weight-raising duration for soft real-time processes */
+ 	unsigned int bfq_wr_rt_max_time;
++	/*
++	 * Minimum idle period after which weight-raising may be
++	 * reactivated for a queue (in jiffies).
++	 */
+ 	unsigned int bfq_wr_min_idle_time;
++	/*
++	 * Minimum period between request arrivals after which
++	 * weight-raising may be reactivated for an already busy async
++	 * queue (in jiffies).
++	 */
+ 	unsigned long bfq_wr_min_inter_arr_async;
++
++	/* Max service-rate for a soft real-time queue, in sectors/sec */
+ 	unsigned int bfq_wr_max_softrt_rate;
++	/*
++	 * Cached value of the product R*T, used for computing the
++	 * maximum duration of weight raising automatically.
++	 */
+ 	u64 RT_prod;
++	/* device-speed class for the low-latency heuristic */
+ 	enum bfq_device_speed device_speed;
+ 
++	/* fallback dummy bfqq for extreme OOM conditions */
+ 	struct bfq_queue oom_bfqq;
+ };
+ 
+ enum bfqq_state_flags {
+-	BFQ_BFQQ_FLAG_busy = 0,		/* has requests or is in service */
++	BFQ_BFQQ_FLAG_just_created = 0,	/* queue just allocated */
++	BFQ_BFQQ_FLAG_busy,		/* has requests or is in service */
+ 	BFQ_BFQQ_FLAG_wait_request,	/* waiting for a request */
++	BFQ_BFQQ_FLAG_non_blocking_wait_rq, /*
++					     * waiting for a request
++					     * without idling the device
++					     */
+ 	BFQ_BFQQ_FLAG_must_alloc,	/* must be allowed rq alloc */
+ 	BFQ_BFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
+ 	BFQ_BFQQ_FLAG_idle_window,	/* slice idling enabled */
+ 	BFQ_BFQQ_FLAG_sync,		/* synchronous queue */
+-	BFQ_BFQQ_FLAG_budget_new,	/* no completion with this budget */
+ 	BFQ_BFQQ_FLAG_IO_bound,		/*
+ 					 * bfqq has timed-out at least once
+ 					 * having consumed at most 2/10 of
+@@ -581,17 +610,12 @@ enum bfqq_state_flags {
+ 					 * bfqq activated in a large burst,
+ 					 * see comments to bfq_handle_burst.
+ 					 */
+-	BFQ_BFQQ_FLAG_constantly_seeky,	/*
+-					 * bfqq has proved to be slow and
+-					 * seeky until budget timeout
+-					 */
+ 	BFQ_BFQQ_FLAG_softrt_update,	/*
+ 					 * may need softrt-next-start
+ 					 * update
+ 					 */
+ 	BFQ_BFQQ_FLAG_coop,		/* bfqq is shared */
+-	BFQ_BFQQ_FLAG_split_coop,	/* shared bfqq will be split */
+-	BFQ_BFQQ_FLAG_just_split,	/* queue has just been split */
++	BFQ_BFQQ_FLAG_split_coop	/* shared bfqq will be split */
+ };
+ 
+ #define BFQ_BFQQ_FNS(name)						\
+@@ -608,28 +632,94 @@ static int bfq_bfqq_##name(const struct bfq_queue *bfqq)		\
+ 	return ((bfqq)->flags & (1 << BFQ_BFQQ_FLAG_##name)) != 0;	\
+ }
+ 
++BFQ_BFQQ_FNS(just_created);
+ BFQ_BFQQ_FNS(busy);
+ BFQ_BFQQ_FNS(wait_request);
++BFQ_BFQQ_FNS(non_blocking_wait_rq);
+ BFQ_BFQQ_FNS(must_alloc);
+ BFQ_BFQQ_FNS(fifo_expire);
+ BFQ_BFQQ_FNS(idle_window);
+ BFQ_BFQQ_FNS(sync);
+-BFQ_BFQQ_FNS(budget_new);
+ BFQ_BFQQ_FNS(IO_bound);
+ BFQ_BFQQ_FNS(in_large_burst);
+-BFQ_BFQQ_FNS(constantly_seeky);
+ BFQ_BFQQ_FNS(coop);
+ BFQ_BFQQ_FNS(split_coop);
+-BFQ_BFQQ_FNS(just_split);
+ BFQ_BFQQ_FNS(softrt_update);
+ #undef BFQ_BFQQ_FNS
+ 
+ /* Logging facilities. */
+-#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) \
+-	blk_add_trace_msg((bfqd)->queue, "bfq%d " fmt, (bfqq)->pid, ##args)
++#ifdef CONFIG_BFQ_REDIRECT_TO_CONSOLE
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++static struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
++static struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg);
++
++#define bfq_log_bfqq(bfqd, bfqq, fmt, args...)	do {			\
++	char __pbuf[128];						\
++									\
++	assert_spin_locked((bfqd)->queue->queue_lock);			\
++	blkg_path(bfqg_to_blkg(bfqq_group(bfqq)), __pbuf, sizeof(__pbuf)); \
++	pr_crit("bfq%d%c %s " fmt "\n", 			\
++		(bfqq)->pid,						\
++		bfq_bfqq_sync((bfqq)) ? 'S' : 'A',			\
++		__pbuf, ##args);					\
++} while (0)
++
++#define bfq_log_bfqg(bfqd, bfqg, fmt, args...)	do {			\
++	char __pbuf[128];						\
++									\
++	blkg_path(bfqg_to_blkg(bfqg), __pbuf, sizeof(__pbuf));		\
++	pr_crit("%s " fmt "\n", __pbuf, ##args);	\
++} while (0)
++
++#else /* CONFIG_BFQ_GROUP_IOSCHED */
++
++#define bfq_log_bfqq(bfqd, bfqq, fmt, args...)		\
++	pr_crit("bfq%d%c " fmt "\n", (bfqq)->pid,		\
++		bfq_bfqq_sync((bfqq)) ? 'S' : 'A',	\
++		##args)
++#define bfq_log_bfqg(bfqd, bfqg, fmt, args...)		do {} while (0)
++
++#endif /* CONFIG_BFQ_GROUP_IOSCHED */
++
++#define bfq_log(bfqd, fmt, args...) \
++	pr_crit("bfq " fmt "\n", ##args)
++
++#else /* CONFIG_BFQ_REDIRECT_TO_CONSOLE */
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++static struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
++static struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg);
++
++#define bfq_log_bfqq(bfqd, bfqq, fmt, args...)	do {			\
++	char __pbuf[128];						\
++									\
++	assert_spin_locked((bfqd)->queue->queue_lock);			\
++	blkg_path(bfqg_to_blkg(bfqq_group(bfqq)), __pbuf, sizeof(__pbuf)); \
++	blk_add_trace_msg((bfqd)->queue, "bfq%d%c %s " fmt, \
++			  (bfqq)->pid,			  \
++			  bfq_bfqq_sync((bfqq)) ? 'S' : 'A',	\
++			  __pbuf, ##args);				\
++} while (0)
++
++#define bfq_log_bfqg(bfqd, bfqg, fmt, args...)	do {			\
++	char __pbuf[128];						\
++									\
++	blkg_path(bfqg_to_blkg(bfqg), __pbuf, sizeof(__pbuf));		\
++	blk_add_trace_msg((bfqd)->queue, "%s " fmt, __pbuf, ##args);	\
++} while (0)
++
++#else /* CONFIG_BFQ_GROUP_IOSCHED */
++
++#define bfq_log_bfqq(bfqd, bfqq, fmt, args...)	\
++	blk_add_trace_msg((bfqd)->queue, "bfq%d%c " fmt, (bfqq)->pid,	\
++			bfq_bfqq_sync((bfqq)) ? 'S' : 'A',		\
++				##args)
++#define bfq_log_bfqg(bfqd, bfqg, fmt, args...)		do {} while (0)
++
++#endif /* CONFIG_BFQ_GROUP_IOSCHED */
+ 
+ #define bfq_log(bfqd, fmt, args...) \
+ 	blk_add_trace_msg((bfqd)->queue, "bfq " fmt, ##args)
++#endif /* CONFIG_BFQ_REDIRECT_TO_CONSOLE */
+ 
+ /* Expiration reasons. */
+ enum bfqq_expiration {
+@@ -640,15 +730,12 @@ enum bfqq_expiration {
+ 	BFQ_BFQQ_BUDGET_TIMEOUT,	/* budget took too long to be used */
+ 	BFQ_BFQQ_BUDGET_EXHAUSTED,	/* budget consumed */
+ 	BFQ_BFQQ_NO_MORE_REQUESTS,	/* the queue has no more requests */
++	BFQ_BFQQ_PREEMPTED		/* preemption in progress */
+ };
+ 
+-#ifdef CONFIG_BFQ_GROUP_IOSCHED
+ 
+ struct bfqg_stats {
+-	/* total bytes transferred */
+-	struct blkg_rwstat		service_bytes;
+-	/* total IOs serviced, post merge */
+-	struct blkg_rwstat		serviced;
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
+ 	/* number of ios merged */
+ 	struct blkg_rwstat		merged;
+ 	/* total time spent on device in ns, may not be accurate w/ queueing */
+@@ -657,12 +744,8 @@ struct bfqg_stats {
+ 	struct blkg_rwstat		wait_time;
+ 	/* number of IOs queued up */
+ 	struct blkg_rwstat		queued;
+-	/* total sectors transferred */
+-	struct blkg_stat		sectors;
+ 	/* total disk time and nr sectors dispatched by this group */
+ 	struct blkg_stat		time;
+-	/* time not charged to this cgroup */
+-	struct blkg_stat		unaccounted_time;
+ 	/* sum of number of ios queued across all samples */
+ 	struct blkg_stat		avg_queue_size_sum;
+ 	/* count of samples taken for average */
+@@ -680,8 +763,10 @@ struct bfqg_stats {
+ 	uint64_t			start_idle_time;
+ 	uint64_t			start_empty_time;
+ 	uint16_t			flags;
++#endif
+ };
+ 
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
+ /*
+  * struct bfq_group_data - per-blkcg storage for the blkio subsystem.
+  *
+@@ -692,7 +777,7 @@ struct bfq_group_data {
+ 	/* must be the first member */
+ 	struct blkcg_policy_data pd;
+ 
+-	unsigned short weight;
++	unsigned int weight;
+ };
+ 
+ /**
+@@ -712,7 +797,7 @@ struct bfq_group_data {
+  *                   unused for the root group. Used to know whether there
+  *                   are groups with more than one active @bfq_entity
+  *                   (see the comments to the function
+- *                   bfq_bfqq_must_not_expire()).
++ *                   bfq_bfqq_may_idle()).
+  * @rq_pos_tree: rbtree sorted by next_request position, used when
+  *               determining if two or more queues have interleaving
+  *               requests (see bfq_find_close_cooperator()).
+@@ -745,7 +830,6 @@ struct bfq_group {
+ 	struct rb_root rq_pos_tree;
+ 
+ 	struct bfqg_stats stats;
+-	struct bfqg_stats dead_stats;	/* stats pushed from dead children */
+ };
+ 
+ #else
+@@ -761,17 +845,38 @@ struct bfq_group {
+ 
+ static struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity);
+ 
++static unsigned int bfq_class_idx(struct bfq_entity *entity)
++{
++	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
++
++	return bfqq ? bfqq->ioprio_class - 1 :
++		BFQ_DEFAULT_GRP_CLASS - 1;
++}
++
+ static struct bfq_service_tree *
+ bfq_entity_service_tree(struct bfq_entity *entity)
+ {
+ 	struct bfq_sched_data *sched_data = entity->sched_data;
+ 	struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
+-	unsigned int idx = bfqq ? bfqq->ioprio_class - 1 :
+-				  BFQ_DEFAULT_GRP_CLASS;
++	unsigned int idx = bfq_class_idx(entity);
+ 
+ 	BUG_ON(idx >= BFQ_IOPRIO_CLASSES);
+ 	BUG_ON(sched_data == NULL);
+ 
++	if (bfqq)
++		bfq_log_bfqq(bfqq->bfqd, bfqq,
++			     "entity_service_tree %p %d",
++			     sched_data->service_tree + idx, idx);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
++	else {
++		struct bfq_group *bfqg =
++			container_of(entity, struct bfq_group, entity);
++
++		bfq_log_bfqg((struct bfq_data *)bfqg->bfqd, bfqg,
++			     "entity_service_tree %p %d",
++			     sched_data->service_tree + idx, idx);
++	}
++#endif
+ 	return sched_data->service_tree + idx;
+ }
+ 
+@@ -791,47 +896,6 @@ static struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
+ 	return bic->icq.q->elevator->elevator_data;
+ }
+ 
+-/**
+- * bfq_get_bfqd_locked - get a lock to a bfqd using a RCU protected pointer.
+- * @ptr: a pointer to a bfqd.
+- * @flags: storage for the flags to be saved.
+- *
+- * This function allows bfqg->bfqd to be protected by the
+- * queue lock of the bfqd they reference; the pointer is dereferenced
+- * under RCU, so the storage for bfqd is assured to be safe as long
+- * as the RCU read side critical section does not end.  After the
+- * bfqd->queue->queue_lock is taken the pointer is rechecked, to be
+- * sure that no other writer accessed it.  If we raced with a writer,
+- * the function returns NULL, with the queue unlocked, otherwise it
+- * returns the dereferenced pointer, with the queue locked.
+- */
+-static struct bfq_data *bfq_get_bfqd_locked(void **ptr, unsigned long *flags)
+-{
+-	struct bfq_data *bfqd;
+-
+-	rcu_read_lock();
+-	bfqd = rcu_dereference(*(struct bfq_data **)ptr);
+-
+-	if (bfqd != NULL) {
+-		spin_lock_irqsave(bfqd->queue->queue_lock, *flags);
+-		if (ptr == NULL)
+-			printk(KERN_CRIT "get_bfqd_locked pointer NULL\n");
+-		else if (*ptr == bfqd)
+-			goto out;
+-		spin_unlock_irqrestore(bfqd->queue->queue_lock, *flags);
+-	}
+-
+-	bfqd = NULL;
+-out:
+-	rcu_read_unlock();
+-	return bfqd;
+-}
+-
+-static void bfq_put_bfqd_unlock(struct bfq_data *bfqd, unsigned long *flags)
+-{
+-	spin_unlock_irqrestore(bfqd->queue->queue_lock, *flags);
+-}
+-
+ #ifdef CONFIG_BFQ_GROUP_IOSCHED
+ 
+ static struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq)
+@@ -857,11 +921,13 @@ static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio);
+ static void bfq_put_queue(struct bfq_queue *bfqq);
+ static void bfq_dispatch_insert(struct request_queue *q, struct request *rq);
+ static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
+-				       struct bio *bio, int is_sync,
+-				       struct bfq_io_cq *bic, gfp_t gfp_mask);
++				       struct bio *bio, bool is_sync,
++				       struct bfq_io_cq *bic);
+ static void bfq_end_wr_async_queues(struct bfq_data *bfqd,
+ 				    struct bfq_group *bfqg);
++#ifdef CONFIG_BFQ_GROUP_IOSCHED
+ static void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg);
++#endif
+ static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq);
+ 
+ #endif /* _BFQ_H */
+-- 
+2.10.0
+


^ permalink raw reply related	[flat|nested] 5+ messages in thread

* [gentoo-commits] proj/linux-patches:4.11 commit in: /
@ 2017-05-14 13:29 Mike Pagano
  0 siblings, 0 replies; 5+ messages in thread
From: Mike Pagano @ 2017-05-14 13:29 UTC (permalink / raw
  To: gentoo-commits

commit:     97b52b16ce743e5b7a476c30350fbabe35e68f1c
Author:     Mike Pagano <mpagano <AT> gentoo <DOT> org>
AuthorDate: Sun May 14 13:29:09 2017 +0000
Commit:     Mike Pagano <mpagano <AT> gentoo <DOT> org>
CommitDate: Sun May 14 13:29:09 2017 +0000
URL:        https://gitweb.gentoo.org/proj/linux-patches.git/commit/?id=97b52b16

Linux patch 4.11.1

 0000_README             |    4 +
 1000_linux-4.11.1.patch | 1626 +++++++++++++++++++++++++++++++++++++++++++++++
 2 files changed, 1630 insertions(+)

diff --git a/0000_README b/0000_README
index 70e3319..85e105d 100644
--- a/0000_README
+++ b/0000_README
@@ -43,6 +43,10 @@ EXPERIMENTAL
 Individual Patch Descriptions:
 --------------------------------------------------------------------------
 
+Patch:  1000_linux-4.11.1.patch
+From:   http://www.kernel.org
+Desc:   Linux 4.11.1
+
 Patch:  1500_XATTR_USER_PREFIX.patch
 From:   https://bugs.gentoo.org/show_bug.cgi?id=470644
 Desc:   Support for namespace user.pax.* on tmpfs.

diff --git a/1000_linux-4.11.1.patch b/1000_linux-4.11.1.patch
new file mode 100644
index 0000000..3c56ecd
--- /dev/null
+++ b/1000_linux-4.11.1.patch
@@ -0,0 +1,1626 @@
+diff --git a/Makefile b/Makefile
+index 4b074a904106..9dc2aec1c2e5 100644
+--- a/Makefile
++++ b/Makefile
+@@ -1,6 +1,6 @@
+ VERSION = 4
+ PATCHLEVEL = 11
+-SUBLEVEL = 0
++SUBLEVEL = 1
+ EXTRAVERSION =
+ NAME = Fearless Coyote
+ 
+diff --git a/arch/arm/include/asm/device.h b/arch/arm/include/asm/device.h
+index 220ba207be91..36ec9c8f6e16 100644
+--- a/arch/arm/include/asm/device.h
++++ b/arch/arm/include/asm/device.h
+@@ -16,6 +16,9 @@ struct dev_archdata {
+ #ifdef CONFIG_ARM_DMA_USE_IOMMU
+ 	struct dma_iommu_mapping	*mapping;
+ #endif
++#ifdef CONFIG_XEN
++	const struct dma_map_ops *dev_dma_ops;
++#endif
+ 	bool dma_coherent;
+ };
+ 
+diff --git a/arch/arm/include/asm/dma-mapping.h b/arch/arm/include/asm/dma-mapping.h
+index 716656925975..680d3f3889e7 100644
+--- a/arch/arm/include/asm/dma-mapping.h
++++ b/arch/arm/include/asm/dma-mapping.h
+@@ -16,19 +16,9 @@
+ extern const struct dma_map_ops arm_dma_ops;
+ extern const struct dma_map_ops arm_coherent_dma_ops;
+ 
+-static inline const struct dma_map_ops *__generic_dma_ops(struct device *dev)
+-{
+-	if (dev && dev->dma_ops)
+-		return dev->dma_ops;
+-	return &arm_dma_ops;
+-}
+-
+ static inline const struct dma_map_ops *get_arch_dma_ops(struct bus_type *bus)
+ {
+-	if (xen_initial_domain())
+-		return xen_dma_ops;
+-	else
+-		return __generic_dma_ops(NULL);
++	return &arm_dma_ops;
+ }
+ 
+ #define HAVE_ARCH_DMA_SUPPORTED 1
+diff --git a/arch/arm/mm/dma-mapping.c b/arch/arm/mm/dma-mapping.c
+index 475811f5383a..0268584f1fa0 100644
+--- a/arch/arm/mm/dma-mapping.c
++++ b/arch/arm/mm/dma-mapping.c
+@@ -2414,6 +2414,13 @@ void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
+ 		dma_ops = arm_get_dma_map_ops(coherent);
+ 
+ 	set_dma_ops(dev, dma_ops);
++
++#ifdef CONFIG_XEN
++	if (xen_initial_domain()) {
++		dev->archdata.dev_dma_ops = dev->dma_ops;
++		dev->dma_ops = xen_dma_ops;
++	}
++#endif
+ }
+ 
+ void arch_teardown_dma_ops(struct device *dev)
+diff --git a/arch/arm64/include/asm/device.h b/arch/arm64/include/asm/device.h
+index 73d5bab015eb..5a5fa47a6b18 100644
+--- a/arch/arm64/include/asm/device.h
++++ b/arch/arm64/include/asm/device.h
+@@ -20,6 +20,9 @@ struct dev_archdata {
+ #ifdef CONFIG_IOMMU_API
+ 	void *iommu;			/* private IOMMU data */
+ #endif
++#ifdef CONFIG_XEN
++	const struct dma_map_ops *dev_dma_ops;
++#endif
+ 	bool dma_coherent;
+ };
+ 
+diff --git a/arch/arm64/include/asm/dma-mapping.h b/arch/arm64/include/asm/dma-mapping.h
+index 505756cdc67a..5392dbeffa45 100644
+--- a/arch/arm64/include/asm/dma-mapping.h
++++ b/arch/arm64/include/asm/dma-mapping.h
+@@ -27,11 +27,8 @@
+ #define DMA_ERROR_CODE	(~(dma_addr_t)0)
+ extern const struct dma_map_ops dummy_dma_ops;
+ 
+-static inline const struct dma_map_ops *__generic_dma_ops(struct device *dev)
++static inline const struct dma_map_ops *get_arch_dma_ops(struct bus_type *bus)
+ {
+-	if (dev && dev->dma_ops)
+-		return dev->dma_ops;
+-
+ 	/*
+ 	 * We expect no ISA devices, and all other DMA masters are expected to
+ 	 * have someone call arch_setup_dma_ops at device creation time.
+@@ -39,14 +36,6 @@ static inline const struct dma_map_ops *__generic_dma_ops(struct device *dev)
+ 	return &dummy_dma_ops;
+ }
+ 
+-static inline const struct dma_map_ops *get_arch_dma_ops(struct bus_type *bus)
+-{
+-	if (xen_initial_domain())
+-		return xen_dma_ops;
+-	else
+-		return __generic_dma_ops(NULL);
+-}
+-
+ void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
+ 			const struct iommu_ops *iommu, bool coherent);
+ #define arch_setup_dma_ops	arch_setup_dma_ops
+diff --git a/arch/arm64/mm/dma-mapping.c b/arch/arm64/mm/dma-mapping.c
+index 81cdb2e844ed..7f8b37e85a2b 100644
+--- a/arch/arm64/mm/dma-mapping.c
++++ b/arch/arm64/mm/dma-mapping.c
+@@ -977,4 +977,11 @@ void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
+ 
+ 	dev->archdata.dma_coherent = coherent;
+ 	__iommu_setup_dma_ops(dev, dma_base, size, iommu);
++
++#ifdef CONFIG_XEN
++	if (xen_initial_domain()) {
++		dev->archdata.dev_dma_ops = dev->dma_ops;
++		dev->dma_ops = xen_dma_ops;
++	}
++#endif
+ }
+diff --git a/arch/arm64/net/bpf_jit_comp.c b/arch/arm64/net/bpf_jit_comp.c
+index a785554916c0..ce8ab0409deb 100644
+--- a/arch/arm64/net/bpf_jit_comp.c
++++ b/arch/arm64/net/bpf_jit_comp.c
+@@ -779,14 +779,14 @@ static int build_body(struct jit_ctx *ctx)
+ 		int ret;
+ 
+ 		ret = build_insn(insn, ctx);
+-
+-		if (ctx->image == NULL)
+-			ctx->offset[i] = ctx->idx;
+-
+ 		if (ret > 0) {
+ 			i++;
++			if (ctx->image == NULL)
++				ctx->offset[i] = ctx->idx;
+ 			continue;
+ 		}
++		if (ctx->image == NULL)
++			ctx->offset[i] = ctx->idx;
+ 		if (ret)
+ 			return ret;
+ 	}
+diff --git a/arch/sparc/kernel/head_64.S b/arch/sparc/kernel/head_64.S
+index 44101196d02b..41a407328667 100644
+--- a/arch/sparc/kernel/head_64.S
++++ b/arch/sparc/kernel/head_64.S
+@@ -939,3 +939,9 @@ ENTRY(__retl_o1)
+ 	retl
+ 	 mov	%o1, %o0
+ ENDPROC(__retl_o1)
++
++ENTRY(__retl_o1_asi)
++	wr      %o5, 0x0, %asi
++	retl
++	 mov    %o1, %o0
++ENDPROC(__retl_o1_asi)
+diff --git a/arch/sparc/lib/GENbzero.S b/arch/sparc/lib/GENbzero.S
+index 8e7a843ddd88..2fbf6297d57c 100644
+--- a/arch/sparc/lib/GENbzero.S
++++ b/arch/sparc/lib/GENbzero.S
+@@ -8,7 +8,7 @@
+ 98:	x,y;			\
+ 	.section __ex_table,"a";\
+ 	.align 4;		\
+-	.word 98b, __retl_o1;	\
++	.word 98b, __retl_o1_asi;\
+ 	.text;			\
+ 	.align 4;
+ 
+diff --git a/arch/sparc/lib/NGbzero.S b/arch/sparc/lib/NGbzero.S
+index beab29bf419b..33053bdf3766 100644
+--- a/arch/sparc/lib/NGbzero.S
++++ b/arch/sparc/lib/NGbzero.S
+@@ -8,7 +8,7 @@
+ 98:	x,y;			\
+ 	.section __ex_table,"a";\
+ 	.align 4;		\
+-	.word 98b, __retl_o1;	\
++	.word 98b, __retl_o1_asi;\
+ 	.text;			\
+ 	.align 4;
+ 
+diff --git a/arch/x86/include/asm/xen/events.h b/arch/x86/include/asm/xen/events.h
+index 608a79d5a466..e6911caf5bbf 100644
+--- a/arch/x86/include/asm/xen/events.h
++++ b/arch/x86/include/asm/xen/events.h
+@@ -20,4 +20,15 @@ static inline int xen_irqs_disabled(struct pt_regs *regs)
+ /* No need for a barrier -- XCHG is a barrier on x86. */
+ #define xchg_xen_ulong(ptr, val) xchg((ptr), (val))
+ 
++extern int xen_have_vector_callback;
++
++/*
++ * Events delivered via platform PCI interrupts are always
++ * routed to vcpu 0 and hence cannot be rebound.
++ */
++static inline bool xen_support_evtchn_rebind(void)
++{
++	return (!xen_hvm_domain() || xen_have_vector_callback);
++}
++
+ #endif /* _ASM_X86_XEN_EVENTS_H */
+diff --git a/arch/x86/pci/xen.c b/arch/x86/pci/xen.c
+index 292ab0364a89..c4b3646bd04c 100644
+--- a/arch/x86/pci/xen.c
++++ b/arch/x86/pci/xen.c
+@@ -447,7 +447,7 @@ void __init xen_msi_init(void)
+ 
+ int __init pci_xen_hvm_init(void)
+ {
+-	if (!xen_feature(XENFEAT_hvm_pirqs))
++	if (!xen_have_vector_callback || !xen_feature(XENFEAT_hvm_pirqs))
+ 		return 0;
+ 
+ #ifdef CONFIG_ACPI
+diff --git a/arch/x86/xen/enlighten.c b/arch/x86/xen/enlighten.c
+index ec1d5c46e58f..29b239025b57 100644
+--- a/arch/x86/xen/enlighten.c
++++ b/arch/x86/xen/enlighten.c
+@@ -138,6 +138,8 @@ struct shared_info xen_dummy_shared_info;
+ void *xen_initial_gdt;
+ 
+ RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
++__read_mostly int xen_have_vector_callback;
++EXPORT_SYMBOL_GPL(xen_have_vector_callback);
+ 
+ static int xen_cpu_up_prepare(unsigned int cpu);
+ static int xen_cpu_up_online(unsigned int cpu);
+@@ -1861,7 +1863,9 @@ static int xen_cpu_up_prepare(unsigned int cpu)
+ 		xen_vcpu_setup(cpu);
+ 	}
+ 
+-	if (xen_pv_domain() || xen_feature(XENFEAT_hvm_safe_pvclock))
++	if (xen_pv_domain() ||
++	    (xen_have_vector_callback &&
++	     xen_feature(XENFEAT_hvm_safe_pvclock)))
+ 		xen_setup_timer(cpu);
+ 
+ 	rc = xen_smp_intr_init(cpu);
+@@ -1877,7 +1881,9 @@ static int xen_cpu_dead(unsigned int cpu)
+ {
+ 	xen_smp_intr_free(cpu);
+ 
+-	if (xen_pv_domain() || xen_feature(XENFEAT_hvm_safe_pvclock))
++	if (xen_pv_domain() ||
++	    (xen_have_vector_callback &&
++	     xen_feature(XENFEAT_hvm_safe_pvclock)))
+ 		xen_teardown_timer(cpu);
+ 
+ 	return 0;
+@@ -1916,8 +1922,8 @@ static void __init xen_hvm_guest_init(void)
+ 
+ 	xen_panic_handler_init();
+ 
+-	BUG_ON(!xen_feature(XENFEAT_hvm_callback_vector));
+-
++	if (xen_feature(XENFEAT_hvm_callback_vector))
++		xen_have_vector_callback = 1;
+ 	xen_hvm_smp_init();
+ 	WARN_ON(xen_cpuhp_setup());
+ 	xen_unplug_emulated_devices();
+@@ -1958,7 +1964,7 @@ bool xen_hvm_need_lapic(void)
+ 		return false;
+ 	if (!xen_hvm_domain())
+ 		return false;
+-	if (xen_feature(XENFEAT_hvm_pirqs))
++	if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
+ 		return false;
+ 	return true;
+ }
+diff --git a/arch/x86/xen/smp.c b/arch/x86/xen/smp.c
+index 7ff2f1bfb7ec..4e6b65baf8e2 100644
+--- a/arch/x86/xen/smp.c
++++ b/arch/x86/xen/smp.c
+@@ -742,6 +742,8 @@ static void __init xen_hvm_smp_prepare_cpus(unsigned int max_cpus)
+ 
+ void __init xen_hvm_smp_init(void)
+ {
++	if (!xen_have_vector_callback)
++		return;
+ 	smp_ops.smp_prepare_cpus = xen_hvm_smp_prepare_cpus;
+ 	smp_ops.smp_send_reschedule = xen_smp_send_reschedule;
+ 	smp_ops.cpu_die = xen_cpu_die;
+diff --git a/arch/x86/xen/time.c b/arch/x86/xen/time.c
+index 1e69956d7852..4535627cf532 100644
+--- a/arch/x86/xen/time.c
++++ b/arch/x86/xen/time.c
+@@ -432,6 +432,11 @@ static void xen_hvm_setup_cpu_clockevents(void)
+ 
+ void __init xen_hvm_init_time_ops(void)
+ {
++	/* vector callback is needed otherwise we cannot receive interrupts
++	 * on cpu > 0 and at this point we don't know how many cpus are
++	 * available */
++	if (!xen_have_vector_callback)
++		return;
+ 	if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
+ 		printk(KERN_INFO "Xen doesn't support pvclock on HVM,"
+ 				"disable pv timer\n");
+diff --git a/block/blk-integrity.c b/block/blk-integrity.c
+index 9f0ff5ba4f84..35c5af1ea068 100644
+--- a/block/blk-integrity.c
++++ b/block/blk-integrity.c
+@@ -417,7 +417,7 @@ void blk_integrity_register(struct gendisk *disk, struct blk_integrity *template
+ 	bi->tuple_size = template->tuple_size;
+ 	bi->tag_size = template->tag_size;
+ 
+-	blk_integrity_revalidate(disk);
++	disk->queue->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
+ }
+ EXPORT_SYMBOL(blk_integrity_register);
+ 
+@@ -430,26 +430,11 @@ EXPORT_SYMBOL(blk_integrity_register);
+  */
+ void blk_integrity_unregister(struct gendisk *disk)
+ {
+-	blk_integrity_revalidate(disk);
++	disk->queue->backing_dev_info->capabilities &= ~BDI_CAP_STABLE_WRITES;
+ 	memset(&disk->queue->integrity, 0, sizeof(struct blk_integrity));
+ }
+ EXPORT_SYMBOL(blk_integrity_unregister);
+ 
+-void blk_integrity_revalidate(struct gendisk *disk)
+-{
+-	struct blk_integrity *bi = &disk->queue->integrity;
+-
+-	if (!(disk->flags & GENHD_FL_UP))
+-		return;
+-
+-	if (bi->profile)
+-		disk->queue->backing_dev_info->capabilities |=
+-			BDI_CAP_STABLE_WRITES;
+-	else
+-		disk->queue->backing_dev_info->capabilities &=
+-			~BDI_CAP_STABLE_WRITES;
+-}
+-
+ void blk_integrity_add(struct gendisk *disk)
+ {
+ 	if (kobject_init_and_add(&disk->integrity_kobj, &integrity_ktype,
+diff --git a/block/partition-generic.c b/block/partition-generic.c
+index 7afb9907821f..0171a2faad68 100644
+--- a/block/partition-generic.c
++++ b/block/partition-generic.c
+@@ -497,7 +497,6 @@ int rescan_partitions(struct gendisk *disk, struct block_device *bdev)
+ 
+ 	if (disk->fops->revalidate_disk)
+ 		disk->fops->revalidate_disk(disk);
+-	blk_integrity_revalidate(disk);
+ 	check_disk_size_change(disk, bdev);
+ 	bdev->bd_invalidated = 0;
+ 	if (!get_capacity(disk) || !(state = check_partition(disk, bdev)))
+diff --git a/drivers/gpu/drm/sti/sti_gdp.c b/drivers/gpu/drm/sti/sti_gdp.c
+index 86279f5022c2..88f16cdf6a4b 100644
+--- a/drivers/gpu/drm/sti/sti_gdp.c
++++ b/drivers/gpu/drm/sti/sti_gdp.c
+@@ -66,7 +66,9 @@ static struct gdp_format_to_str {
+ #define GAM_GDP_ALPHARANGE_255  BIT(5)
+ #define GAM_GDP_AGC_FULL_RANGE  0x00808080
+ #define GAM_GDP_PPT_IGNORE      (BIT(1) | BIT(0))
+-#define GAM_GDP_SIZE_MAX        0x7FF
++
++#define GAM_GDP_SIZE_MAX_WIDTH  3840
++#define GAM_GDP_SIZE_MAX_HEIGHT 2160
+ 
+ #define GDP_NODE_NB_BANK        2
+ #define GDP_NODE_PER_FIELD      2
+@@ -632,8 +634,8 @@ static int sti_gdp_atomic_check(struct drm_plane *drm_plane,
+ 	/* src_x are in 16.16 format */
+ 	src_x = state->src_x >> 16;
+ 	src_y = state->src_y >> 16;
+-	src_w = clamp_val(state->src_w >> 16, 0, GAM_GDP_SIZE_MAX);
+-	src_h = clamp_val(state->src_h >> 16, 0, GAM_GDP_SIZE_MAX);
++	src_w = clamp_val(state->src_w >> 16, 0, GAM_GDP_SIZE_MAX_WIDTH);
++	src_h = clamp_val(state->src_h >> 16, 0, GAM_GDP_SIZE_MAX_HEIGHT);
+ 
+ 	format = sti_gdp_fourcc2format(fb->format->format);
+ 	if (format == -1) {
+@@ -741,8 +743,8 @@ static void sti_gdp_atomic_update(struct drm_plane *drm_plane,
+ 	/* src_x are in 16.16 format */
+ 	src_x = state->src_x >> 16;
+ 	src_y = state->src_y >> 16;
+-	src_w = clamp_val(state->src_w >> 16, 0, GAM_GDP_SIZE_MAX);
+-	src_h = clamp_val(state->src_h >> 16, 0, GAM_GDP_SIZE_MAX);
++	src_w = clamp_val(state->src_w >> 16, 0, GAM_GDP_SIZE_MAX_WIDTH);
++	src_h = clamp_val(state->src_h >> 16, 0, GAM_GDP_SIZE_MAX_HEIGHT);
+ 
+ 	list = sti_gdp_get_free_nodes(gdp);
+ 	top_field = list->top_field;
+diff --git a/drivers/md/dm-ioctl.c b/drivers/md/dm-ioctl.c
+index 4da6fc6b1ffd..3d040f52539c 100644
+--- a/drivers/md/dm-ioctl.c
++++ b/drivers/md/dm-ioctl.c
+@@ -1848,7 +1848,7 @@ static int ctl_ioctl(uint command, struct dm_ioctl __user *user)
+ 	if (r)
+ 		goto out;
+ 
+-	param->data_size = sizeof(*param);
++	param->data_size = offsetof(struct dm_ioctl, data);
+ 	r = fn(param, input_param_size);
+ 
+ 	if (unlikely(param->flags & DM_BUFFER_FULL_FLAG) &&
+diff --git a/drivers/net/ethernet/broadcom/bnxt/bnxt.c b/drivers/net/ethernet/broadcom/bnxt/bnxt.c
+index 1f1e54ba0ecb..2c02a4cebc24 100644
+--- a/drivers/net/ethernet/broadcom/bnxt/bnxt.c
++++ b/drivers/net/ethernet/broadcom/bnxt/bnxt.c
+@@ -3000,7 +3000,8 @@ static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
+ 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
+ 
+ 	bp->ntp_fltr_count = 0;
+-	bp->ntp_fltr_bmap = kzalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
++	bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
++				    sizeof(long),
+ 				    GFP_KERNEL);
+ 
+ 	if (!bp->ntp_fltr_bmap)
+diff --git a/drivers/net/ethernet/cadence/macb.c b/drivers/net/ethernet/cadence/macb.c
+index 30606b11b128..377fb0f22a5b 100644
+--- a/drivers/net/ethernet/cadence/macb.c
++++ b/drivers/net/ethernet/cadence/macb.c
+@@ -432,15 +432,17 @@ static int macb_mii_probe(struct net_device *dev)
+ 	}
+ 
+ 	pdata = dev_get_platdata(&bp->pdev->dev);
+-	if (pdata && gpio_is_valid(pdata->phy_irq_pin)) {
+-		ret = devm_gpio_request(&bp->pdev->dev, pdata->phy_irq_pin,
+-					"phy int");
+-		if (!ret) {
+-			phy_irq = gpio_to_irq(pdata->phy_irq_pin);
+-			phydev->irq = (phy_irq < 0) ? PHY_POLL : phy_irq;
++	if (pdata) {
++		if (gpio_is_valid(pdata->phy_irq_pin)) {
++			ret = devm_gpio_request(&bp->pdev->dev,
++						pdata->phy_irq_pin, "phy int");
++			if (!ret) {
++				phy_irq = gpio_to_irq(pdata->phy_irq_pin);
++				phydev->irq = (phy_irq < 0) ? PHY_POLL : phy_irq;
++			}
++		} else {
++			phydev->irq = PHY_POLL;
+ 		}
+-	} else {
+-		phydev->irq = PHY_POLL;
+ 	}
+ 
+ 	/* attach the mac to the phy */
+diff --git a/drivers/net/geneve.c b/drivers/net/geneve.c
+index 7074b40ebd7f..dec5d563ab19 100644
+--- a/drivers/net/geneve.c
++++ b/drivers/net/geneve.c
+@@ -1244,7 +1244,7 @@ static int geneve_newlink(struct net *net, struct net_device *dev,
+ 		metadata = true;
+ 
+ 	if (data[IFLA_GENEVE_UDP_CSUM] &&
+-	    !nla_get_u8(data[IFLA_GENEVE_UDP_CSUM]))
++	    nla_get_u8(data[IFLA_GENEVE_UDP_CSUM]))
+ 		info.key.tun_flags |= TUNNEL_CSUM;
+ 
+ 	if (data[IFLA_GENEVE_UDP_ZERO_CSUM6_TX] &&
+diff --git a/drivers/net/phy/mdio-mux-bcm-iproc.c b/drivers/net/phy/mdio-mux-bcm-iproc.c
+index 0a0412524cec..0a5f62e0efcc 100644
+--- a/drivers/net/phy/mdio-mux-bcm-iproc.c
++++ b/drivers/net/phy/mdio-mux-bcm-iproc.c
+@@ -203,11 +203,14 @@ static int mdio_mux_iproc_probe(struct platform_device *pdev)
+ 			   &md->mux_handle, md, md->mii_bus);
+ 	if (rc) {
+ 		dev_info(md->dev, "mdiomux initialization failed\n");
+-		goto out;
++		goto out_register;
+ 	}
+ 
+ 	dev_info(md->dev, "iProc mdiomux registered\n");
+ 	return 0;
++
++out_register:
++	mdiobus_unregister(bus);
+ out:
+ 	mdiobus_free(bus);
+ 	return rc;
+diff --git a/drivers/net/usb/qmi_wwan.c b/drivers/net/usb/qmi_wwan.c
+index 2474618404f5..4e34568db64f 100644
+--- a/drivers/net/usb/qmi_wwan.c
++++ b/drivers/net/usb/qmi_wwan.c
+@@ -907,6 +907,7 @@ static const struct usb_device_id products[] = {
+ 	{QMI_FIXED_INTF(0x2357, 0x0201, 4)},	/* TP-LINK HSUPA Modem MA180 */
+ 	{QMI_FIXED_INTF(0x2357, 0x9000, 4)},	/* TP-LINK MA260 */
+ 	{QMI_QUIRK_SET_DTR(0x1bc7, 0x1040, 2)},	/* Telit LE922A */
++	{QMI_FIXED_INTF(0x1bc7, 0x1100, 3)},	/* Telit ME910 */
+ 	{QMI_FIXED_INTF(0x1bc7, 0x1200, 5)},	/* Telit LE920 */
+ 	{QMI_QUIRK_SET_DTR(0x1bc7, 0x1201, 2)},	/* Telit LE920, LE920A4 */
+ 	{QMI_FIXED_INTF(0x1c9e, 0x9b01, 3)},	/* XS Stick W100-2 from 4G Systems */
+diff --git a/drivers/net/wireless/broadcom/brcm80211/brcmfmac/core.c b/drivers/net/wireless/broadcom/brcm80211/brcmfmac/core.c
+index 60da86a8d95b..f6b17fb58877 100644
+--- a/drivers/net/wireless/broadcom/brcm80211/brcmfmac/core.c
++++ b/drivers/net/wireless/broadcom/brcm80211/brcmfmac/core.c
+@@ -198,7 +198,7 @@ static netdev_tx_t brcmf_netdev_start_xmit(struct sk_buff *skb,
+ 	int ret;
+ 	struct brcmf_if *ifp = netdev_priv(ndev);
+ 	struct brcmf_pub *drvr = ifp->drvr;
+-	struct ethhdr *eh = (struct ethhdr *)(skb->data);
++	struct ethhdr *eh;
+ 
+ 	brcmf_dbg(DATA, "Enter, bsscfgidx=%d\n", ifp->bsscfgidx);
+ 
+@@ -211,22 +211,13 @@ static netdev_tx_t brcmf_netdev_start_xmit(struct sk_buff *skb,
+ 		goto done;
+ 	}
+ 
+-	/* Make sure there's enough room for any header */
+-	if (skb_headroom(skb) < drvr->hdrlen) {
+-		struct sk_buff *skb2;
+-
+-		brcmf_dbg(INFO, "%s: insufficient headroom\n",
++	/* Make sure there's enough writable headroom*/
++	ret = skb_cow_head(skb, drvr->hdrlen);
++	if (ret < 0) {
++		brcmf_err("%s: skb_cow_head failed\n",
+ 			  brcmf_ifname(ifp));
+-		drvr->bus_if->tx_realloc++;
+-		skb2 = skb_realloc_headroom(skb, drvr->hdrlen);
+ 		dev_kfree_skb(skb);
+-		skb = skb2;
+-		if (skb == NULL) {
+-			brcmf_err("%s: skb_realloc_headroom failed\n",
+-				  brcmf_ifname(ifp));
+-			ret = -ENOMEM;
+-			goto done;
+-		}
++		goto done;
+ 	}
+ 
+ 	/* validate length for ether packet */
+@@ -236,6 +227,8 @@ static netdev_tx_t brcmf_netdev_start_xmit(struct sk_buff *skb,
+ 		goto done;
+ 	}
+ 
++	eh = (struct ethhdr *)(skb->data);
++
+ 	if (eh->h_proto == htons(ETH_P_PAE))
+ 		atomic_inc(&ifp->pend_8021x_cnt);
+ 
+diff --git a/drivers/power/supply/lp8788-charger.c b/drivers/power/supply/lp8788-charger.c
+index 509e2b341bd6..677f7c40b25a 100644
+--- a/drivers/power/supply/lp8788-charger.c
++++ b/drivers/power/supply/lp8788-charger.c
+@@ -651,7 +651,7 @@ static ssize_t lp8788_show_eoc_time(struct device *dev,
+ {
+ 	struct lp8788_charger *pchg = dev_get_drvdata(dev);
+ 	char *stime[] = { "400ms", "5min", "10min", "15min",
+-			"20min", "25min", "30min" "No timeout" };
++			"20min", "25min", "30min", "No timeout" };
+ 	u8 val;
+ 
+ 	lp8788_read_byte(pchg->lp, LP8788_CHG_EOC, &val);
+diff --git a/drivers/xen/events/events_base.c b/drivers/xen/events/events_base.c
+index 6a53577772c9..42807ce11c42 100644
+--- a/drivers/xen/events/events_base.c
++++ b/drivers/xen/events/events_base.c
+@@ -1312,6 +1312,9 @@ static int rebind_irq_to_cpu(unsigned irq, unsigned tcpu)
+ 	if (!VALID_EVTCHN(evtchn))
+ 		return -1;
+ 
++	if (!xen_support_evtchn_rebind())
++		return -1;
++
+ 	/* Send future instances of this interrupt to other vcpu. */
+ 	bind_vcpu.port = evtchn;
+ 	bind_vcpu.vcpu = xen_vcpu_nr(tcpu);
+@@ -1645,15 +1648,20 @@ void xen_callback_vector(void)
+ {
+ 	int rc;
+ 	uint64_t callback_via;
+-
+-	callback_via = HVM_CALLBACK_VECTOR(HYPERVISOR_CALLBACK_VECTOR);
+-	rc = xen_set_callback_via(callback_via);
+-	BUG_ON(rc);
+-	pr_info("Xen HVM callback vector for event delivery is enabled\n");
+-	/* in the restore case the vector has already been allocated */
+-	if (!test_bit(HYPERVISOR_CALLBACK_VECTOR, used_vectors))
+-		alloc_intr_gate(HYPERVISOR_CALLBACK_VECTOR,
+-				xen_hvm_callback_vector);
++	if (xen_have_vector_callback) {
++		callback_via = HVM_CALLBACK_VECTOR(HYPERVISOR_CALLBACK_VECTOR);
++		rc = xen_set_callback_via(callback_via);
++		if (rc) {
++			pr_err("Request for Xen HVM callback vector failed\n");
++			xen_have_vector_callback = 0;
++			return;
++		}
++		pr_info("Xen HVM callback vector for event delivery is enabled\n");
++		/* in the restore case the vector has already been allocated */
++		if (!test_bit(HYPERVISOR_CALLBACK_VECTOR, used_vectors))
++			alloc_intr_gate(HYPERVISOR_CALLBACK_VECTOR,
++					xen_hvm_callback_vector);
++	}
+ }
+ #else
+ void xen_callback_vector(void) {}
+diff --git a/drivers/xen/platform-pci.c b/drivers/xen/platform-pci.c
+index 2a165cc8a43c..1c4deac9b0f8 100644
+--- a/drivers/xen/platform-pci.c
++++ b/drivers/xen/platform-pci.c
+@@ -67,7 +67,7 @@ static uint64_t get_callback_via(struct pci_dev *pdev)
+ 	pin = pdev->pin;
+ 
+ 	/* We don't know the GSI. Specify the PCI INTx line instead. */
+-	return ((uint64_t)0x01 << HVM_CALLBACK_VIA_TYPE_SHIFT) | /* PCI INTx identifier */
++	return ((uint64_t)0x01 << 56) | /* PCI INTx identifier */
+ 		((uint64_t)pci_domain_nr(pdev->bus) << 32) |
+ 		((uint64_t)pdev->bus->number << 16) |
+ 		((uint64_t)(pdev->devfn & 0xff) << 8) |
+@@ -90,7 +90,7 @@ static int xen_allocate_irq(struct pci_dev *pdev)
+ static int platform_pci_resume(struct pci_dev *pdev)
+ {
+ 	int err;
+-	if (!xen_pv_domain())
++	if (xen_have_vector_callback)
+ 		return 0;
+ 	err = xen_set_callback_via(callback_via);
+ 	if (err) {
+@@ -138,14 +138,7 @@ static int platform_pci_probe(struct pci_dev *pdev,
+ 	platform_mmio = mmio_addr;
+ 	platform_mmiolen = mmio_len;
+ 
+-	/* 
+-	 * Xen HVM guests always use the vector callback mechanism.
+-	 * L1 Dom0 in a nested Xen environment is a PV guest inside in an
+-	 * HVM environment. It needs the platform-pci driver to get
+-	 * notifications from L0 Xen, but it cannot use the vector callback
+-	 * as it is not exported by L1 Xen.
+-	 */
+-	if (xen_pv_domain()) {
++	if (!xen_have_vector_callback) {
+ 		ret = xen_allocate_irq(pdev);
+ 		if (ret) {
+ 			dev_warn(&pdev->dev, "request_irq failed err=%d\n", ret);
+diff --git a/fs/block_dev.c b/fs/block_dev.c
+index 2eca00ec4370..56039dfbc674 100644
+--- a/fs/block_dev.c
++++ b/fs/block_dev.c
+@@ -1451,7 +1451,6 @@ int revalidate_disk(struct gendisk *disk)
+ 
+ 	if (disk->fops->revalidate_disk)
+ 		ret = disk->fops->revalidate_disk(disk);
+-	blk_integrity_revalidate(disk);
+ 	bdev = bdget_disk(disk, 0);
+ 	if (!bdev)
+ 		return ret;
+diff --git a/fs/f2fs/super.c b/fs/f2fs/super.c
+index 96fe8ed73100..858aef564a58 100644
+--- a/fs/f2fs/super.c
++++ b/fs/f2fs/super.c
+@@ -1483,6 +1483,13 @@ static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
+ 		return 1;
+ 	}
+ 
++	if (le32_to_cpu(raw_super->segment_count) > F2FS_MAX_SEGMENT) {
++		f2fs_msg(sb, KERN_INFO,
++			"Invalid segment count (%u)",
++			le32_to_cpu(raw_super->segment_count));
++		return 1;
++	}
++
+ 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
+ 	if (sanity_check_area_boundary(sbi, bh))
+ 		return 1;
+diff --git a/include/linux/f2fs_fs.h b/include/linux/f2fs_fs.h
+index e2d239ed4c60..661200e6d281 100644
+--- a/include/linux/f2fs_fs.h
++++ b/include/linux/f2fs_fs.h
+@@ -302,6 +302,12 @@ struct f2fs_nat_block {
+ #define SIT_ENTRY_PER_BLOCK (PAGE_SIZE / sizeof(struct f2fs_sit_entry))
+ 
+ /*
++ * F2FS uses 4 bytes to represent block address. As a result, supported size of
++ * disk is 16 TB and it equals to 16 * 1024 * 1024 / 2 segments.
++ */
++#define F2FS_MAX_SEGMENT       ((16 * 1024 * 1024) / 2)
++
++/*
+  * Note that f2fs_sit_entry->vblocks has the following bit-field information.
+  * [15:10] : allocation type such as CURSEG_XXXX_TYPE
+  * [9:0] : valid block count
+diff --git a/include/linux/genhd.h b/include/linux/genhd.h
+index 76f39754e7b0..76d6a1cd4153 100644
+--- a/include/linux/genhd.h
++++ b/include/linux/genhd.h
+@@ -722,11 +722,9 @@ static inline void part_nr_sects_write(struct hd_struct *part, sector_t size)
+ #if defined(CONFIG_BLK_DEV_INTEGRITY)
+ extern void blk_integrity_add(struct gendisk *);
+ extern void blk_integrity_del(struct gendisk *);
+-extern void blk_integrity_revalidate(struct gendisk *);
+ #else	/* CONFIG_BLK_DEV_INTEGRITY */
+ static inline void blk_integrity_add(struct gendisk *disk) { }
+ static inline void blk_integrity_del(struct gendisk *disk) { }
+-static inline void blk_integrity_revalidate(struct gendisk *disk) { }
+ #endif	/* CONFIG_BLK_DEV_INTEGRITY */
+ 
+ #else /* CONFIG_BLOCK */
+diff --git a/include/net/addrconf.h b/include/net/addrconf.h
+index 17c6fd84e287..4d93c5ec9b12 100644
+--- a/include/net/addrconf.h
++++ b/include/net/addrconf.h
+@@ -20,6 +20,8 @@
+ #define ADDRCONF_TIMER_FUZZ		(HZ / 4)
+ #define ADDRCONF_TIMER_FUZZ_MAX		(HZ)
+ 
++#define ADDRCONF_NOTIFY_PRIORITY	0
++
+ #include <linux/in.h>
+ #include <linux/in6.h>
+ 
+diff --git a/include/net/ip6_route.h b/include/net/ip6_route.h
+index 9dc2c182a263..f5e625f53367 100644
+--- a/include/net/ip6_route.h
++++ b/include/net/ip6_route.h
+@@ -84,6 +84,7 @@ struct dst_entry *ip6_route_lookup(struct net *net, struct flowi6 *fl6,
+ struct rt6_info *ip6_pol_route(struct net *net, struct fib6_table *table,
+ 			       int ifindex, struct flowi6 *fl6, int flags);
+ 
++void ip6_route_init_special_entries(void);
+ int ip6_route_init(void);
+ void ip6_route_cleanup(void);
+ 
+diff --git a/include/net/secure_seq.h b/include/net/secure_seq.h
+index 0caee631a836..b94006f6fbdd 100644
+--- a/include/net/secure_seq.h
++++ b/include/net/secure_seq.h
+@@ -6,10 +6,12 @@
+ u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport);
+ u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr,
+ 			       __be16 dport);
+-u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr,
+-			       __be16 sport, __be16 dport, u32 *tsoff);
+-u32 secure_tcpv6_sequence_number(const __be32 *saddr, const __be32 *daddr,
+-				 __be16 sport, __be16 dport, u32 *tsoff);
++u32 secure_tcp_seq(__be32 saddr, __be32 daddr,
++		   __be16 sport, __be16 dport);
++u32 secure_tcp_ts_off(__be32 saddr, __be32 daddr);
++u32 secure_tcpv6_seq(const __be32 *saddr, const __be32 *daddr,
++		     __be16 sport, __be16 dport);
++u32 secure_tcpv6_ts_off(const __be32 *saddr, const __be32 *daddr);
+ u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr,
+ 				__be16 sport, __be16 dport);
+ u64 secure_dccpv6_sequence_number(__be32 *saddr, __be32 *daddr,
+diff --git a/include/net/tcp.h b/include/net/tcp.h
+index 6ec4ea652f3f..6423b4698880 100644
+--- a/include/net/tcp.h
++++ b/include/net/tcp.h
+@@ -471,7 +471,7 @@ void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
+ /* From syncookies.c */
+ struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
+ 				 struct request_sock *req,
+-				 struct dst_entry *dst);
++				 struct dst_entry *dst, u32 tsoff);
+ int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
+ 		      u32 cookie);
+ struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
+@@ -1816,7 +1816,8 @@ struct tcp_request_sock_ops {
+ 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
+ 				       const struct request_sock *req,
+ 				       bool *strict);
+-	__u32 (*init_seq)(const struct sk_buff *skb, u32 *tsoff);
++	u32 (*init_seq)(const struct sk_buff *skb);
++	u32 (*init_ts_off)(const struct sk_buff *skb);
+ 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
+ 			   struct flowi *fl, struct request_sock *req,
+ 			   struct tcp_fastopen_cookie *foc,
+diff --git a/include/xen/arm/page-coherent.h b/include/xen/arm/page-coherent.h
+index 95ce6ac3a971..b0a2bfc8d647 100644
+--- a/include/xen/arm/page-coherent.h
++++ b/include/xen/arm/page-coherent.h
+@@ -2,8 +2,16 @@
+ #define _ASM_ARM_XEN_PAGE_COHERENT_H
+ 
+ #include <asm/page.h>
++#include <asm/dma-mapping.h>
+ #include <linux/dma-mapping.h>
+ 
++static inline const struct dma_map_ops *__generic_dma_ops(struct device *dev)
++{
++	if (dev && dev->archdata.dev_dma_ops)
++		return dev->archdata.dev_dma_ops;
++	return get_arch_dma_ops(NULL);
++}
++
+ void __xen_dma_map_page(struct device *hwdev, struct page *page,
+ 	     dma_addr_t dev_addr, unsigned long offset, size_t size,
+ 	     enum dma_data_direction dir, unsigned long attrs);
+diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c
+index a834068a400e..6fd78d4c4164 100644
+--- a/kernel/bpf/verifier.c
++++ b/kernel/bpf/verifier.c
+@@ -296,7 +296,8 @@ static const char *const bpf_jmp_string[16] = {
+ 	[BPF_EXIT >> 4] = "exit",
+ };
+ 
+-static void print_bpf_insn(struct bpf_insn *insn)
++static void print_bpf_insn(const struct bpf_verifier_env *env,
++			   const struct bpf_insn *insn)
+ {
+ 	u8 class = BPF_CLASS(insn->code);
+ 
+@@ -360,9 +361,19 @@ static void print_bpf_insn(struct bpf_insn *insn)
+ 				insn->code,
+ 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
+ 				insn->src_reg, insn->imm);
+-		} else if (BPF_MODE(insn->code) == BPF_IMM) {
+-			verbose("(%02x) r%d = 0x%x\n",
+-				insn->code, insn->dst_reg, insn->imm);
++		} else if (BPF_MODE(insn->code) == BPF_IMM &&
++			   BPF_SIZE(insn->code) == BPF_DW) {
++			/* At this point, we already made sure that the second
++			 * part of the ldimm64 insn is accessible.
++			 */
++			u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
++			bool map_ptr = insn->src_reg == BPF_PSEUDO_MAP_FD;
++
++			if (map_ptr && !env->allow_ptr_leaks)
++				imm = 0;
++
++			verbose("(%02x) r%d = 0x%llx\n", insn->code,
++				insn->dst_reg, (unsigned long long)imm);
+ 		} else {
+ 			verbose("BUG_ld_%02x\n", insn->code);
+ 			return;
+@@ -1911,6 +1922,17 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
+ 			return 0;
+ 		} else if (opcode == BPF_ADD &&
+ 			   BPF_CLASS(insn->code) == BPF_ALU64 &&
++			   dst_reg->type == PTR_TO_STACK &&
++			   ((BPF_SRC(insn->code) == BPF_X &&
++			     regs[insn->src_reg].type == CONST_IMM) ||
++			    BPF_SRC(insn->code) == BPF_K)) {
++			if (BPF_SRC(insn->code) == BPF_X)
++				dst_reg->imm += regs[insn->src_reg].imm;
++			else
++				dst_reg->imm += insn->imm;
++			return 0;
++		} else if (opcode == BPF_ADD &&
++			   BPF_CLASS(insn->code) == BPF_ALU64 &&
+ 			   (dst_reg->type == PTR_TO_PACKET ||
+ 			    (BPF_SRC(insn->code) == BPF_X &&
+ 			     regs[insn->src_reg].type == PTR_TO_PACKET))) {
+@@ -2824,7 +2846,7 @@ static int do_check(struct bpf_verifier_env *env)
+ 
+ 		if (log_level) {
+ 			verbose("%d: ", insn_idx);
+-			print_bpf_insn(insn);
++			print_bpf_insn(env, insn);
+ 		}
+ 
+ 		err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
+diff --git a/lib/refcount.c b/lib/refcount.c
+index aa09ad3c30b0..26dffb7e4c04 100644
+--- a/lib/refcount.c
++++ b/lib/refcount.c
+@@ -62,13 +62,13 @@ bool refcount_add_not_zero(unsigned int i, refcount_t *r)
+ 
+ 	return true;
+ }
+-EXPORT_SYMBOL_GPL(refcount_add_not_zero);
++EXPORT_SYMBOL(refcount_add_not_zero);
+ 
+ void refcount_add(unsigned int i, refcount_t *r)
+ {
+ 	WARN_ONCE(!refcount_add_not_zero(i, r), "refcount_t: addition on 0; use-after-free.\n");
+ }
+-EXPORT_SYMBOL_GPL(refcount_add);
++EXPORT_SYMBOL(refcount_add);
+ 
+ /*
+  * Similar to atomic_inc_not_zero(), will saturate at UINT_MAX and WARN.
+@@ -101,7 +101,7 @@ bool refcount_inc_not_zero(refcount_t *r)
+ 
+ 	return true;
+ }
+-EXPORT_SYMBOL_GPL(refcount_inc_not_zero);
++EXPORT_SYMBOL(refcount_inc_not_zero);
+ 
+ /*
+  * Similar to atomic_inc(), will saturate at UINT_MAX and WARN.
+@@ -113,7 +113,7 @@ void refcount_inc(refcount_t *r)
+ {
+ 	WARN_ONCE(!refcount_inc_not_zero(r), "refcount_t: increment on 0; use-after-free.\n");
+ }
+-EXPORT_SYMBOL_GPL(refcount_inc);
++EXPORT_SYMBOL(refcount_inc);
+ 
+ bool refcount_sub_and_test(unsigned int i, refcount_t *r)
+ {
+@@ -138,7 +138,7 @@ bool refcount_sub_and_test(unsigned int i, refcount_t *r)
+ 
+ 	return !new;
+ }
+-EXPORT_SYMBOL_GPL(refcount_sub_and_test);
++EXPORT_SYMBOL(refcount_sub_and_test);
+ 
+ /*
+  * Similar to atomic_dec_and_test(), it will WARN on underflow and fail to
+@@ -152,7 +152,7 @@ bool refcount_dec_and_test(refcount_t *r)
+ {
+ 	return refcount_sub_and_test(1, r);
+ }
+-EXPORT_SYMBOL_GPL(refcount_dec_and_test);
++EXPORT_SYMBOL(refcount_dec_and_test);
+ 
+ /*
+  * Similar to atomic_dec(), it will WARN on underflow and fail to decrement
+@@ -166,7 +166,7 @@ void refcount_dec(refcount_t *r)
+ {
+ 	WARN_ONCE(refcount_dec_and_test(r), "refcount_t: decrement hit 0; leaking memory.\n");
+ }
+-EXPORT_SYMBOL_GPL(refcount_dec);
++EXPORT_SYMBOL(refcount_dec);
+ 
+ /*
+  * No atomic_t counterpart, it attempts a 1 -> 0 transition and returns the
+@@ -183,7 +183,7 @@ bool refcount_dec_if_one(refcount_t *r)
+ {
+ 	return atomic_cmpxchg_release(&r->refs, 1, 0) == 1;
+ }
+-EXPORT_SYMBOL_GPL(refcount_dec_if_one);
++EXPORT_SYMBOL(refcount_dec_if_one);
+ 
+ /*
+  * No atomic_t counterpart, it decrements unless the value is 1, in which case
+@@ -217,7 +217,7 @@ bool refcount_dec_not_one(refcount_t *r)
+ 
+ 	return true;
+ }
+-EXPORT_SYMBOL_GPL(refcount_dec_not_one);
++EXPORT_SYMBOL(refcount_dec_not_one);
+ 
+ /*
+  * Similar to atomic_dec_and_mutex_lock(), it will WARN on underflow and fail
+@@ -240,7 +240,7 @@ bool refcount_dec_and_mutex_lock(refcount_t *r, struct mutex *lock)
+ 
+ 	return true;
+ }
+-EXPORT_SYMBOL_GPL(refcount_dec_and_mutex_lock);
++EXPORT_SYMBOL(refcount_dec_and_mutex_lock);
+ 
+ /*
+  * Similar to atomic_dec_and_lock(), it will WARN on underflow and fail to
+@@ -263,5 +263,5 @@ bool refcount_dec_and_lock(refcount_t *r, spinlock_t *lock)
+ 
+ 	return true;
+ }
+-EXPORT_SYMBOL_GPL(refcount_dec_and_lock);
++EXPORT_SYMBOL(refcount_dec_and_lock);
+ 
+diff --git a/lib/test_bpf.c b/lib/test_bpf.c
+index 0362da0b66c3..2e385026915c 100644
+--- a/lib/test_bpf.c
++++ b/lib/test_bpf.c
+@@ -4656,6 +4656,51 @@ static struct bpf_test tests[] = {
+ 		{ },
+ 		{ { 0, 1 } },
+ 	},
++	{
++		/* Mainly testing JIT + imm64 here. */
++		"JMP_JGE_X: ldimm64 test 1",
++		.u.insns_int = {
++			BPF_ALU32_IMM(BPF_MOV, R0, 0),
++			BPF_LD_IMM64(R1, 3),
++			BPF_LD_IMM64(R2, 2),
++			BPF_JMP_REG(BPF_JGE, R1, R2, 2),
++			BPF_LD_IMM64(R0, 0xffffffffffffffffUL),
++			BPF_LD_IMM64(R0, 0xeeeeeeeeeeeeeeeeUL),
++			BPF_EXIT_INSN(),
++		},
++		INTERNAL,
++		{ },
++		{ { 0, 0xeeeeeeeeU } },
++	},
++	{
++		"JMP_JGE_X: ldimm64 test 2",
++		.u.insns_int = {
++			BPF_ALU32_IMM(BPF_MOV, R0, 0),
++			BPF_LD_IMM64(R1, 3),
++			BPF_LD_IMM64(R2, 2),
++			BPF_JMP_REG(BPF_JGE, R1, R2, 0),
++			BPF_LD_IMM64(R0, 0xffffffffffffffffUL),
++			BPF_EXIT_INSN(),
++		},
++		INTERNAL,
++		{ },
++		{ { 0, 0xffffffffU } },
++	},
++	{
++		"JMP_JGE_X: ldimm64 test 3",
++		.u.insns_int = {
++			BPF_ALU32_IMM(BPF_MOV, R0, 1),
++			BPF_LD_IMM64(R1, 3),
++			BPF_LD_IMM64(R2, 2),
++			BPF_JMP_REG(BPF_JGE, R1, R2, 4),
++			BPF_LD_IMM64(R0, 0xffffffffffffffffUL),
++			BPF_LD_IMM64(R0, 0xeeeeeeeeeeeeeeeeUL),
++			BPF_EXIT_INSN(),
++		},
++		INTERNAL,
++		{ },
++		{ { 0, 1 } },
++	},
+ 	/* BPF_JMP | BPF_JNE | BPF_X */
+ 	{
+ 		"JMP_JNE_X: if (3 != 2) return 1",
+diff --git a/net/core/rtnetlink.c b/net/core/rtnetlink.c
+index c4e84c558240..69daf393cbe1 100644
+--- a/net/core/rtnetlink.c
++++ b/net/core/rtnetlink.c
+@@ -1056,7 +1056,7 @@ static int rtnl_phys_port_name_fill(struct sk_buff *skb, struct net_device *dev)
+ 		return err;
+ 	}
+ 
+-	if (nla_put(skb, IFLA_PHYS_PORT_NAME, strlen(name), name))
++	if (nla_put_string(skb, IFLA_PHYS_PORT_NAME, name))
+ 		return -EMSGSIZE;
+ 
+ 	return 0;
+diff --git a/net/core/secure_seq.c b/net/core/secure_seq.c
+index d28da7d363f1..ae35cce3a40d 100644
+--- a/net/core/secure_seq.c
++++ b/net/core/secure_seq.c
+@@ -24,9 +24,13 @@ static siphash_key_t ts_secret __read_mostly;
+ 
+ static __always_inline void net_secret_init(void)
+ {
+-	net_get_random_once(&ts_secret, sizeof(ts_secret));
+ 	net_get_random_once(&net_secret, sizeof(net_secret));
+ }
++
++static __always_inline void ts_secret_init(void)
++{
++	net_get_random_once(&ts_secret, sizeof(ts_secret));
++}
+ #endif
+ 
+ #ifdef CONFIG_INET
+@@ -47,7 +51,7 @@ static u32 seq_scale(u32 seq)
+ #endif
+ 
+ #if IS_ENABLED(CONFIG_IPV6)
+-static u32 secure_tcpv6_ts_off(const __be32 *saddr, const __be32 *daddr)
++u32 secure_tcpv6_ts_off(const __be32 *saddr, const __be32 *daddr)
+ {
+ 	const struct {
+ 		struct in6_addr saddr;
+@@ -60,12 +64,14 @@ static u32 secure_tcpv6_ts_off(const __be32 *saddr, const __be32 *daddr)
+ 	if (sysctl_tcp_timestamps != 1)
+ 		return 0;
+ 
++	ts_secret_init();
+ 	return siphash(&combined, offsetofend(typeof(combined), daddr),
+ 		       &ts_secret);
+ }
++EXPORT_SYMBOL(secure_tcpv6_ts_off);
+ 
+-u32 secure_tcpv6_sequence_number(const __be32 *saddr, const __be32 *daddr,
+-				 __be16 sport, __be16 dport, u32 *tsoff)
++u32 secure_tcpv6_seq(const __be32 *saddr, const __be32 *daddr,
++		     __be16 sport, __be16 dport)
+ {
+ 	const struct {
+ 		struct in6_addr saddr;
+@@ -78,14 +84,14 @@ u32 secure_tcpv6_sequence_number(const __be32 *saddr, const __be32 *daddr,
+ 		.sport = sport,
+ 		.dport = dport
+ 	};
+-	u64 hash;
++	u32 hash;
++
+ 	net_secret_init();
+ 	hash = siphash(&combined, offsetofend(typeof(combined), dport),
+ 		       &net_secret);
+-	*tsoff = secure_tcpv6_ts_off(saddr, daddr);
+ 	return seq_scale(hash);
+ }
+-EXPORT_SYMBOL(secure_tcpv6_sequence_number);
++EXPORT_SYMBOL(secure_tcpv6_seq);
+ 
+ u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr,
+ 			       __be16 dport)
+@@ -107,30 +113,30 @@ EXPORT_SYMBOL(secure_ipv6_port_ephemeral);
+ #endif
+ 
+ #ifdef CONFIG_INET
+-static u32 secure_tcp_ts_off(__be32 saddr, __be32 daddr)
++u32 secure_tcp_ts_off(__be32 saddr, __be32 daddr)
+ {
+ 	if (sysctl_tcp_timestamps != 1)
+ 		return 0;
+ 
++	ts_secret_init();
+ 	return siphash_2u32((__force u32)saddr, (__force u32)daddr,
+ 			    &ts_secret);
+ }
+ 
+-/* secure_tcp_sequence_number(a, b, 0, d) == secure_ipv4_port_ephemeral(a, b, d),
++/* secure_tcp_seq_and_tsoff(a, b, 0, d) == secure_ipv4_port_ephemeral(a, b, d),
+  * but fortunately, `sport' cannot be 0 in any circumstances. If this changes,
+  * it would be easy enough to have the former function use siphash_4u32, passing
+  * the arguments as separate u32.
+  */
+-
+-u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr,
+-			       __be16 sport, __be16 dport, u32 *tsoff)
++u32 secure_tcp_seq(__be32 saddr, __be32 daddr,
++		   __be16 sport, __be16 dport)
+ {
+-	u64 hash;
++	u32 hash;
++
+ 	net_secret_init();
+ 	hash = siphash_3u32((__force u32)saddr, (__force u32)daddr,
+ 			    (__force u32)sport << 16 | (__force u32)dport,
+ 			    &net_secret);
+-	*tsoff = secure_tcp_ts_off(saddr, daddr);
+ 	return seq_scale(hash);
+ }
+ 
+diff --git a/net/ipv4/raw.c b/net/ipv4/raw.c
+index 9d943974de2b..bdffad875691 100644
+--- a/net/ipv4/raw.c
++++ b/net/ipv4/raw.c
+@@ -358,6 +358,9 @@ static int raw_send_hdrinc(struct sock *sk, struct flowi4 *fl4,
+ 			       rt->dst.dev->mtu);
+ 		return -EMSGSIZE;
+ 	}
++	if (length < sizeof(struct iphdr))
++		return -EINVAL;
++
+ 	if (flags&MSG_PROBE)
+ 		goto out;
+ 
+diff --git a/net/ipv4/syncookies.c b/net/ipv4/syncookies.c
+index 496b97e17aaf..0257d965f111 100644
+--- a/net/ipv4/syncookies.c
++++ b/net/ipv4/syncookies.c
+@@ -16,6 +16,7 @@
+ #include <linux/siphash.h>
+ #include <linux/kernel.h>
+ #include <linux/export.h>
++#include <net/secure_seq.h>
+ #include <net/tcp.h>
+ #include <net/route.h>
+ 
+@@ -203,7 +204,7 @@ EXPORT_SYMBOL_GPL(__cookie_v4_check);
+ 
+ struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
+ 				 struct request_sock *req,
+-				 struct dst_entry *dst)
++				 struct dst_entry *dst, u32 tsoff)
+ {
+ 	struct inet_connection_sock *icsk = inet_csk(sk);
+ 	struct sock *child;
+@@ -213,6 +214,7 @@ struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
+ 						 NULL, &own_req);
+ 	if (child) {
+ 		atomic_set(&req->rsk_refcnt, 1);
++		tcp_sk(child)->tsoffset = tsoff;
+ 		sock_rps_save_rxhash(child, skb);
+ 		inet_csk_reqsk_queue_add(sk, req, child);
+ 	} else {
+@@ -292,6 +294,7 @@ struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb)
+ 	struct rtable *rt;
+ 	__u8 rcv_wscale;
+ 	struct flowi4 fl4;
++	u32 tsoff = 0;
+ 
+ 	if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies || !th->ack || th->rst)
+ 		goto out;
+@@ -311,6 +314,11 @@ struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb)
+ 	memset(&tcp_opt, 0, sizeof(tcp_opt));
+ 	tcp_parse_options(skb, &tcp_opt, 0, NULL);
+ 
++	if (tcp_opt.saw_tstamp && tcp_opt.rcv_tsecr) {
++		tsoff = secure_tcp_ts_off(ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
++		tcp_opt.rcv_tsecr -= tsoff;
++	}
++
+ 	if (!cookie_timestamp_decode(&tcp_opt))
+ 		goto out;
+ 
+@@ -381,7 +389,7 @@ struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb)
+ 	ireq->rcv_wscale  = rcv_wscale;
+ 	ireq->ecn_ok = cookie_ecn_ok(&tcp_opt, sock_net(sk), &rt->dst);
+ 
+-	ret = tcp_get_cookie_sock(sk, skb, req, &rt->dst);
++	ret = tcp_get_cookie_sock(sk, skb, req, &rt->dst, tsoff);
+ 	/* ip_queue_xmit() depends on our flow being setup
+ 	 * Normal sockets get it right from inet_csk_route_child_sock()
+ 	 */
+diff --git a/net/ipv4/tcp.c b/net/ipv4/tcp.c
+index 40ba4249a586..2dc7fcf60bf3 100644
+--- a/net/ipv4/tcp.c
++++ b/net/ipv4/tcp.c
+@@ -533,7 +533,7 @@ unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
+ 
+ 		if (tp->urg_data & TCP_URG_VALID)
+ 			mask |= POLLPRI;
+-	} else if (sk->sk_state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
++	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
+ 		/* Active TCP fastopen socket with defer_connect
+ 		 * Return POLLOUT so application can call write()
+ 		 * in order for kernel to generate SYN+data
+diff --git a/net/ipv4/tcp_input.c b/net/ipv4/tcp_input.c
+index 659d1baefb2b..3c6c8787b42e 100644
+--- a/net/ipv4/tcp_input.c
++++ b/net/ipv4/tcp_input.c
+@@ -85,7 +85,6 @@ int sysctl_tcp_dsack __read_mostly = 1;
+ int sysctl_tcp_app_win __read_mostly = 31;
+ int sysctl_tcp_adv_win_scale __read_mostly = 1;
+ EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
+-EXPORT_SYMBOL(sysctl_tcp_timestamps);
+ 
+ /* rfc5961 challenge ack rate limiting */
+ int sysctl_tcp_challenge_ack_limit = 1000;
+@@ -6332,8 +6331,8 @@ int tcp_conn_request(struct request_sock_ops *rsk_ops,
+ 	if (security_inet_conn_request(sk, skb, req))
+ 		goto drop_and_free;
+ 
+-	if (isn && tmp_opt.tstamp_ok)
+-		af_ops->init_seq(skb, &tcp_rsk(req)->ts_off);
++	if (tmp_opt.tstamp_ok)
++		tcp_rsk(req)->ts_off = af_ops->init_ts_off(skb);
+ 
+ 	if (!want_cookie && !isn) {
+ 		/* VJ's idea. We save last timestamp seen
+@@ -6375,7 +6374,7 @@ int tcp_conn_request(struct request_sock_ops *rsk_ops,
+ 			goto drop_and_release;
+ 		}
+ 
+-		isn = af_ops->init_seq(skb, &tcp_rsk(req)->ts_off);
++		isn = af_ops->init_seq(skb);
+ 	}
+ 	if (!dst) {
+ 		dst = af_ops->route_req(sk, &fl, req, NULL);
+@@ -6387,7 +6386,6 @@ int tcp_conn_request(struct request_sock_ops *rsk_ops,
+ 
+ 	if (want_cookie) {
+ 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
+-		tcp_rsk(req)->ts_off = 0;
+ 		req->cookie_ts = tmp_opt.tstamp_ok;
+ 		if (!tmp_opt.tstamp_ok)
+ 			inet_rsk(req)->ecn_ok = 0;
+diff --git a/net/ipv4/tcp_ipv4.c b/net/ipv4/tcp_ipv4.c
+index 575e19dcc017..1a5fa95c981f 100644
+--- a/net/ipv4/tcp_ipv4.c
++++ b/net/ipv4/tcp_ipv4.c
+@@ -94,12 +94,18 @@ static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
+ struct inet_hashinfo tcp_hashinfo;
+ EXPORT_SYMBOL(tcp_hashinfo);
+ 
+-static u32 tcp_v4_init_sequence(const struct sk_buff *skb, u32 *tsoff)
++static u32 tcp_v4_init_seq(const struct sk_buff *skb)
+ {
+-	return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
+-					  ip_hdr(skb)->saddr,
+-					  tcp_hdr(skb)->dest,
+-					  tcp_hdr(skb)->source, tsoff);
++	return secure_tcp_seq(ip_hdr(skb)->daddr,
++			      ip_hdr(skb)->saddr,
++			      tcp_hdr(skb)->dest,
++			      tcp_hdr(skb)->source);
++}
++
++static u32 tcp_v4_init_ts_off(const struct sk_buff *skb)
++{
++	return secure_tcp_ts_off(ip_hdr(skb)->daddr,
++				 ip_hdr(skb)->saddr);
+ }
+ 
+ int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
+@@ -145,7 +151,6 @@ int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
+ 	struct flowi4 *fl4;
+ 	struct rtable *rt;
+ 	int err;
+-	u32 seq;
+ 	struct ip_options_rcu *inet_opt;
+ 	struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
+ 
+@@ -236,13 +241,13 @@ int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
+ 	rt = NULL;
+ 
+ 	if (likely(!tp->repair)) {
+-		seq = secure_tcp_sequence_number(inet->inet_saddr,
+-						 inet->inet_daddr,
+-						 inet->inet_sport,
+-						 usin->sin_port,
+-						 &tp->tsoffset);
+ 		if (!tp->write_seq)
+-			tp->write_seq = seq;
++			tp->write_seq = secure_tcp_seq(inet->inet_saddr,
++						       inet->inet_daddr,
++						       inet->inet_sport,
++						       usin->sin_port);
++		tp->tsoffset = secure_tcp_ts_off(inet->inet_saddr,
++						 inet->inet_daddr);
+ 	}
+ 
+ 	inet->inet_id = tp->write_seq ^ jiffies;
+@@ -1253,7 +1258,8 @@ static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
+ 	.cookie_init_seq =	cookie_v4_init_sequence,
+ #endif
+ 	.route_req	=	tcp_v4_route_req,
+-	.init_seq	=	tcp_v4_init_sequence,
++	.init_seq	=	tcp_v4_init_seq,
++	.init_ts_off	=	tcp_v4_init_ts_off,
+ 	.send_synack	=	tcp_v4_send_synack,
+ };
+ 
+diff --git a/net/ipv4/tcp_lp.c b/net/ipv4/tcp_lp.c
+index 046fd3910873..d6fb6c067af4 100644
+--- a/net/ipv4/tcp_lp.c
++++ b/net/ipv4/tcp_lp.c
+@@ -264,13 +264,15 @@ static void tcp_lp_pkts_acked(struct sock *sk, const struct ack_sample *sample)
+ {
+ 	struct tcp_sock *tp = tcp_sk(sk);
+ 	struct lp *lp = inet_csk_ca(sk);
++	u32 delta;
+ 
+ 	if (sample->rtt_us > 0)
+ 		tcp_lp_rtt_sample(sk, sample->rtt_us);
+ 
+ 	/* calc inference */
+-	if (tcp_time_stamp > tp->rx_opt.rcv_tsecr)
+-		lp->inference = 3 * (tcp_time_stamp - tp->rx_opt.rcv_tsecr);
++	delta = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
++	if ((s32)delta > 0)
++		lp->inference = 3 * delta;
+ 
+ 	/* test if within inference */
+ 	if (lp->last_drop && (tcp_time_stamp - lp->last_drop < lp->inference))
+diff --git a/net/ipv4/tcp_minisocks.c b/net/ipv4/tcp_minisocks.c
+index 65c0f3d13eca..c1259ccc422f 100644
+--- a/net/ipv4/tcp_minisocks.c
++++ b/net/ipv4/tcp_minisocks.c
+@@ -536,6 +536,7 @@ struct sock *tcp_create_openreq_child(const struct sock *sk,
+ 			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
+ 		newtp->rx_opt.mss_clamp = req->mss;
+ 		tcp_ecn_openreq_child(newtp, req);
++		newtp->fastopen_req = NULL;
+ 		newtp->fastopen_rsk = NULL;
+ 		newtp->syn_data_acked = 0;
+ 		newtp->rack.mstamp.v64 = 0;
+diff --git a/net/ipv6/addrconf.c b/net/ipv6/addrconf.c
+index 0ea96c4d334d..311f45641673 100644
+--- a/net/ipv6/addrconf.c
++++ b/net/ipv6/addrconf.c
+@@ -3296,7 +3296,8 @@ static int fixup_permanent_addr(struct inet6_dev *idev,
+ 				      idev->dev, 0, 0);
+ 	}
+ 
+-	addrconf_dad_start(ifp);
++	if (ifp->state == INET6_IFADDR_STATE_PREDAD)
++		addrconf_dad_start(ifp);
+ 
+ 	return 0;
+ }
+@@ -3515,6 +3516,7 @@ static int addrconf_notify(struct notifier_block *this, unsigned long event,
+  */
+ static struct notifier_block ipv6_dev_notf = {
+ 	.notifier_call = addrconf_notify,
++	.priority = ADDRCONF_NOTIFY_PRIORITY,
+ };
+ 
+ static void addrconf_type_change(struct net_device *dev, unsigned long event)
+@@ -3651,7 +3653,7 @@ static int addrconf_ifdown(struct net_device *dev, int how)
+ 		if (keep) {
+ 			/* set state to skip the notifier below */
+ 			state = INET6_IFADDR_STATE_DEAD;
+-			ifa->state = 0;
++			ifa->state = INET6_IFADDR_STATE_PREDAD;
+ 			if (!(ifa->flags & IFA_F_NODAD))
+ 				ifa->flags |= IFA_F_TENTATIVE;
+ 
+@@ -6408,6 +6410,8 @@ int __init addrconf_init(void)
+ 		goto errlo;
+ 	}
+ 
++	ip6_route_init_special_entries();
++
+ 	for (i = 0; i < IN6_ADDR_HSIZE; i++)
+ 		INIT_HLIST_HEAD(&inet6_addr_lst[i]);
+ 
+diff --git a/net/ipv6/raw.c b/net/ipv6/raw.c
+index 0da6a12b5472..1f992d9e261d 100644
+--- a/net/ipv6/raw.c
++++ b/net/ipv6/raw.c
+@@ -632,6 +632,8 @@ static int rawv6_send_hdrinc(struct sock *sk, struct msghdr *msg, int length,
+ 		ipv6_local_error(sk, EMSGSIZE, fl6, rt->dst.dev->mtu);
+ 		return -EMSGSIZE;
+ 	}
++	if (length < sizeof(struct ipv6hdr))
++		return -EINVAL;
+ 	if (flags&MSG_PROBE)
+ 		goto out;
+ 
+diff --git a/net/ipv6/route.c b/net/ipv6/route.c
+index fb174b590fd3..d316d00e11ab 100644
+--- a/net/ipv6/route.c
++++ b/net/ipv6/route.c
+@@ -3704,7 +3704,10 @@ static int ip6_route_dev_notify(struct notifier_block *this,
+ 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
+ 	struct net *net = dev_net(dev);
+ 
+-	if (event == NETDEV_REGISTER && (dev->flags & IFF_LOOPBACK)) {
++	if (!(dev->flags & IFF_LOOPBACK))
++		return NOTIFY_OK;
++
++	if (event == NETDEV_REGISTER) {
+ 		net->ipv6.ip6_null_entry->dst.dev = dev;
+ 		net->ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(dev);
+ #ifdef CONFIG_IPV6_MULTIPLE_TABLES
+@@ -3713,6 +3716,12 @@ static int ip6_route_dev_notify(struct notifier_block *this,
+ 		net->ipv6.ip6_blk_hole_entry->dst.dev = dev;
+ 		net->ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(dev);
+ #endif
++	 } else if (event == NETDEV_UNREGISTER) {
++		in6_dev_put(net->ipv6.ip6_null_entry->rt6i_idev);
++#ifdef CONFIG_IPV6_MULTIPLE_TABLES
++		in6_dev_put(net->ipv6.ip6_prohibit_entry->rt6i_idev);
++		in6_dev_put(net->ipv6.ip6_blk_hole_entry->rt6i_idev);
++#endif
+ 	}
+ 
+ 	return NOTIFY_OK;
+@@ -4019,9 +4028,24 @@ static struct pernet_operations ip6_route_net_late_ops = {
+ 
+ static struct notifier_block ip6_route_dev_notifier = {
+ 	.notifier_call = ip6_route_dev_notify,
+-	.priority = 0,
++	.priority = ADDRCONF_NOTIFY_PRIORITY - 10,
+ };
+ 
++void __init ip6_route_init_special_entries(void)
++{
++	/* Registering of the loopback is done before this portion of code,
++	 * the loopback reference in rt6_info will not be taken, do it
++	 * manually for init_net */
++	init_net.ipv6.ip6_null_entry->dst.dev = init_net.loopback_dev;
++	init_net.ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
++  #ifdef CONFIG_IPV6_MULTIPLE_TABLES
++	init_net.ipv6.ip6_prohibit_entry->dst.dev = init_net.loopback_dev;
++	init_net.ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
++	init_net.ipv6.ip6_blk_hole_entry->dst.dev = init_net.loopback_dev;
++	init_net.ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
++  #endif
++}
++
+ int __init ip6_route_init(void)
+ {
+ 	int ret;
+@@ -4048,17 +4072,6 @@ int __init ip6_route_init(void)
+ 
+ 	ip6_dst_blackhole_ops.kmem_cachep = ip6_dst_ops_template.kmem_cachep;
+ 
+-	/* Registering of the loopback is done before this portion of code,
+-	 * the loopback reference in rt6_info will not be taken, do it
+-	 * manually for init_net */
+-	init_net.ipv6.ip6_null_entry->dst.dev = init_net.loopback_dev;
+-	init_net.ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
+-  #ifdef CONFIG_IPV6_MULTIPLE_TABLES
+-	init_net.ipv6.ip6_prohibit_entry->dst.dev = init_net.loopback_dev;
+-	init_net.ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
+-	init_net.ipv6.ip6_blk_hole_entry->dst.dev = init_net.loopback_dev;
+-	init_net.ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
+-  #endif
+ 	ret = fib6_init();
+ 	if (ret)
+ 		goto out_register_subsys;
+diff --git a/net/ipv6/syncookies.c b/net/ipv6/syncookies.c
+index 895ff650db43..5abc3692b901 100644
+--- a/net/ipv6/syncookies.c
++++ b/net/ipv6/syncookies.c
+@@ -18,6 +18,7 @@
+ #include <linux/random.h>
+ #include <linux/siphash.h>
+ #include <linux/kernel.h>
++#include <net/secure_seq.h>
+ #include <net/ipv6.h>
+ #include <net/tcp.h>
+ 
+@@ -143,6 +144,7 @@ struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb)
+ 	int mss;
+ 	struct dst_entry *dst;
+ 	__u8 rcv_wscale;
++	u32 tsoff = 0;
+ 
+ 	if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies || !th->ack || th->rst)
+ 		goto out;
+@@ -162,6 +164,12 @@ struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb)
+ 	memset(&tcp_opt, 0, sizeof(tcp_opt));
+ 	tcp_parse_options(skb, &tcp_opt, 0, NULL);
+ 
++	if (tcp_opt.saw_tstamp && tcp_opt.rcv_tsecr) {
++		tsoff = secure_tcpv6_ts_off(ipv6_hdr(skb)->daddr.s6_addr32,
++					    ipv6_hdr(skb)->saddr.s6_addr32);
++		tcp_opt.rcv_tsecr -= tsoff;
++	}
++
+ 	if (!cookie_timestamp_decode(&tcp_opt))
+ 		goto out;
+ 
+@@ -242,7 +250,7 @@ struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb)
+ 	ireq->rcv_wscale = rcv_wscale;
+ 	ireq->ecn_ok = cookie_ecn_ok(&tcp_opt, sock_net(sk), dst);
+ 
+-	ret = tcp_get_cookie_sock(sk, skb, req, dst);
++	ret = tcp_get_cookie_sock(sk, skb, req, dst, tsoff);
+ out:
+ 	return ret;
+ out_free:
+diff --git a/net/ipv6/tcp_ipv6.c b/net/ipv6/tcp_ipv6.c
+index 49fa2e8c3fa9..4c4afdca41ff 100644
+--- a/net/ipv6/tcp_ipv6.c
++++ b/net/ipv6/tcp_ipv6.c
+@@ -101,12 +101,18 @@ static void inet6_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
+ 	}
+ }
+ 
+-static u32 tcp_v6_init_sequence(const struct sk_buff *skb, u32 *tsoff)
++static u32 tcp_v6_init_seq(const struct sk_buff *skb)
+ {
+-	return secure_tcpv6_sequence_number(ipv6_hdr(skb)->daddr.s6_addr32,
+-					    ipv6_hdr(skb)->saddr.s6_addr32,
+-					    tcp_hdr(skb)->dest,
+-					    tcp_hdr(skb)->source, tsoff);
++	return secure_tcpv6_seq(ipv6_hdr(skb)->daddr.s6_addr32,
++				ipv6_hdr(skb)->saddr.s6_addr32,
++				tcp_hdr(skb)->dest,
++				tcp_hdr(skb)->source);
++}
++
++static u32 tcp_v6_init_ts_off(const struct sk_buff *skb)
++{
++	return secure_tcpv6_ts_off(ipv6_hdr(skb)->daddr.s6_addr32,
++				   ipv6_hdr(skb)->saddr.s6_addr32);
+ }
+ 
+ static int tcp_v6_connect(struct sock *sk, struct sockaddr *uaddr,
+@@ -122,7 +128,6 @@ static int tcp_v6_connect(struct sock *sk, struct sockaddr *uaddr,
+ 	struct flowi6 fl6;
+ 	struct dst_entry *dst;
+ 	int addr_type;
+-	u32 seq;
+ 	int err;
+ 	struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
+ 
+@@ -287,13 +292,13 @@ static int tcp_v6_connect(struct sock *sk, struct sockaddr *uaddr,
+ 	sk_set_txhash(sk);
+ 
+ 	if (likely(!tp->repair)) {
+-		seq = secure_tcpv6_sequence_number(np->saddr.s6_addr32,
+-						   sk->sk_v6_daddr.s6_addr32,
+-						   inet->inet_sport,
+-						   inet->inet_dport,
+-						   &tp->tsoffset);
+ 		if (!tp->write_seq)
+-			tp->write_seq = seq;
++			tp->write_seq = secure_tcpv6_seq(np->saddr.s6_addr32,
++							 sk->sk_v6_daddr.s6_addr32,
++							 inet->inet_sport,
++							 inet->inet_dport);
++		tp->tsoffset = secure_tcpv6_ts_off(np->saddr.s6_addr32,
++						   sk->sk_v6_daddr.s6_addr32);
+ 	}
+ 
+ 	if (tcp_fastopen_defer_connect(sk, &err))
+@@ -757,7 +762,8 @@ static const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops = {
+ 	.cookie_init_seq =	cookie_v6_init_sequence,
+ #endif
+ 	.route_req	=	tcp_v6_route_req,
+-	.init_seq	=	tcp_v6_init_sequence,
++	.init_seq	=	tcp_v6_init_seq,
++	.init_ts_off	=	tcp_v6_init_ts_off,
+ 	.send_synack	=	tcp_v6_send_synack,
+ };
+ 
+diff --git a/tools/testing/selftests/bpf/test_verifier.c b/tools/testing/selftests/bpf/test_verifier.c
+index c848e90b6421..8b433bf3fdd7 100644
+--- a/tools/testing/selftests/bpf/test_verifier.c
++++ b/tools/testing/selftests/bpf/test_verifier.c
+@@ -1809,16 +1809,22 @@ static struct bpf_test tests[] = {
+ 		.result = ACCEPT,
+ 	},
+ 	{
+-		"unpriv: obfuscate stack pointer",
++		"stack pointer arithmetic",
+ 		.insns = {
+-			BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
+-			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
+-			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
++			BPF_MOV64_IMM(BPF_REG_1, 4),
++			BPF_JMP_IMM(BPF_JA, 0, 0, 0),
++			BPF_MOV64_REG(BPF_REG_7, BPF_REG_10),
++			BPF_ALU64_IMM(BPF_ADD, BPF_REG_7, -10),
++			BPF_ALU64_IMM(BPF_ADD, BPF_REG_7, -10),
++			BPF_MOV64_REG(BPF_REG_2, BPF_REG_7),
++			BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1),
++			BPF_ST_MEM(0, BPF_REG_2, 4, 0),
++			BPF_MOV64_REG(BPF_REG_2, BPF_REG_7),
++			BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, 8),
++			BPF_ST_MEM(0, BPF_REG_2, 4, 0),
+ 			BPF_MOV64_IMM(BPF_REG_0, 0),
+ 			BPF_EXIT_INSN(),
+ 		},
+-		.errstr_unpriv = "R2 pointer arithmetic",
+-		.result_unpriv = REJECT,
+ 		.result = ACCEPT,
+ 	},
+ 	{


^ permalink raw reply related	[flat|nested] 5+ messages in thread

* [gentoo-commits] proj/linux-patches:4.11 commit in: /
@ 2017-05-14 23:13 Mike Pagano
  0 siblings, 0 replies; 5+ messages in thread
From: Mike Pagano @ 2017-05-14 23:13 UTC (permalink / raw
  To: gentoo-commits

commit:     1f1360d605543d4bc5fb55a5e4f0da738c480bb3
Author:     Mike Pagano <mpagano <AT> gentoo <DOT> org>
AuthorDate: Sun May 14 23:13:32 2017 +0000
Commit:     Mike Pagano <mpagano <AT> gentoo <DOT> org>
CommitDate: Sun May 14 23:13:32 2017 +0000
URL:        https://gitweb.gentoo.org/proj/linux-patches.git/commit/?id=1f1360d6

Cleanup BFQ patchset

 ...lkck-bfq-turn-BFQ-v7r11-for-4.11.0-into-BFQ-v8r11-for-4.patch1 | 8 +++-----
 1 file changed, 3 insertions(+), 5 deletions(-)

diff --git a/5004_blkck-bfq-turn-BFQ-v7r11-for-4.11.0-into-BFQ-v8r11-for-4.patch1 b/5004_blkck-bfq-turn-BFQ-v7r11-for-4.11.0-into-BFQ-v8r11-for-4.patch1
index 01826dc..0499343 100644
--- a/5004_blkck-bfq-turn-BFQ-v7r11-for-4.11.0-into-BFQ-v8r11-for-4.patch1
+++ b/5004_blkck-bfq-turn-BFQ-v7r11-for-4.11.0-into-BFQ-v8r11-for-4.patch1
@@ -565,14 +565,12 @@ index 0000000..13b5248
 +    Slightly extended version:
 +    http://algogroup.unimore.it/people/paolo/disk_sched/bfq-v1-suite-
 +							results.pdf
-diff --git a/Makefile b/Makefile
-index 4b074a9..4afff93 100644
---- a/Makefile
-+++ b/Makefile
+--- a/Makefile	2017-05-14 19:00:52.624222620 -0400
++++ b/Makefile	2017-05-14 19:01:06.788239004 -0400
 @@ -1,7 +1,7 @@
  VERSION = 4
  PATCHLEVEL = 11
- SUBLEVEL = 0
+ SUBLEVEL = 1
 -EXTRAVERSION =
 +EXTRAVERSION = -bfq
  NAME = Fearless Coyote


^ permalink raw reply related	[flat|nested] 5+ messages in thread

end of thread, other threads:[~2017-05-14 23:13 UTC | newest]

Thread overview: 5+ messages (download: mbox.gz follow: Atom feed
-- links below jump to the message on this page --
2017-05-14 13:29 [gentoo-commits] proj/linux-patches:4.11 commit in: / Mike Pagano
  -- strict thread matches above, loose matches on Subject: below --
2017-05-14 23:13 Mike Pagano
2017-05-01 23:09 Mike Pagano
2017-03-23 17:12 Mike Pagano
2017-03-08 19:29 Mike Pagano

This is a public inbox, see mirroring instructions
for how to clone and mirror all data and code used for this inbox